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Abstract: Accounting for aeroelastic phenomena, such as flutter, in the conceptual design phase
is becoming more important as the trend toward increasing the wing aspect ratio forges ahead.
However, this task is computationally expensive, especially when utilizing high-fidelity simulations
and numerical optimization. Thus, the development of efficient computational strategies is necessary.
With this goal in mind, this work proposes a surrogate-based optimization (SBO) methodology for
wing design using a predefined machine learning model. For this purpose, a custom-made Python
framework was built based on different open-source codes. The test subject was the classical Goland
wing, parameterized to allow for SBO. The process consists of employing a Latin Hypercube Sampling
plan and subsequently simulating the resulting wing on SHARPy to generate a dataset. A regression-
based machine learning model is then used to build surrogate models for lift and drag coefficients,
structural mass, and flutter speed. Finally, after validating the surrogate model, a multi-objective
optimization problem aiming to maximize the lift-to-drag ratio and minimize the structural mass is
solved through NSGA-II, considering a flutter constraint. This SBO methodology was successfully
tested, reaching reductions of three orders of magnitude in the optimization computational time.

Keywords: multidisciplinary design optimization; aeroelasticity; multi-objective optimization; wing
design; surrogate models

1. Introduction

The need to account for aeroelastic phenomena, namely, flutter, during the conceptual
design phase has gained relevancy as wing designs become slenderer to reduce the induced
drag [1]. However, this need comes with a computational challenge, especially when
integrated into a Multidisciplinary Design Optimization (MDO) [2] environment to perform
Fluid–Structure Interaction (FSI) simulations to estimate flutter speed. Therefore, searching
for more computationally efficient solutions that are able to maximize wing performance
without reaching flutter within the flight envelope is required. With this goal in mind,
different approaches are considered in the literature, namely, multi-fidelity models [3,4],
conventional [5] and machine learning-based surrogate models [6], and reduced-order
models [7].

Low-fidelity (LF) [8], high-fidelity (HF) [9,10], and multi-fidelity (MF) [11,12] mod-
els have all been tested in different flutter-constrained MDO problems of wings. These
models span from LF models such as potential flow theory and panel methods with correc-
tions [8,11,12], accounting for both compressibility and viscous effects, to Euler [11] and HF
Reynolds-Averaged Navier–Stokes (RANS) solvers [9,10,12]. Most of these optimization
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problems were aimed at maximizing range [8,9,11], although fuel burn [12] and structural
mass [10] minimization has also been chosen.

Even though reduced-order and surrogate models have been applied to aeroelasticity
problems for some time [13], especially to study unsteady nonlinear aeroelasticity problems
that arise from unconventional features such as limit-cycle oscillations [14–16], their usage
for MDO problems considering flutter is scarce [17–19] in the open literature, particularly
for MDO problems considering aerodynamic performance and structural weight. For in-
stance, Sohst et al. [17] developed an MDO strategy that uses multi-fidelity solvers and
surrogate models to design strut-braced and high-aspect-ratio wings considering flutter
and stress constraints. They found that, although the flutter constraint was respected in
the optimization process, unaccounted buckling was observed in a nonlinear assessment
of the optimized strut-braced wing aircraft design. Cea and Palacios [18] implemented an
optimization framework based on ROMs that couples different open-source codes, includ-
ing SHARPy, for minimizing the mass of a flexible strut-braced wing while accounting for
flutter speed as a constraint. Toffol and Ricci [19] developed a methodology combining
in-house codes with surrogate models to optimize the structural layout of a conventional
aircraft such that its mass is minimized while considering stress and flutter constraints.
The application of surrogate models based on machine learning is scarcer. Nevertheless,
this research field is starting to emerge, particularly for aerodynamics [6,20].

In this work, a surrogate-based optimization (SBO) strategy is presented to conceptu-
ally design flexible wings based on machine learning-based surrogate models with the aim
of maximizing aerodynamic performance, minimizing structural mass, and satisfying the
flutter constraint.

2. Methodology

The methodology employed in this work and depicted in Figure 1 adheres to three
fundamental steps commonly found in SBO: (i) dataset definition and generation; (ii) surro-
gate model training, validation, and testing; and (iii) the optimization process. All these
tasks were performed using available open-source Python codes and specially developed
Python scripts. For illustrative purposes, the methodology is applied for a cruise speed of
30 m/s, but it is applicable to other speeds.

3. Optimization Process

Sampling
Surrogate

Model
Generation

No

YesGood
Quality?

Aeroelastic
Simulations

Multi-Objective and
Multidisciplinary
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Initial Wing and
Design Space
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Figure 1. Implemented surrogate-based optimization methodology.

Firstly, the Goland wing [21] was selected to be the baseline model for this work.
The reason for this choice was two-fold: (i) experimental data exist to validate the imple-
mentation; (ii) it has been already used to validate SHARPy [22], the open-source code
chosen for the aeroelastic simulations and developed by Imperial College London. SHARPy
provides a coupled aeroelastic solution considering the Unsteady Vortex Lattice Method
(UVLM) [23] and Geometrically Exact Beam Model (GEBM) [24] for aerodynamic and
structural analyses, respectively. Krylov and modal projections are used in SHARPy to
linearize aerodynamic and structural subsystems, respectively. These are then used to
estimate the flutter speed by means of the iterative p-k method at the nonlinear aeroelastic
equilibrium. The flutter speed was predicted in the SHARPy implementation used for this
work to be under 5% of the relative error for the Goland wing, in agreement with the value
obtained by SHARPy developers [25]. To improve the accuracy of the drag estimation,
the flat-plate theory [26] was implemented, offering an estimation of skin-friction drag
multiplied by form (more adequate for small angles of attack) and interference factors.
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Currently, there are some efforts being made by the SHARPy team [27,28] to include viscous
considerations in the UVLM, which are typically not of major importance when the focus
is on aeroelastic phenomena.

2.1. Dataset Definition and Generation
2.1.1. Design Space

In regard to the design variables, the choice rested on four key parameters in aeroe-
lasticity: wing aspect ratio (AR), sweep angle (Λ), torsional stiffness (GJ), and angle of
attack (α). The AR is vital to improve aerodynamic efficiency and fuel consumption, al-
though it poses aeroelastic and structural challenges [1]. The sweep angle (Λ) influences
transonic flow onset and aircraft aeroelastic stability [29]. GJ relates how wings respond
to aerodynamic loads and is critical to averting aeroelastic instabilities [29]. Lastly, α
impacts lift and drag, affecting flight stability. Besides their relevancy to and impact on
the aeroelastic behavior, SHARPy’s ability to modify these variables without coding was
fundamental in their selection. The upper and lower boundaries (UB and LB, respectively)
of these parameters are listed in Table 1 alongside the initial values that correspond to the
Goland wing specifications. These boundaries were later adjusted based on the preliminary
optimization results.

Table 1. The design variables and respective boundaries used for the dataset generation and opti-
mization problem.

DVs Initial LB UB Units

AR 6.67 6 16 -
Λ 0 0 40 deg
GJ 0.99 × 106 0.70 × 106 1.70 × 106 N.m2

α 0.05 –5 15 deg

2.1.2. Sampling Plan

For sampling, Latin Hypercube Sampling (LHS) was adopted using the pyDOE2
package [30] due to its uniform coverage across the design space and its efficient sampling
scheme. Simulations conducted in SHARPy focused on the wing metrics to be used in the
optimization: structural mass, flutter speed, and aerodynamic coefficients (CL and CD).
For this study, 2000 simulation samples were generated. Despite this number appearing
to be modest given the complexity of the problem, the high computational demands of
SHARPy made this a significant effort. Each simulation averaged around 93.5 s. The sim-
ulations were run on a host computer with Windows 11, an Intel i7-10510U processor,
16 GB DDR4 RAM, and a 477 GB SSD. This machine also used NVIDIA GeForce MX250
graphics. Within this system, a virtual machine operated on Ubuntu 22.10, utilizing 4 cores,
11 GB RAM, and 59.2 GB of storage space. Virtualization was facilitated by Oracle VM
VirtualBox 7.0.6.

2.2. Surrogate Model Training, Validation, and Testing

This subsection provides an overview of surrogate model development, from training
to testing. The goal is to find a machine learning-based surrogate model that meets
computational needs and offers a high predictive accuracy. Our criteria for selecting the
model include accuracy, efficiency, and robustness.

We considered various regression-based machine learning models from the scikit-
learn Python library [31], including Bayesian Ridge, Decision Tree Regressor, Extra Trees
Regressor, Lasso, ARD Regression, and Linear Regression. For the model generation, we
considered a 60%–30%–10% split for training, validation, and testing, respectively, based
on experimenting with different combinations for generating surrogates of CL, CD, mass,
and flutter speed. A random procedure was followed to assign the data points to each
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set. These machine learning models were set with random hyperparameters to gauge their
baseline performance. Each was then assessed on the validation subset.

The methods were evaluated for flutter speed, mass, drag, and lift coefficients, i.e., the
output parameters from SHARPy that were used for the optimization problem definition.
All the considered models were able to well represent the structural mass, drag, and lift
coefficients, with values of R2 higher than 0.99 and of Root Mean Squared Error (RMSE)
lower than 1%. However, the models evidenced difficulty in provide accurate predictions
of flutter speed, as shown in Table 2.

Table 2. Flutter speed performance metrics.

Method R2 (-) RMSE (%)

Extra Tree Regressor 0.921 8.92
Decision Tree Regressor 0.749 15.84
Linear Regression 0.245 27.5
Bayesian Ridge 0.245 27.5
Lasso 0.244 27.5
ARDR Regression 0.243 27.5

While, for this model, only the Decision Tree method approached the performance
of Extra Trees (still remaining inferior), for the other models, the difference between the
methods was minimal. With these considerations in mind and for consistency and simplicity
in the workflow, we chose to use the Extra Trees Regressor as the surrogate model method
for all output variables. After determining the Extra Trees Regressor’s aptitude, the training
and validation processes began.

Alternatively, another SBO strategy could be explored in the future, where new infill
points are added alongside the optimization using an appropriate acquisition function
and Bayesian Optimization [32]. This approach was recently applied to an aero-structural
problem by Cardoso et al. [33].

2.2.1. Training and Validation

The model was trained using the dataset, focusing on hyperparameter tuning. Hy-
perparameters were carefully adjusted to ensure model accuracy and prevent overfitting.
The optimal settings were identified via a Grid Search, using RMSE and R2 for selection.
The model’s hyperparameters analyzed were the number of trees in the ensemble, max-
imum tree depth, minimum samples at a leaf node, and minimum samples for a node
split [34]. The objective during training is to minimize a loss function for improved predic-
tion based on input data, ensuring that hyperparameters are set for both known (training
set) and unseen (validation set) data.

2.2.2. Testing

After training and validation, the model is tested on a dataset it has not seen before,
known as the test set, to gauge the model’s effectiveness. Learning curves further evaluate
the model’s generalization. The final surrogate models used for testing and the later
optimization process are based on the optimal hyperparameters obtained for each model
after tuning. The suitability of surrogate models for the aeroelastic analyses required for the
optimization process was visualized using parameters from the testing dataset. The results
for each model are shown in Figure 2.
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(a) Flutter velocity (b) Wing mass

(c) Drag coefficient (CD) (d) Lift coefficient (CL)

Figure 2. Visual comparison of the results obtained using the SHARPy simulations (in blue) and the
surrogate model (in orange) in the testing phase of the SMs.

From the results, the surrogate models accurately predict the mass and lift coefficient.
Discrepancies in the drag coefficient suggest complexities in aeroelastic interactions in
certain regions of the design space. The flutter speed showed the greatest difference, with
an R2 of 0.921. The flutter model might have been overfitting, as can be seen from the
learning curves in Figure 3, and more data might improve its performance. Challenges in
flutter modeling could arise from estimating flutter speed using the iterative p-k method.

Figure 3. Learning curves of flutter velocity model.
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2.3. Optimization Process

The last step in the implemented SBO methodology is to solve the optimization prob-
lem, which is a multi-objective one, as we want to maximize aerodynamic performance in
terms of the lift-to-drag ratio (CL/CD) and minimize structural mass while ensuring that the
flutter speed (Vflutter) is far from the cruise speed (Vcruise). Mathematically, the optimization
problem can be stated as follows:

minimize f (−CL/CD, mass)

with respect to x = (AR, Λ, GJ, α)

subject to c = Vcruise − (Vflutter/1.5) ≤ 0

, (1)

where f , x, and c denote the classical notation for objective functions, the design variable
set, and constraints, respectively. The factor 1.5 provides a safety factor against flutter,
a standard in aerospace engineering [35]. Since this is a multi-objective problem and the run
time of the surrogate model is inexpensive, a gradient-free optimizer was chosen to better
explore the design space, namely, the implementation of Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [36] in pygmo [37]. However, as NSGA-II is an unconstrained
optimization algorithm, a penalty was added to the objective function when the flutter
constraint is not respected.

In this work, the population size, mutation rate, and crossover rate were adjusted to
improve the resulting Pareto front while ensuring a good balance between the computa-
tional cost, hypervolume, and ranking. It is worth mentioning that hypervolume measures
the space occupied by solutions in the target space, while ranking helps select solutions
based on levels of non-dominance [36].

After obtaining the Pareto fronts with the initial design variable boundaries (Table 1),
a significant discrepancy was noted in some results. A concentration of solutions was
found near the lower limit for the sweep angle and torsional stiffness, as can be observed in
Figure 4, suggesting that extending these limits might produce better solutions. In addition,
surrogate models showed high prediction errors for high aspect ratios.

Wing mass Wing mass Wing mass Wing mass

Figure 4. Distribution of optimization solutions along design variable boundaries for both objectives:
CL/CD maximization (above, in green) and mass minimization (below, in red). Units of mass are
given in kg.
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To solve this problem, the boundaries of the design variables were extended and
the dataset was augmented, focusing particularly on the critical aspect ratio interval. An
iterative analysis and modification of the dataset show a systematic approach to addressing
optimization challenges, emphasizing the importance of identifying weaknesses in the
model and making necessary changes.

3. Results

The outcomes of the optimization procedures for three cruise speeds are examined in
this section. Using surrogate models for design optimization, optimal solutions are derived
and then compared to reference results from SHARPy simulations.

3.1. Case 1: Cruise Speed of 30 m/s

The first cruise speed considered was 30 m/s. Initially, an optimization was performed
with a specific set of parameters obtained by tuning, and the solutions were compared
with SHARPy simulations. Even though the results were accurate, especially for CL,
CD, and mass, they evidenced discrepancies in flutter velocity estimation as mentioned
previously and presented in Table 2. To solve this problem, the boundaries of the design
variables were expanded, as explained in the previous section, adding more data points to
improve the accuracy of the prediction. A new optimization with the updated data showed
a reduced error for most parameters. The final surrogate models were built based on a
dataset of 2500 points with the metrics shown in Table 3.

Table 3. Final RMSE and R2 metrics for Case 1 (cruise speed of 30 m/s).

Model RMSE (%) R2 (-)

Flutter speed 7.276 0.952
Mass 0.293 0.999
CD 0.0006 0.998
CL 0.0059 0.999

However, to further improve accuracy, more computational resources were allocated.
Increasing the population size from 180 to 280 and the number of generations from 50 to
200 improved the flutter speed estimation, confining the metric deviations within a 5%
margin of error, as can be observed in Table 4. Yet, this came at the cost of computational
efficiency, with a five-fold increase in computational time.

Table 4. Optimized solutions obtained with the surrogate models compared to the corresponding
SHARPy results for Case 1 (cruise speed of 30 m/s).

Objective Metric SHARPy Optimization Relative Difference

CL/CD 39.83 39.79 0.09%
CL/CD maximization Mass 1043.57 kg 1043.46 kg 0.01%

Vflutter 133.65 m/s 127.89 m/s 4.30%

CL/CD 26.37 27.13 2.85%
Mass minimization Mass 313.84 kg 392.17 kg 0.08%

Vflutter 188.41 m/s 188.10 m/s 0.16%

Pareto front analysis revealed trade-offs between the two optimization objectives.
The extended configuration covered a wider Pareto range, suggesting its ability to explore
a complete solution space and produce better results, particularly toward higher CL/CD
values, as can be seen in Figure 5.
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C  /C   (-)L D

Figure 5. Pareto fronts for Case 1 (cruise speed of 30 m/s).

Throughout the study, the flutter constraint remained inactive, prompting further
investigation of the Goland wing’s behavior at higher cruise speeds.

3.2. Case 2: Cruise Speed of 60 m/s

For Case 2, the optimization was conducted at a cruise speed of 60 m/s using the same
methodology as the one applied for 30 m/s. The Extra Trees Regressor was identified as
the best surrogate model, with the performance metrics presented in Table 5.

Table 5. Final RMSE and R2 metrics for Case 2 (cruise speed of 60 m/s).

Model RMSE (%) R2 (-)

Flutter speed 7.360 0.913
Mass 0.377 0.999
CD 0.0034 0.947
CL 0.013 0.999

For a cruise speed of 60 m/s, from 9000 combinations, the flutter constraint was active
only 0.322% of the time. The design variables for which the flutter constraint was active fell
within the following specific ranges: AR of 15.2–15.4; Λ of 10.4–11.3 degrees; GJ between
1.62 × 106 and 1.70 × 106 N.m2M; and α of 6.86–6.95 degrees.

Nevertheless, the optimization algorithm found 180 optimal solutions where the flutter
constraint was never active. These solutions differed in design variables from those where
the flutter phenomenon was a concern. A subsequent, more detailed analysis aimed to
reduce the relative error to under 5% for all outcomes.

The results in Table 6 show that all percentage errors were below the threshold after a
deeper exploration of the design space and an increase in the optimization parameters, as
was implemented for the 30 m/s analysis.

However, this intensive optimization resulted in a 491% increase in computational
time. Nevertheless, the potential for greater accuracy seems to justify the additional
computational effort. Comparing the Pareto fronts in Figure 6, an improvement was
evident, especially at higher CL/CD values. In these cases, the advanced optimization
provided better aerodynamic efficiency with a lower mass increase. However, for some
design choices, there was a significant overlap in results between the initial and advanced
optimizations, indicating that increasing iterations and population sizes do not always lead
to different results.
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Table 6. Optimized solutions obtained with the surrogate models compared to the corresponding
SHARPy results for Case 2 (cruise speed of 60 m/s).

Objective Metric SHARPy Optimization Relative Difference

CL/CD 36.08 36.16 0.21%
CL/CD maximization Mass 927.40 kg 927.06 kg 0.04%

Vflutter 91.94 m/s 92.23 m/s 0.32%

CL/CD 21.28 21.56 1.32%
Mass minimization Mass 392.62 kg 392.32 kg 0.08%

Vflutter 194.92 m/s 188.92 m/s 3.08%

C  /C   (-)L D

Figure 6. Pareto fronts for Case 2 (cruise speed of 60 m/s).

3.3. Case 3: Cruise Speed of 130 m/s

For the final case, considering a cruise speed of 130 m/s, the flutter phenomenon
emerged for most of the points in the dataset, which made optimization difficult. The per-
formance of the surrogate models on which the optimization was based is shown in Table 7.

Table 7. Final RMSE and R2 metrics for Case 3 (cruise speed of 130 m/s).

Model RMSE (%) R2 (-)

Flutter speed 7.981 0.907
Mass 0.263 0.999
CD 0.0017 0.997
CL 0.011 0.999

The initial optimization process, despite using an expanded dataset, produced results
with high percentage errors compared with SHARPy, especially in terms of CL/CD and
flutter velocity. This was primarily due to the active flutter constraint in a vast majority
(82.2%) of the examined design combinations that led to the introduction of a penalty in
the objective function. Consequently, in the Pareto front of 180 optimal solutions, 24.4%
had active flutter issues. To address this, the optimization was reevaluated by increasing
the population size to 280 and the number of generations to 200, as was implemented for
the previous cruise speeds.

The modified approach yielded a substantial reduction in the number of solutions with
an active flutter constraint, down to 7.5%. However, this improvement came at a significant
computational cost, with a 690% increase in time compared to the initial optimization.
Despite the improvement, the percentage errors were still remarkably high, and the Pareto
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fronts showed several infeasible solutions due to the active flutter problem and the penalties
associated with the results.

However, a closer examination of the results, focusing particularly on the solutions not
affected by flutter, showed commendable accuracy. For the most exhaustive optimization
(with 200 generations and a population of 280), errors were consistently less than 5%, as
listed in Table 8.

Table 8. Optimized solutions obtained with the surrogate models compared to the corresponding
SHARPy results for Case 3 (cruise speed of 130 m/s).

Objective Metric SHARPy Optimization Relative Difference

CL/CD 13.12 13.71 4.47%
CL/CD maximization Mass 1030.99 kg 1030.06 kg 0.03%

Vflutter 189.21 m/s 194.87 m/s 2.96%

CL/CD 11.99 12.37 3.14%
Mass minimization Mass 955.82 kg 956.41 kg 0.06%

Vflutter 188.82 m/s 195.03 m/s 3.29%

These results, in line with those obtained for the cruise speeds previously examined,
clearly reveal that the high penalties were the main cause of the high percentage errors
previously observed.

Two distinct groups of solutions can be immediately identified from the graph in
Figure 7. In both cases, the optimized design space is significantly reduced, but the second
offers a more diverse set of solutions.

C  /C   (-)L D

Figure 7. Pareto fronts for Case 3 (cruise speed of 130 m/s).

Moreover, considering only the feasible solutions, we obtained results that are aligned
with the previous cases. This further strengthens the viability of the implemented SBO
strategy and shows that, despite the obstacles represented by penalties, the algorithm is
able to offer very good solutions.

3.4. Comparison and Discussion of the Results

A final comparison is presented in Table 9, which details the results obtained using
consistent parameters and dataset sizes across the three analyzed cruise speeds. The
following optimization parameters were set: a population size of 280; 200 generations; a
mutation rate of 0.5; and a crossover rate of 0.8. For the last analysis, using a cruise speed
of 130 m/s, the results considered are just the feasible ones, i.e., those without the flutter
constraint active.
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Table 9. Optimization results across the analyzed cruise speeds.

Vcruise (m/s) Objective CL/CD (-) Mass (kg) AR (-) Λ (deg) GJ (N.m2) α (deg) Vflutter (m/s)

30 CL/CD maximization 39.79 1043.46 15.97 –2.10 1.54 × 106 4.27 127.89
Mass minimization 27.13 392.17 6.00 28.7 1.36 × 106 5.13 188.10

60 CL/CD maximization 36.16 927.06 14.20 0.72 1.61 × 106 6.14 92.23
Mass minimization 21.56 392.32 6.00 32.92 7.38 × 105 7.03 188.92

130 CL/CD maximization 13.71 1030.06 15.78 6.66 9.37 × 105 9.12 194.87
Mass minimization 12.37 956.41 14.65 7.24 8.80 × 105 10.39 195.03

Firstly, one can notice that, as expected, when improving one parameter, the other
worsens accordingly, typical of the nature of multi-objective optimization. High values of
CL/CD consequently correspond to higher mass values.

It is possible to observe that the aspect ratio is consistently higher when maximizing
CL/CD compared to minimizing the mass across all cruise speeds. This observation aligns
with established aerodynamic principles: wings with a higher AR have longer spans
relative to their chord, which reduces the induced drag and consequently improves the
lift-to-drag ratio. However, the flip side of this advantage is that longer, slenderer wings
tend to be more flexible. Indeed, it is possible to observe how the flutter phenomenon in
this case occurs at lower speeds. To counterbalance this issue, these wings are heavier and
require a higher torsional stiffness to comply with the flutter speed constraint. Deviating
from the usual trend is the relatively high aspect ratio observed at the highest cruise speed
for the mass minimization objective. This unexpected outcome may be attributed to the
narrower feasible design space identified by the surrogate model, and the optimizer that
might have been trapped in a local minima region.

At the lower cruise speeds (30 m/s and 60 m/s), when the primary objective is to
minimize mass, a positive and more pronounced sweep angle is observed. This might be
associated with a structural benefit, redistributing the lift toward the root, which can result
in a lighter wing structure. However, when maximizing CL/CD, a lower sweep may favor
aerodynamic efficiency at these speeds.

Variations in torsional stiffness and the angle of attack across the different objectives
and velocities are subtler compared to other parameters. However, it is worth noting that
higher CL/CD values are associated with lower angles of attack. This trend aligns with
the expectation that a reduced angle of attack would lead to decreased aerodynamic drag.
Lowering the angle of attack while still achieving adequate lift is a strategy to enhance the
aerodynamic efficiency of the wing.

Another important observation about the aspect ratio is that for both 30 m/s and
60 m/s cruise speeds, the optimal solutions approach the boundaries of the defined design
space, which was set between 6 and 16. This is significant, as it indicates that the design
space might not fully encompass the optimal regions for these objectives at these speeds.

The plot presented in Figure 8 delineates the Pareto fronts for the three analyzed cruise
speeds, 30 m/s, 60 m/s, and 130 m/s, derived using the same optimization parameters. It
is important to note that the results at 130 m/s represent only the feasible solutions. As
the cruise speed increases, the Pareto front tends to be narrower and shift toward lower
CL/CD values, as expected. The results at 130 m/s present an evident distinction. Unlike
the relatively distributed Pareto fronts at 30 m/s and 60 m/s, the solutions at 130 m/s are
remarkably more clustered. This localized concentration indicates that, at this higher cruise
speed, design solutions that avoid flutter are limited, especially within the limits of our
design space. Moreover, these solutions at 130 m/s are characterized by relatively high
masses and moderate CL/CD values. At higher speeds, the overly stringent constraint of
flutter speed within our design space leads to results in which, to avoid flutter, the wing
structure needs to be heavier, consequently compromising its aerodynamic efficiency.
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Figure 8. Pareto fronts across analyzed cruise speeds.

4. Concluding Remarks

An SBO methodology for designing wings considering both performance and aeroe-
lasticity constraints was successfully implemented using four different open-source Python
codes. This methodology uses Extra Tree Regressors to mitigate the computational cost
associated with this wing design problem, and it was tested to solve a multi-objective
optimization problem considering three cruise speeds.

Although the surrogate models exhibited suitable performance, certain discrepancies
appear, especially in drag coefficient predictions and flutter speed, attributed to observed
aeroelastic nonlinearities. Nevertheless, the adopted surrogate models, despite the chal-
lenges faced, yielded acceptable results, with errors generally lower than 10%.

To improve the accuracy of the surrogate models in the three cases analyzed, the orig-
inal design space was revised for each of these cases individually. After this treatment,
the optimized designs that maximize CL/CD and minimize mass while keeping flutter
outside the prescribed boundary presented differences under 5% compared to the corre-
sponding SHARPy simulations. Although this refinement process improved results, it also
increased the computational time substantially.

Since the goal was to efficiently integrate aeroelastic analysis, the computational gains
were also significant. Direct simulations with SHARPy take about 93.49 s each, while
surrogate models offer predictions in under 0.01 s. In terms of optimization, the following
observations are made:

• Optimization with 50 generations and 180 population averages 321.76 s, totaling
9000 evaluations. Direct SHARPy simulations would take nearly 10 days.

• A scenario with 200 generations and 280 population takes around 1825.03 s, equaling
56,000 evaluations. Using SHARPy would mean approximately 60 days.

These results highlight the substantial computational time savings when using surro-
gate models, particularly in optimization scenarios requiring multiple evaluations.
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