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Abstract: Transfer learning (TL) utilizes knowledge from the source domain (SD) to enhance the
classification rate in the target domain (TD). It has been widely used to address the challenge of
sessional and inter-subject variations in electroencephalogram (EEG)-based brain–computer interfaces
(BCIs). However, utilizing knowledge from a combination of both related and non-related sources
can significantly deteriorate the classification performance across individual target domains, resulting
in a negative transfer (NT). Hence, NT becomes one of the most significant challenges for transfer
learning algorithms. Notably, domain selection techniques have been developed to address the
challenge of NT emerging from the transfer of knowledge from non-related sources. However,
existing domain selection approaches iterate through domains and remove a single low-beneficial
domain at a time, which can massively affect the classification performance in each iteration since
SDs respond differently to other sources. In this paper, we compare domain selection techniques for
a multi-source manifold feature transfer learning (MMFT) framework to address the challenge of NT
and then evaluate the effect of beneficial and non-beneficial sources on TL performance. To evaluate
the effect of low-beneficial and high beneficial sources on TL performance, some commonly used
domain selection methods are compared, namely, domain transferability estimation (DTE), rank of
domain (ROD), label similarity analysis, and enhanced multi-class MMFT (EMC-MMFT), using the
same multi-class cross-session and cross-subject classification problems. The experimental results
demonstrate the superiority of the EMC-MMFT algorithm in terms of minimizing the effect of NT.
The highest classification accuracy (CA) of 100% is achieved when optimal combinations of high
beneficial sources are selected for two-class SSMVEP problems, while the highest CAs of 98% and
87% are achieved for three- and four-class SSMVEP problems, respectively. The highest CA of 98%
is achieved for two-class MI classification problems, while the highest CAs of 90% and 71.5% are
obtained for three- and four-class MI problems, respectively.

Keywords: brain–computer interface (BCI); electroencephalogram (EEG); transfer learning (TL);
negative transfer (NT); multi-source manifold feature transfer learning (MMFT); enhanced multi-class
MMFT (EMC-MMFT)

1. Introduction

The brain–computer interface (BCI) is a communication system that interprets com-
mands generated from the brain and utilized to control external devices, such as prosthetic
limbs or motorized wheelchairs [1]. Therefore, the neural activities of the brain can be
extracted in the form of EEG signals and transformed into control commands utilized
to aid individuals suffering from severe motor disabilities in communicating with the
surrounding environment without any muscular stimulation [2]. In this case, the efficient
translation of EEG signals into control commands is significantly dependent on feature
extraction and classification algorithms. Hence, in recent years, improving classification
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performance has been a focus area for both online and offline EEG-based BCIs. As such,
different methods have been implemented to enhanced classification performance.

However, sessional and inter-subject variations in EEG characteristics, emerging as
a result of factors such as concentration or mental fatigue, can significantly contribute to
poor classification performance in EEG-based BCIs [3,4]. Hence, transfer learning was
introduced in this field to address the challenge of inter-subject and sessional variations
with more accurate predictions. Moreover, recent studies have demonstrated that TL
can successfully enhance performance for inter-subject EEG classification, making use of
features acquired from SDs to improve the learning performance in the TD [5–7]. However,
negative transfer emerging as a result of the transfer of knowledge from non-related source
domains to a target domain still remains one of the most significant challenges when
transfer learning is applied for both inter-session and inter-subject EEG classification [8].
As such, domain selection techniques have been developed to address the challenge of
negative transfer. However, the currently existing domain selection algorithms iterate
through domains, evaluating the transferability or similarities between the SDs and the TD,
mainly to identify and remove a single less-related domain in each iteration. In this instance,
removing a single non-related domain in each iteration can still pose a significant challenge
in the next iteration, since different domains respond differently to various sources.

Li et al. [9] proposed a multi-source TL framework for emotion recognition using fifteen
sessions acquired from a single subject. The proposed framework firstly performs source
selection and then transfer mapping to minimize variations across the target and the selected
source domains. Multi-source supervised-style transfer mapping (MM-S-STM) in this instance
achieved the highest mean classification accuracy of 88.92%. Zhang et al. [10] employed
domain transferability estimation (DTE) to address the challenge of negative transfer based
on a two-class cross-subject classification problem. As such, DTE iterated through domains,
removing a single less-beneficial domain in each iteration mainly to minimize the impact of NT
on TL performance. Consequently, the highest classification accuracy of 82.15% was achieved
when DTE was employed to perform domain selection. In this instance, the complexity of a
two-class problem demonstrated to cause a minimal impact on transfer learning performance;
however, the combination of both related and non-related source domains in each iteration
when a single non-related domain is removed can affect the performance across individual
target domains. Furthermore, She et al. [11] evaluated the transferability of domains utilizing
labels to analyze similarities between domains. Hence, label similarity analysis multi-source
manifold feature transfer (LSA-MMFT) was proposed to address the challenge of NT based on
a two-class problem. The proposed framework iterated through domains, removing a single
less-beneficial domain in each iteration using label similarities. Subsequently, LSA-MMFT
achieved a stable CAs across individual TDs, with the highest mean CA of 76.85%. However,
attempts to eradicate the effect of NT by iterating through domains and discarding a single less-
beneficial domain in each iteration from a pool of domains possessing significant individual
differences was demonstrated to drastically deteriorate classification performance. As such,
removing a single low-beneficial domain can still pose severe implications for classification
performance in the next iteration, since each domain responds differently to another domain.

In this study, we investigate the impact of less-beneficial and highly beneficial source
domains on transfer learning performance and also address the challenge of NT in multi-
class inter-session and inter-subject classification scenarios. As such, four domain selection
algorithms are introduced and compared mainly to evaluate the impact of both highly
and less-beneficial source domains on classification performance across individual TDs.
Moreover, the effect of multi-class TL on classification performance is further evaluated
across individual TDs, mainly to address the challenge of negative transfer emerging from
the transfer of features from non-related sources. Therefore, all four domain selection
algorithms (EMC-MMFT, DTE-MMFT, LSA-MMFT, and ROD-MMFT) are firstly imple-
mented based on a two-class problem and further extended to a three-class and four-class
inter-session and inter-subject classification scenarios [12]. The main contributions of this
study are listed below:
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1. Investigate the impact of highly beneficial and less-beneficial sources contributing to
negative transfer.

2. Evaluate the performance of domain selection methods based on two-class, three-class,
and four-class cross-subject EEG classification problems.

3. A comparative performance analysis is carried out among EMC-MMFT, DTE-MMFT,
LSA-MMFT, and ROD-MMFT. The experiment’s results show that EMC-MMFT out-
performs all the other domain selection algorithms for all the two-class, three-class,
four-class, inter-session, and inter-subject classification problems.

The remainder of this paper is organized as follows: Section 2 introduces related work
on domain selection algorithms. Section 3 introduces the materials and methods. Section 4
presents the experimental results. Section 5 discusses and analyzes the results. And, finally,
Section 6 is the conclusion.

2. Related Work

In this section, we firstly review three related domain selection algorithms—namely,
rank of domain (ROD) [10], domain transferability estimation (DTE) [13], and label similar-
ity analysis (LSA) [11]—for multi-source manifold feature transfer (MMFT). In this case, all
three algorithms are implemented on two-class cross-subject classification problems but
can be extended to solve multi-class cross-subject classification problems.

2.1. Rank of Domain (ROD)

The primary focus of domain selection is to minimize EEG variations between the
TD and SDs, mainly to minimize the effect of NT, which has a significant impact on
classification performance across individual TDs [14,15]. ROD iterates through domains
to identify less-beneficial sources, and, in each iteration, a single less-beneficial domain
is discarded, while the remaining domains are considered SDs, and a single domain is
considered TD when transfer mapping is applied. To achieve this goal, ROD makes use of
KL divergence to calculate the adaptation level across both source and target domains; as
such, similarly distributed domains are denoted by a lower KL divergence [13].

R(S, T) =
1

d∗
d∗

∑
i

θi[KL(Si||Ti) + KL(Ti||Si)] (1)

ROD makes use of three steps to rank domains that are closely related and computed
using Equation (1). The first step identifies the best dimensionality for the subspaces, with
the dimensionality being denoted by d∗. The second step calculates the symmetrized KL
divergences across data distributions, after having estimated the data distributions of the
two domains with two one-dimensional Gaussian functions. The third step measures the
KL divergence-weighted average of the principal angles. In this case, the two Gaussian
distributions are denoted by Si and Ti, whereby the principal angle denoted by i is corre-
lated with the principal vectors utilized to acquire the two Gaussian distributions from
the projected data. A combination of sources consisting of low principal angles and KL
divergences will results in a low value of R(S, T), which simply implies that the sources
are closely related [13].

2.2. Domain Transferability Estimation (DTE)

DTE is an unsupervised source selection technique that iterates through domains to
identify more-beneficial domains and, at the same time, discards less-beneficial domains
by evaluating the transferability across multiple domains [10].

Si =
{

X(i)
S , y(i)

S

}Z

i
= 1 (2)

In this case, Equation (2) represents the number of labelled source domains depicted
by Si, with the label vector being denoted by y(i)

S , while the feature matrix acquired from the
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source domains is denoted by X(i)
S . Moreover, each individual-source domain is depicted

by i, while the overall number of domains is denoted by Z [10].

DIS(Si) =
∥∥∥SSi

b

∥∥∥
1

(3)

The discriminability of individual-source domains is denoted by DIS(Si) and com-
puted utilizing Equation (3), with Si depicting the number of labelled source domains and
the between-class scatter matrix being denoted by Sb.

DIF(Si,T) =
(∥∥∥SSi ,T

b

∥∥∥
1

)
(4)

Variations across the source domains and the target domain are computed using
Equation (4) and represented by DIF(Si,T), whereby Sb represents the between-class
scatter matrix, Si represents the labelled source domains, and the unlabelled feature matrix
is denoted by T [10].

r(Si,T) =
DIS(Si)

DIF(Si,T)
(5)

The discriminability of individual-source domains depicted by Equation (3) and the
differences between the source domains and the target domain depicted using Equation (4)
are utilized to form Equation (5). In this instance, Equation (5) is utilized to compute the
transferability of the source domains, denoted by r(Si,T), with DIF(Si,T) representing the
variation between the source and target domains, while DIS(Si) represents the discrim-
inability of the i-th SD, T represents the target domain, and the labelled source domains are
denoted by Si [10].

2.3. Label Similarity Analysis MMFT (LSA-MMFT)

Identifying non-related domains to minimize the effect of NT is highly significant
in enhancing classification performance across individual target domains. Hence, the
LSA-MMFT algorithm first performs source selection by iterating through domains to
identify the beneficial sources utilized to perform transfer mapping. To achieve this goal,
LSA-MMFT utilizes both single-to-single (STS) and multi-source transfer (MST) to evaluate
the similarities across domains [11]. Consequently, to effectively detect the transferability
of individual-source domains, the labels acquired using the STS classifier are compared
with the labels acquired through the MST classifier. As such, LSA-MMFT iterates through
domains, evaluating the label similarities across the domains, and then discards a single
less-related domain in each iteration based on said label similarities.

sim
(
yreal , yps

)
=

nt

∑
i=1

Ai (6)

Ai =

{
yreal,i = yps,i
0 otherwise

(7)

The label similarity across domains is evaluated using Equation (6) and is denoted by
sim

(
yreal, yps

)
, with nt representing the number of samples in the target domain [11]. The

predicted single-source domain labels are denoted by yps, and the target domain labels are
denoted by yreal, while Ai represent the overall number of samples, as denoted by Equation (7).

Accuracy = sim
(
yreal , yps

)
/nt (8)

A single-to-single (STS) transfer prediction rate in this instance is utilized to measure
the transferability of the individual-source domain denoted by Equation (8). In this instance,
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the number of samples in the target domain is nt, while yps represents the predicted single-
SD labels and yreal the TD labels.

y1
ps = y1

pm = y1
real

y3
ps = y3

pm = y3
real

(9)

sim
(
yreal , yps

)
= sim

(
y1

real , y1
ps

)
+ sim

(
y2

real , y2
ps

)
+ sim

(
y3

real , y3
ps

)
(10)

To evaluate the transferability of source domains based on STS, Equations (9) and (10)
are both utilized, whereby a higher prediction rate is interpreted as a higher transferability,
with yps depicting the predicted single-SD labels and yreal representing the TD labels,
while the predicted multi-source labels used to determine the transferability of the SDs are
denoted by ypm. [11].

sim
(
yps, ypm

)
= sim

(
y1

ps, y1
pm

)
+ sim

(
y2

ps, y2
pm

)
+ sim

(
y3

ps, y3
pm

)
(11)

Equations (9) and (11) are utilized to evaluate the transferability of source domains
based on multi-source transfer (MST). In this case, sim( ) is utilized to quantify the label
similarity between two types of predicted TD labels, with the predicted single-SD labels
being depicted by yps and ypm representing the predicted multi-source labels [11].

R
(
D(j)

s ,Dt

)
= sim

(
fs

(
D(j)

s ,Dt

)
, fm

({
D(j)

s

}z

j=1
,Dt

))
(12)

Furthermore, Equation (12) is utilized to compute the transferability across the source
domain and target domain, with the transferability being denoted by R. The source
domain in this instance is denoted by D(j)

s , and the target domain is depicted by Dt, while j
represents the number of source domains [11]. The STS transfer classifier is denoted by fs,
while the multi-source transfer classifier is denoted by fm.

2.4. Enhanced Multi-Class MMFT (EMC-MMFT)

A novel enhanced multi-class MMFT [12] is presented in this section to evaluate
the effect of less-beneficial and highly beneficial multi-class sources on transfer learning
performance and, at the same time, address the challenge of NT, which has a severe
implications for the prediction rate across individual target domains [12]. The EMC-MMFT
framework adapts the idea of the two-class inter-subject classification for MMFT in multi-
class classification problems, using three-class and four-class classifications as examples.
The novel EMC-MMFT framework, in this instance, first performs source selection to
minimize individual differences across the domains and then utilizes the selected sources to
perform transfer mapping. Hence, the EMC-MMFT approach iterates through the domains
to select only beneficial sources with a high transferability from a pool of domains and then
utilizes the selected combination of beneficial sources to enhance learning performance in
the target domain [12].

The EMC-MMFT is, at first, implemented based on a two-class inter-subject scenario
and then is further extended to adapt the idea of two-class inter-subject classification for
MMFT to a multi-class classification problem [12]. In this case, the EMC-MMFT framework
is extended to three-class and four-class inter-subject scenarios, mainly to investigate
the effect of less-beneficial and highly beneficial source domains on transfer mapping
performance. To facilitate our investigation, EMC-MMFT is compared with three domain
selection algorithms (ROD, DTE, and LSA-MMFT) based on two-class, three-class, and
four-class problems mainly to identify highly beneficial SDs for transfer learning and,
at the same time, discard the less-beneficial SDs constituting the NT phenomenon that
significantly deteriorate the classification performance. As such, EMC-MMFT consists
of two components, namely, source selection to search, identify, and then discard low-
beneficial sources and the optimal selection of high beneficial sources for TL [12]. As such,
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EMC-MMFT utilizes binomial coefficients to evaluate the relationship between domains
using the MATLAB function depicted as nchoosek [16].

C(n, k) =
n(n − 1)...(n − k + 1)

k!
=

n
k

n − 1
k − 1

n − 2
k − 2

...
n − k + 1

1
(13)

Moreover, the MATLAB function utilized to compute the binomial coefficients is
depicted as B = nchoosek (v, k), whereby the number of all possible combinations of closely
related sources is acquired using Equation (13) [16]. Therefore, C(n, k) represents the
binomial coefficients to be computed, with the number of possible combination being
denoted by k, with n representing all the sources from which high beneficial domains are
being selected [16,17]. Once source selection has been completed, the second component
of EMC-MMFT utilizes the selected sources to execute transfer mapping as depicted in
Figure 1. To achieve this goal, the second component utilizes four phases to perform transfer
mapping. The second component first performs domain distribution mean alignment
(DMA), whereby the distribution means of each domain on a symmetric positive-defined
(SPD) manifold are aligned utilizing KL divergence to evaluate similarities between the
domains [12,18]. Then, tangent space features are generated from both the source and
target domains, respectively, once the distribution means have been aligned [19]. After
tangent space feature extraction, Grassmann manifold feature learning is implemented to
learn feature mapping using a geodesic flow kernel [20,21]. Finally, the MMFT classifier is
utilized to predict the target domain labels utilizing knowledge from the source domains.
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subject scenario.

3. Materials and Methods
3.1. Dataset Descriptions

In this study, our own recorded steady-state motion visual-evoked potential (SSMVEP)
dataset is first utilized to facilitate the investigation, whereby nine sessions acquired from a
single SSMVEP subject on different days are first considered for experimentation, followed
by nine different SSMVEP subjects [22]. Secondly, our own recorded MI dataset consisting
of nine subject is further utilized for investigation. Lastly, an MI dataset acquired from
a publicly available database, known as BCI competition IV-a, is utilized to validate the
classification performance when the EMC-MMFT framework is employed [23]. Moreover,
all the datasets are also utilized for a comparative performance analysis when ROD, DTE,
and LSA-MMFT are applied. A description of the experimental paradigms for each of the
datasets is given in the following sections.
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3.1.1. BCI Competition IV-A Dataset

The BCI competition IV-a database consisting of four-class MI datasets acquired from
nine subjects was considered for experimentation. In this case, the four-class MI (left,
right, both feet, and tongue) data represented EEG signals recorded from the brain using
twenty-two Ag/AgCI electrodes [24,25]. All the EEG channels were placed on the surface
of the scalp according to a 10–20 electrodes positioning system. Subsequently, the beginning
of the experiment was depicted as t = 0 s, and a fixation cross “+” was displayed, while
the participants were requested to seat and focus their attention on a computer monitor.
Visual cues in the form of arrows pointing to four different directions were displayed on
the monitor for t = 1.25 s [26]. The experiment’s participants were required to perform four
MI classes from t = 3.25 s to t = 6 s, as illustrated in Figure 2.

Appl. Sci. 2024, 14, 2326 7 of 34 
 

experimentation, followed by nine different SSMVEP subjects [22]. Secondly, our own 
recorded MI dataset consisting of nine subject is further utilized for investigation. Lastly, 
an MI dataset acquired from a publicly available database, known as BCI competition IV-
a, is utilized to validate the classification performance when the EMC-MMFT framework 
is employed [23]. Moreover, all the datasets are also utilized for a comparative 
performance analysis when ROD, DTE, and LSA-MMFT are applied. A description of the 
experimental paradigms for each of the datasets is given in the following sections. 

3.1.1. BCI Competition IV-A Dataset 
The BCI competition IV-a database consisting of four-class MI datasets acquired from 

nine subjects was considered for experimentation. In this case, the four-class MI (left, right, 
both feet, and tongue) data represented EEG signals recorded from the brain using 
twenty-two Ag/AgCI electrodes [24,25]. All the EEG channels were placed on the surface 
of the scalp according to a 10–20 electrodes positioning system. Subsequently, the 
beginning of the experiment was depicted as t = 0 s, and a fixation cross “+” was displayed, 
while the participants were requested to seat and focus their attention on a computer 
monitor. Visual cues in the form of arrows pointing to four different directions were 
displayed on the monitor for t = 1.25 s [26]. The experiment’s participants were required 
to perform four MI classes from t = 3.25 s to t = 6 s, as illustrated in Figure 2. 

 
Figure 2. BCI competition IV-a experimental paradigm timing scheme. 

3.1.2. Our Own Recorded SSMVEP Dataset 
Furthermore, an SSMVEP dataset was recorded in a confined lab using nine healthy 

experiment participants (eight male subjects and one female subject, between the ages of 
25 and 35); all the experiment’s subjects were recruited and randomly selected to facilitate 
the investigation. A Simulink model was interfaced with a gtec EEG recording system via 
MATLAB to enable the acquisition of our own recorded SSMVEP dataset. In this case, the 
EEG recording system consisted of a gNautilus headset and a gNautilus base station that 
established wireless communication between the two components. The gNautilus headset 
consisted of 16 electrodes and a transmission module that made it possible to transmit 
raw EEG signals to the Simulink model, which were then saved to the MATLAB 
workspace for further processing. All sixteen electrodes were dedicated only to EEG 
signal acquisition and positioned on the surface of the scalp according to a 10–20 
positioning system. Therefore, the EEG signals were recorded at a sampling rate of 250 
Hz. At the beginning of the experiment, the subjects were seated facing a projecting 
monitor, at which point visual cues were displayed on said computer monitor. Four 
objects corresponding to four SSMVEP classes were sequentially displayed on the monitor 
[27]. The objects were flickering at different frequencies (29 Hz, 13.3 Hz, 17 Hz, and 21 Hz) 
and also moving in four different directions (left, right, up, and down), equivalent to the 
four SSMVEP classes [4,12]. Moreover, whenever an object was projected on the monitor, 
a beeping sound was used to notify the participants to focus their attention on the 
flickering object. Each SSMVEP class was recorded for 300 s, resulting in 7500 samples, as 
illustrated in Figure 3. 

  

Figure 2. BCI competition IV-a experimental paradigm timing scheme.

3.1.2. Our Own Recorded SSMVEP Dataset

Furthermore, an SSMVEP dataset was recorded in a confined lab using nine healthy
experiment participants (eight male subjects and one female subject, between the ages of
25 and 35); all the experiment’s subjects were recruited and randomly selected to facilitate
the investigation. A Simulink model was interfaced with a gtec EEG recording system
via MATLAB to enable the acquisition of our own recorded SSMVEP dataset. In this case,
the EEG recording system consisted of a gNautilus headset and a gNautilus base station
that established wireless communication between the two components. The gNautilus
headset consisted of 16 electrodes and a transmission module that made it possible to
transmit raw EEG signals to the Simulink model, which were then saved to the MATLAB
workspace for further processing. All sixteen electrodes were dedicated only to EEG signal
acquisition and positioned on the surface of the scalp according to a 10–20 positioning
system. Therefore, the EEG signals were recorded at a sampling rate of 250 Hz. At the
beginning of the experiment, the subjects were seated facing a projecting monitor, at which
point visual cues were displayed on said computer monitor. Four objects corresponding to
four SSMVEP classes were sequentially displayed on the monitor [27]. The objects were
flickering at different frequencies (29 Hz, 13.3 Hz, 17 Hz, and 21 Hz) and also moving
in four different directions (left, right, up, and down), equivalent to the four SSMVEP
classes [4,12]. Moreover, whenever an object was projected on the monitor, a beeping sound
was used to notify the participants to focus their attention on the flickering object. Each
SSMVEP class was recorded for 300 s, resulting in 7500 samples, as illustrated in Figure 3.
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3.1.3. Our Own Recorded Motor Imagery (MI) Dataset

Our own motor imagery (MI) dataset was recorded in a confined lab using nine healthy
experiment participants (eight male subjects and 1 female subject, between the ages of 25
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and 35); all the experiment’s subjects were recruited and randomly selected. In a similar
manner, the same Simulink model and gtec EEG recording system consisting of sixteen
electrodes were utilized to extract the MI signals of the brain from all the experimental
subjects. Notably, all sixteen electrodes were dedicated to only EEG signal acquisition and
positioned on the surface of the scalp according to a 10–20 positioning system, while EEG
data in the form of MI signals were sampled at 250 Hz. Moreover, it is worth noting that all
nine experimental subjects had no BCI training prior to the experiments. At the beginning
of a trial, the subjects were seated facing a projecting computer screen and requested to
perform four MI tasks for 300 s each. At the beginning of every 300 s window, an arrow
corresponding to four MI tasks was displayed on the screen; the arrow was used to notify
the subjects about which MI task to perform. A beeping sound was also utilized to notify
the subjects to begin performing the MI task, as illustrated in Figure 4.
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3.2. Data Pre-Processing

Both of our own online EEG datasets representing SSMVEP and MI signals were
recorded at a sampling frequency of 250 Hz. Three filters were then applied on the datasets
to eliminate the impact of non-physiological artifacts [28]. In this case, a 0.5 Hz to 60 Hz
band-pass filter was first applied on the raw SSMVEP and MI datasets to remove the effect
of noise, followed by a 50 Hz notch filter utilized to minimize the effect of line noise [29].
Lastly, to remove the effect of noise emerging from the electrodes positioned on the surface
of the scalp, a common average reference (CAR) filter was applied.

The BCI competition IV-a dataset was pre-filtered using a band-pass filter at a cut-off
frequency between 0.5 Hz and 100 Hz to reduce the impact of background noise, while the
effect of line noise was reduced by applying a notch filter on the EEG signals at a cut-off
frequency of 50 Hz [30,31].

3.3. Experimental Methods

In this section, the impact of NT on the prediction rate of TL across individual TDs is
investigated. In this case, the EMC-MMFT algorithm was introduced and compared with
three domain selection algorithms (ROD, DTE, and LSA-MMFT) mainly to determine the
effect of NT on performance. The four algorithms were evaluated based on performance
after the selection of highly beneficial domains and the rejection of less-beneficial domains.
Moreover, the impact of multi-class inter-session and inter-subject classification on transfer
mapping performance was further investigated. Therefore, all four domain selection
algorithms were first implemented based on a two-class inter-session and inter-subject
classification scenario and then further extended to adapt the idea of two-class inter-
session and inter-subject classification for MMFT to multi-class classification problems.
Consequently, each domain selection algorithm was first extended to a three-class inter-
session and inter-subject classification scenario and further extended to a four-class inter-
session and inter-subject classification scenario. Notably, the domain selection algorithms
were extended to multi-class classification scenarios mainly to evaluate the impact of a
three-class problem on TL performance and also determine whether the complexity of a
four-class problem contributed to the effect of NT. Therefore, the performance of all the
domain selection algorithms was evaluated and compared under two-class, three-class,
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and four-class inter-session and inter-subject classification problems. In this case, when
all four domain selection algorithms were employed, the class labels (y) for each domain
and the multi-class (z) samples from the various sources or domains (sessions or subjects)
were received as the input parameters. Each algorithm iterated (N) through the domains,
while samples from each domain took turn as the TD (Xt), and the remaining samples were
selected to be SDs (Xs) in each iteration. As such, the classifier made use of the source
domains labels (Ys) to predict the corresponding target domain labels (Yt). However, each
domain selection algorithm first performed source selection using different techniques to
identify closely related highly beneficial domains, followed by transfer mapping using the
identified highly beneficial domains as the SDs.

All four domain selection algorithms analysed in this study first perform source
selection followed by transfer mapping to combat the effect of NT, which leads to poor
classification performances across individual TDs. As such, when EMC-MMFT is applied,
the overall number of available domains is first checked and then each domain takes
turn as the TD. Each time a TD is assigned, EMC-MMFT iterates through the remaining
domains mainly to discard all the less-beneficial domains at once and selects only the
best combination of highly beneficial domains, which are then assigned to the roles of
SDs when transfer mapping is employed [12]. However, to select the best combination of
highly beneficial domains, EMC-MMFT takes advantage of a MATLAB function depicting
binomial coefficients, denoted by B = nchoosek (v, k), which is utilized to generate a
possible combination of closely related highly beneficial domains in each iteration. Once
the highly beneficial SDs have been selected and the TD has been assigned, the distribution
means are aligned and the tangent space features extracted from the SDs and the TD,
respectively. After feature extraction, Grassmann manifold feature learning is applied,
followed by the MMFT classifier, utilized to predict the TD.

Moreover, when LSA-MMFT is applied, the number of available domains is first
determined, while each domain takes turn being the TD. Whenever a domain is selected
to be the TD, LSA-MMFT iterates through the remaining domains, discarding a single
less-beneficial domain in each iteration until two domains remain. In this case, to identify
the less-beneficial domains in each iteration, LSA-MMFT utilizes a label similarity analysis
based on the STS approach to evaluate the transferability between the SD and the TD.
Moreover, once a single less-beneficial domain is removed, the remaining domains are
assigned the roles of SDs in each iteration, and then LSA-MMFT performs the distribution
of means alignment for both the SDs and the TD in each iteration. Tangent space features
are then extracted from the SDs and the TD, respectively. The extracted features are then
utilized for Grassmann manifold feature learning, followed by the MMFT classifier, utilized
to predict the TD [11]. This process is repeated in each iteration until two domains remain;
then, the best performance across each iteration is considered. Moreover, whenever a new
domain is assigned the role of TD, the above-mentioned steps are repeated.

Furthermore, ROD first identifies the number of domains available when it is em-
ployed to perform source selection, and each domain takes a turn being the TD. Therefore,
whenever a domain is selected to be the TD, ROD iterates through all the source domains,
removing a single less-beneficial domain in each iteration until only two SDs remain.
Notably, to identify the less-beneficial domains in each iteration, ROD ranks the similar-
ities between the SDs and the TD; this is achieved by computing the symmetrized KL
divergence-weighted average of the principal angles [32]. However, once a single low-
beneficial domain has been identified and removed, the remaining SDs, including the
assigned TD, are utilized to perform the distribution of means alignment in each iteration.
This is followed by the extraction of tangent space features from the SDs and the TD,
respectively. In this case, the extracted features are then used for Grassmann manifold
feature learning, followed by the MMFT classifier, utilized to predict the TD. This process
is repeated in each iteration until two domains remain; then, the best performance across
each iteration is considered. Moreover, whenever a new domain is assigned the role of TD,
the above-mentioned steps are repeated.
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When DTE is employed, the transferability between the SD and the TD is evaluated
by linking the distribution information with the between-class scatter matrix in the SD
and the between-domain scatter matrix between the SD and the TD [10]. As such, DTE
iterates through the nine domains, and each of the nine domains takes a turn being the
TD. In this instance, a single less-beneficial domain is discarded in each iteration when
the transferability between the SD and the TD is evaluated, while the remaining domains
are assigned the roles of SDs, utilized to enhance the prediction rate in the TD. The same
processing techniques applied when DTE and LSA-MMFT are employed to perform transfer
mapping after source selection in each iteration are utilized when ROD is applied. In this
case, the process of identifying and discarding a single less-beneficial domain is repeated in
each iteration until two domains remain; then, the best performance across each iteration
is considered. Notably, whenever a new domain is assigned the role of TD, the above-
mentioned process is repeated.

4. Results
4.1. Experiment Setup

In this study, each of the four algorithms were implemented under both inter-session
and inter-subject classification scenarios. In this section, four domain selection algorithms
(ROD, DTE, EMC-MMFT, and LSA-MMFT) utilized for experimentation including data
processing were implemented on Matlab 2020a. As such, during our experiments, MATLAB
2020a was running on a Lenovo laptop with i5-1035G1 CPU@1.00GHz and a 16 GB memory,
running a 64-bit Windows 11 Pro Edition.

4.1.1. Two-Class Inter-Session and Inter-Subject Classification Scenario

In this experiment, the EMC-MMFT, ROD, DTE, and LSA-MMFT frameworks are
implemented based on a two-class inter-session and inter-subject classification scenario. As
such, the performance of each of the four domain selection algorithms is evaluated and
compared based on a two-class problem, using nine of our own recorded SSMVEP sessions,
acquired from a single subject over different days, and our own dataset recorded using nine
SSMVEP subjects, respectively. Moreover, the data of nine motor imagery (MI) subjects
acquired from a publicly available EEG dataset and our own recorded (MI) dataset acquired
from nine subjects are also utilized for experimentation. In this case, when EMC-MMFT is
applied on both the data from the nine sessions and subjects, respectively, EMC-MMFT first
iterates through the sessions (domains) and then assigns one session/subject the role of
TD. However, each of the nine sessions/subjects takes a turn being the TD in each iteration,
while the best combinations of highly beneficial SDs are selected from the remaining eight
sessions/subjects, whereby the best selected combinations of SDs are utilized for TL [12].

Moreover, in our experiment, LSA-MMFT, ROD, and DTE are all further enhanced
and modified for performance evaluation. In this case, when both ROD and the DTE
algorithm are applied on the nine sessions/subjects, a single domain is selected to be the
TD, and each of the nine sessions/subjects takes a turn being the TD. However, each time a
TD is assigned, the algorithms iterate through the remaining eight domains, removing a
single less-beneficial domain in each iteration, using mathematical similarity calculations
to evaluate the similarities between the domains. The similarities between the domains
are evaluated based on the single-to-single (STS) transfer method, then followed by multi-
source-to-single-target (MTS) transfer [10,13]. As such, whenever a less-beneficial domain
is removed in each iteration, the other remaining domains are assigned the roles of SDs
and are then utilized for TL.

Furthermore, when LSA-MMFT is employed on both nine sessions/subjects, respec-
tively, each of the nine domains takes a turn being the TD. Therefore, each time a single
session/subject is assigned the role of TD, LSA-MMFT iterates through eight SDs, remov-
ing a single less-beneficial domain in each iteration based on a label similarities analysis,
mainly to identify highly beneficial domains using the STS approach [11]. Once a single
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less-beneficial domain has been removed, the remaining SDs and the assigned TD are
utilized to perform TL based on the MTS approach, in each iteration.

4.1.2. Three-Class Inter-Session and Inter-Subject Classification Scenario

In the second experiment, the EMC-MMFT, ROD, DTE, and LSA-MMFT frameworks
are further extended to adapt the idea of a two-class inter-session and inter-subject classi-
fication for MMFT to a three-class classification problem. Therefore, nine motor imagery
(MI) subjects acquired from the BCI competition IV-a dataset and our own recorded (MI)
dataset acquired from nine subjects, including nine of our own recorded SSMVEP sessions
acquired from a single subject and nine of our own recorded SSMVEP subjects, are utilized
to evaluate the performance of each of the four domain selection algorithms based on a
three-class problem. The same experiment procedures utilized in the first experiment are
utilized in experiment two. Notably, when the LSA-MMFT, ROD, and DTE algorithms are
applied on nine sessions/subjects, a single domain is selected to be the TD, respectively,
and each of the nine sessions/subjects takes a turn being the TD. In this case, each time a
TD is assigned, the algorithms iterate through the remaining eight domains, removing a
single less-beneficial domain in each iteration until a single highly beneficial SD remains.
Moreover, when the EMC-MMFT framework is employed, source selection is first applied
to select only a combination of highly beneficial SDs, followed by transfer mapping, using
the assigned TD and the selected sources. In a similar manner, each session/subject takes a
turn being the TD.

4.1.3. Four-Class Inter-Session and Inter-Subject Classification Scenario

The effect of NT, including the impact of less-beneficial and highly beneficial domains
on transfer learning performance, is further evaluated in this section based on a more
complex classification problem—in this instance, a four-class problem. Hence, the ROD,
DTE, LSA-MMFT, and EMC-MMFT frameworks are further extended to adapt the idea of a
two-class inter-session and inter-subject classification for MMFT to a four-class classification
problem. To facilitate this investigation, nine four-class motor imagery (MI) subjects
acquired from the BCI competition IV-a dataset and our own recorded (MI) dataset acquired
from nine subjects, including our own recorded SSMVEP dataset acquired from nine
sessions and subjects, respectively, are utilized to evaluate the performance of each of the
four domain selection algorithms based on a four-class problem. The same experiment
procedures utilized in the first and second experiments to select highly beneficial sources
and reject less-beneficial sources are still utilized in this experiment when all four domain
selection algorithms are employed.

4.2. Experimental Results
4.2.1. Domain Selection Based on a Two-Class Problem

In this section, the impact of NT on transfer learning performance across individual
TDs is investigated using nine of our recorded SSMVEP sessions. As such, to facilitate the
investigation, four state-of-the-art domain selection algorithms are utilized to evaluate the
effect of less-beneficial and highly beneficial domains on transfer mapping performance,
mainly to determine the impact of NT on classification performance, depicted as low CAs
across individual TDs [33]. Therefore, the EMC-MMFT framework is introduced and
compared with three domain selection algorithms (DTE, ROD, and LSA-MMFT) under
two-class inter-session classification scenarios. In this case, when EMC-MMFT is employed,
a single domain (subject/session) is selected to be the TD, while the best combinations of
highly beneficial sources are selected from eight domains and assigned the roles of SDs.
In a similar manner, when DTE, ROD, and LSA-MMFT are employed, a single domain is
selected to be the TD, while the remaining domains, after the discarding of a single less-
beneficial domain in each iteration, are assigned the roles of SDs when transfer mapping is
employed after source selection.
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Figure 5 presents the classification performance of the EMC-MMFT framework when
compared with the three domain selection algorithms (DTE, ROD, and LSA-MMFT) under
a two-class inter-session classification scenario. Performance evaluation in this instance
is carried out to determine the effect of both less- and highly beneficial domains (which
significantly contribute to NT) on the transfer learning prediction rate across individual
target domains. From the evaluation, one finds that iterating through the domains and
removing a single less-beneficial domain in each iteration proves to pose severe implica-
tions for performance across individual TDs, denoted by a low prediction rate across the
TDs [34]. Consequently, all four domain selection algorithms yield remarkable classification
performances for a less complex classification problem—in this case, a two-class problem.
As such, the highest CA of 100% is observed when Se1 is selected to be the TD and a single
less-beneficial SD is removed when LSA-MMFT is employed, while the highest CA of 100%
is recorded when Se1 is assigned the role of TD and four less-beneficial SDs are removed
when DTE is employed. Moreover, the highest CA of 100% is also observed when Se1 is
selected to be the TD and three less-beneficial SDs are removed when ROD is employed, as
depicted in Figure 5. Notably, a significant decline in CAs is recorded across Se4 and Se9
when DTE, ROD, and LSA-MMFT are employed, with a significant decline of 16% in the CA
recorded across Se3 when LSA-MMFT is employed. However, the EMC-MMFT framework
maintains superior CAs across all individual TDs, with the highest CA of 100% recorded
across Se1, Se3, Se4, Se5, Se6, and Se7. Notably, an inferior CA of 66% is recorded across
Se9, and Se1, Se3, and Se9 are assigned the roles of SDs when EMC-MMFT is employed,
as depicted in Table 1. In this case, when EMC-MMFT is compared with ROD, DTE, and
LSA-MMFT across Se9, EMC-MFFT still maintains a superior CA.
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Table 1. Optimal selected combination of beneficial source domains using EMC-MMFT.

TD Two-Class (SDs) Three-Class (SDs) Four-Class (SDs)

X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3

1 2, 3, 4,
5, 8

2, 3, 5,
7, 8 2, 4 2, 3, 7 4, 5, 6,

7, 8 3, 8, 9 2, 3, 4, 7 5, 7, 8, 9 2, 3, 5, 6 2, 7, 9 2, 3, 4, 5 2, 3, 4, 5

2 1, 4, 6,
8, 9 3, 8 3, 5, 6, 7 1, 5, 6, 7 3, 4, 6,

7, 8 3, 7, 8 3, 7 1, 9 1, 3, 5, 7 5, 8 1, 3, 4,
5, 6 3, 5, 7

3 1, 5, 8 4, 5, 8, 9 2, 4, 7 2, 4, 5,
6, 8 5 2, 7, 8 4 1, 4, 8, 9 1, 2, 5, 9 6, 7, 8 2, 4 2, 4

4 2, 3, 5,
7, 8 7, 8 1, 3, 6, 9 5 5, 7, 8, 9 5, 8 2, 3 5, 9 7, 8 1, 2 3, 6 3

5 1, 4, 6,
7, 8 9 2, 9 3, 4, 9 3, 6 1, 7, 8 2, 8 4 2, 3 4 1, 6, 7,

8, 9
1, 6, 7,

8, 9

6 1, 2, 7, 8 2, 7, 8, 9 2, 4, 7, 9 1, 2, 4, 9 1, 2, 5,
7, 9 8, 9 7 1, 2, 3, 7 3, 4, 8 3, 7 2, 4, 7, 8 4, 5, 7

7 1, 3, 9 2, 3, 4, 5 2, 4, 6, 9 1, 4, 6 2, 4, 6, 8 2, 5, 9 1, 6 1, 2, 5 3, 4, 6, 9 3, 8 4, 5, 6 3, 5, 6

8 1, 2, 3,
5, 6 3, 5, 6 1, 3, 9 3, 5 1, 2, 5 2, 7 5, 9 1, 4, 5 4, 6 6, 7, 5 5, 9 1, 4, 5, 9

9 1 6, 7, 8 5, 7 3, 4, 5,
6, 8 5, 6 4, 8 4, 6, 7 2, 3, 4,

5, 6 1, 6, 7 3, 7, 8 1, 2, 3, 4,
6, 7

1, 2, 3, 4,
6, 7

In this section, the EMC-MMFT framework is compared with the DTE, ROD, and
LSA-MMFT algorithms under a two-class inter-subject classification scenario. As such,
nine of our own recorded SSMVEP subjects are further utilized to investigate the impact of
less-beneficial and highly beneficial domains on transfer mapping performance. Therefore,
the highest CA across all the individual TDs is observed across S6 when LSA-MMFT is
employed, with an accuracy of 86.25% recorded, while the highest CAs of 68.75% and 85%
are recorded across S6 when DTE and ROD are employed, respectively. However, EMC-
MMFT maintains superior classification performances across all the individual TDs when
compared with ROD, DTE, and LSA-MMFT. Hence, a superior CA of 95% is recorded when
S6 is selected to be the TD, and S2, S4, S7, and S9 are selected as the optimal combination of
highly beneficial SDs using EMC-MMFT, as illustrated in Figure 6. Notably, a 40% increase
in CA is observed across S1, with the highest CA of 85% being recorded when EMC-MMFT
is applied, while a 45% CA is recorded when DTE is employed. In this case, selecting only
the best combination of highly beneficial SDs is demonstrated to effectively increase CA in
the TD. Hence, a 33.75% increase in CA is observed across S8 when ROD is compared with
EMC-MMFT, whereby a CA of 80% is recorded when EMC-MMFT is employed and a CA
of 46.25% when ROD is applied. Moreover, removing a single less-beneficial domain in
each iteration is demonstrated to significantly affect the CA, with the lowest CA of 43.75%
being observed across S5 when LSA-MMFT is employed. However, selecting only highly
beneficial domains results in a 23.75% increase in CA, whereby an accuracy of 67.5% is
recorded across S6 when EMC-MMFT is applied.

The impact of less- and highly beneficial domains on transfer mapping performance
is further investigated using nine of our own MI subjects. As such, the EMC-MMFT
framework is further compared with the DTE, ROD, and LSA-MMFT algorithms under
a two-class inter-subject classification scenario. Consequently, the highest CA of 85% is
observed across S2 when DTE is employed, while the highest CAs of 82.5% and 78.75%
are recorded across S2 when LSA-MMFT and ROD are applied, respectively. In this case,
superior prediction rates are observed across all the individual TDs when EMC-MMFT
is employed, whereby the highest CA of 92.5% is recorded across S9 when S3, S4, S5, S6,
and S8 are selected as the optimal combination of highly beneficial SDs using EMC-MMFT,
as illustrated in Figure 7. Notably, a significant increase of 35% in CA is observed across
S9 when EMC-MMFT is compared with DTE, whereby a CA of 57.5% is recorded when
DTE is employed, while EMC-MMFT demonstrates its superiority, with a CA of 92.5%
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being recorded. Moreover, utilizing only the best selected highly beneficial SDs is proven to
effectively increase the CA in the TD, with a 32.5% increase in CA observed across S4 when
EMC-MMFT is compared with both DTE and LSA-MMFT. In this case, a CA of 73.75% is
recorded when EMC-MMFT is employed, while a CA of 41.25% is recorded when DTE
and LSA-MMFT are applied, respectively. The results further illustrate that removing a
single less-beneficial domain in each iteration can significantly deteriorate the classification
performance, as a result of each subject responding differently to another different subject.
However, selecting only the best combination of closely related highly beneficial sources
can significantly minimize the effect of NT and, in turn, increase performance in the TD.
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Figure 6. EMC-MMFT performance evaluation based on a two-class inter-subject scenario (our own
SSMVEP subjects).

In this experiment, the impact of NT on transfer mapping performance is further
investigated using a BCI competition IV-a dataset consisting of nine MI subjects. Further-
more, to determine the impact of NT on performance, four domain selection algorithms
are evaluated based on the selected beneficial domains for transfer mapping. As such,
EMC-MMFT is further compared with DTE, ROD, and LSA-MMFT across individual TDs
under a two-class inter-subject classification scenario. In this case, the EMC-MMFT frame-
work maintains and achieves superior classification performances across all the individual
TDs compared to the DTE, ROD, and LSA-MMFT algorithms. Consequently, the highest
CAs of 97% is recorded across S3 when DTE and LSA-MMFT are employed, respectively,
while a CA of 96% is observed when ROD is employed. However, a superior CA of 98%
is recorded when S3 is assigned the role of TD, and S4, S5, S8, and S9 are selected as the
highly beneficial SDs, as depicted in Table 1.

Moreover, removing a single less-beneficial domain in each iteration is demonstrated
to pose severe implications for the classification performance, with a significant decline in
CA being observed across S8 when DTE, ROD, and LSA-MMFT are employed. The highest
CA of 53% is observed when ROD is employed, compared to both DTE and LSA-MMFT,
while a 44% increase in CA is observed, with a superior CA of 97% being recorded across
S8, when EMC-MMFT is employed, as depicted in Figure 8.
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From these results one finds that the complexity of a two-class problem has a minimal
impact on the classification performance of ROD, DTE, LSA-MMFT, and EMC-MMFT.
However, the presence of less-beneficial domains when transfer mapping is applied can
significantly deteriorate classification performance as a result of NT. Notably, removing an
individual domain when iterating through domains to identify highly beneficial sources is
demonstrated to pose severe implications for the prediction rate. Nonetheless, selecting
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only the optimal combination of highly beneficial sources and discarding less-beneficial
domains is proven to significantly improve the prediction rate across individual TDs when
EMC-MMFT is employed.

4.2.2. Domain Selection Based on a Three-Class Problem

In this section, a three-class inter-session classification scenario is adopted to further
investigate the impact of NT on the classification performance of TL. Therefore, to determine
the impact of NT on performance, nine of our own recorded SSMVEP sessions are utilized
to evaluate the effect of less- and highly beneficial domains on classification performance
across individual TDs. Moreover, to facilitate this investigation, EMC-MMFT is compared
with DTE, ROD, and LSA-MMFT under the same TL conditions. In this case, discarding a
single less-beneficial SD in each iteration from a pool of domains consisting of significant
individual differences is demonstrated to severely affect the CA. Hence, an inferior CA
of 23.3% is observed across Se8 when ROD is employed. However, a 31.4% increase in
CA is observed across Se8 when EMC-MMFT is employed, with the highest CA of 54.7%
being recorded. Furthermore, inferior CAs of 36.66% and 36.67% are observed across Se9
and Se7 when both DTE and LSA-MMFT are applied, respectively. Notably, a 53.34%
increase is observed across Se8, while a 55.33% increase in CA is observed across Se7 when
EMC-MMFT is employed, with Cas of 90% and 92% being recorded across Se8 and Se7,
respectively. From this comparison, it can be noted that selecting only a combination of
highly beneficial SDs can minimize the effect of NT. Hence, the EMC-MMFT framework
maintains superior classification performances across each individual TD compared to
ROD, DTE, and LSA-MMFT. Moreover, EMC-MMFT further demonstrates its superiority
when Se1 is assigned the role of TD and Se4, Se5, Se6, Se7, and Se8 are optimally selected as
highly beneficial SDs, with the highest CA of 98% being recorded, as depicted in Figure 9.
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Based on these results, it is worth noting that the complexity of a three-class problem,
including the effect of NT, can significantly deteriorate classification performance across
individual TDs when DTE, ROD, and LSA-MMFT iterate through domains, removing a
single less-beneficial domain at a time. However, the complexity of a three-class problem



Appl. Sci. 2024, 14, 2326 17 of 33

and the effect of NT demonstrate to pose a minimal impact on classification performance
when EMC-MMFT is employed. Hence, first selecting only relevant or highly beneficial
sessions can significantly enhance the prediction rate when transfer mapping is applied.

In this section, the impacts of less- and highly beneficial domains on transfer mapping
are investigated to determine the impact of NT on classification performance across each
TD. As such, a three-class inter-subject classification scenario is adopted to evaluate and
compare the four domain selection algorithms using nine of our own SSMVEP subjects.
Therefore, the EMC-MMFT framework is compared with the DTE, ROD, and LSA-MMFT
algorithm mainly to evaluate the effect of less- and highly beneficial domains on TL
performance. Consequently, discarding a single less-beneficial SSMVEP subject in each
iteration is demonstrated to have a minimal effect on reducing the impact of NT. Hence,
the highest CA of 60.8% is recorded across S6 when LSA-MMFT is employed, while ROD
and DTE achieve the highest CAs of 57.5% and 56.6% across S6, respectively. However,
discarding all the less-beneficial domains and selecting only the highly beneficial domains
when EMC-MMFT is applied are demonstrated to significantly minimize the effect of NT.
Hence, a 25% increase in CA is observed across S6 when S7 is optimally selected as a highly
beneficial SD, with a superior CA of 85.8% being recorded when EMC-MMFT is applied, as
depicted in Figure 10. Moreover, a significant decline in CA is observed across S8 when
LSA-MMFT is compared with ROD and DTE, with the lowest CA of 24.16% being recorded
when LSA-MMFT is employed. Notably, a 50% increase in CA is observed across S8 when
EMC-MMFT is applied and S5 and S9 are selected as highly beneficial SDs; in this instance,
a CA of 74.16% is recorded.
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Figure 10. EMC-MMFT performance evaluation based on a three-class inter-subject scenario (our
own SSMVEP subjects).

In this section, a three-class inter-subject classification scenario is adopted to further
evaluate the impact of less-beneficial and highly beneficial domains on transfer mapping,
mainly to determine the impact of NT on performance. As such, nine of our own recorded
MI subjects are considered for experimentation, whereby the EMC-MMFT framework is
compared with the DTE, ROD, and LSA-MMFT algorithms. In this case, ROD outperforms
both DTE and LSA-MMFT, with the highest CA of 63.3% being recorded across S9, while
CAs of 58.3% and 61.66% are recorded across S9 when both DTE and LSA-MMFT are
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employed, respectively. However, a 4.3% increase is observed across S9, with the highest
CA of 67.6% being recorded when EMC-MMFT is applied. Notably, EMC-MMFT further
demonstrates its superiority when optimal combinations of highly beneficial domains are
selected, whereby superior classification performances are recorded across all the individual
TDs. Hence, the highest CA of 74.1% is recorded across S5 when S1, S4, S8, and S9 are
selected as the best combination of highly beneficial SDs, as illustrated in Figure 11. In this
instance, an inferior CA of 28.3% is recorded across S5 when both DTE and LSA-MMFT
are employed, respectively. However, a 45.8% increase in CA is observed across S5 when
EMC-MMFT is applied. From the comparison results, it can be noted that selecting only the
best combination of highly beneficial SDs can effectively minimize the existing challenge
of NT and, in turn, increase the CA across the TD, while removing a single less-beneficial
SD in each iteration can massively deteriorate the CA. Hence, a 33.75% increase in CA can
be observed across S8 when EMC-MMFT is compared with ROD, whereby a CA of 80% is
recorded when EMC-MMFT is applied, while a CA of 46.25% is recorded when ROD is
applied. In a similar manner, it can also be noted that removing only a single less-beneficial
domain in each iteration can significantly decrease the CA, whereby LSA-MMFT records
the lowest CA of 26.66% across S3 when seven less-beneficial SDs are removed. However, a
29.2% increase in CA is noted across S3 when EMC-MMFT is employed, with the highest
CA of 55.8% being recorded at this time.
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Figure 11. EMC-MMFT performance evaluation based on a three-class inter-subject scenario (our
own MI subjects).

In this experiment, the impact of NT on the transfer learning performance across
TDs is further investigated, whereby four domain selection algorithms are employed to
facilitate this investigation by evaluating the effect of less- and highly beneficial source
domains on the transfer learning performance. As such, EMC-MMFT is compared with
three domain selection algorithms (ROD, DTE, and LSA-MMFT), using a BCI competition
IV-a dataset consisting of nine MI subjects. In this case, ROD outperforms both DTE and
LSA-MMFT across S3, with a high CA of 80.66% being recorded when ROD is employed,
while CAs of 76.66% and 74.66% are noted when both LSA-MMFT and DTE are employed,
respectively. EMC-MMFT, on the other hand, outperforms ROD, with the highest CA of
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84.66% being recorded across S3 when EMC-MMFT is employed. Moreover, discarding
a single less-beneficial domain is proven to contribute to NT, with an inferior CA of 36%
being recorded across S8 when ROD is employed. However, a 54% increase in CA is
observed across S8, whereby a superior CA of 90% is recorded across S8 when EMC-MMFT
is employed, as illustrated in Figure 12.
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From these results, it is worth noting that the number of source domains utilized for
transfer mapping has no impact on the classification performance. However, removing
a single less-beneficial domain from a pool of SDs consisting of significant individual
differences can drastically deteriorate the prediction rate across individual TDs when
transfer mapping is applied. Hence, inferior classification performances are recorded when
DTE, ROD, and LSA-MMFT are employed. Moreover, the complexity of a three-class
problem including the presence of less-beneficial domains is proven to significantly affect
the performance of each of the three algorithms in each iteration. Nonetheless, employing
the EMC-MMFT framework is proven to enhance the prediction rate, while the complexity
of a three-class problem is demonstrated to cause a minimal impact on classification
performance when EMC-MMFT is employed to select only optimal combinations of highly
beneficial domains for TL.

4.2.3. Domain Selection Based on a Four-Class Problem

A more complex multi-class inter-session classification scenario is explored to evaluate
the effect less- and highly beneficial source domains on the TL prediction rate across
individual TDs. A comparative performance analysis is carried out under a four-class
inter-session classification problem to further investigate the impact of NT on classification
performance. As such, nine of our own four-class SSMVEP sessions are utilized to facilitate
this investigation, whereby EMC-MMFT is compared with the DTE, ROD, and LSA-MMFT
algorithms mainly to determine the effect of source selection on TL performance. Therefore,
selecting only highly beneficial SDs with a high transferability to minimize the effect of NT
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demonstrates to significantly enhance the prediction rate across the individual TDs for a
four-class problem.

Hence, superior classification performances are observed across all the individual TDs
when EMC-MMFT is applied compared to DTE, ROD, and LSA-MMFT. As such, a superior
CA of 87% is recorded across Se4 when Se7 and Se8 are selected as the best combination of
highly beneficial SDs when EMC-MMFT is applied. In this case, EMC-MMFT outperforms
all three domain selection algorithms, with the highest CA of 74% being recorded across Se4
when ROD is applied, while both DTE and LSA-MMFT achieve the highest CAs of 68.5%,
and 79% across Se4, respectively. Notably, a significant decline in CA is observed across Se9,
with the lowest CA of 25% being recorded when LSA-MMFT is applied. However, a 49.5%
increase in CA is noted across Se9, whereby a CA of 74.5% is recorded when EMC-MMFT
is employed, as illustrated in Figure 13.
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Figure 13. EMC-MMFT performance evaluation based on a four-class inter-session scenario (our
own sessions).

Based on these results, it is worth noting that the complexity of a four-class problem
can significantly contribute to a poor performance when DTE, ROD, and LSA-MMFT iterate
through the domains to discard a single less-beneficial domain from a pool of domains
consisting of significant individual differences. In this case, the complexity of a four-
class problem is proven to massively affect the performances of all the domain selection
algorithms tested. Hence, inferior classification performances are observed across all the
individual TDs. However, the EMC-MMFT framework outperforms all the algorithms and
yields remarkable performances compared to ROD, DTE, and LSA-MMFT when the best
combinations of highly beneficial domains are selected for TL.

In this experiment, a four-class inter-subject classification scenario is adopted to
further investigate the impact of NT on the classification performance of TL. Therefore, a
comparative performance analysis is carried out to evaluate the effect of less- and highly
beneficial domains on transfer mapping, utilizing nine of our own recorded SSMVEP
sessions. As such, the EMC-MMFT framework is compared with DTE, ROD, and LSA-
MMFT under a four-class inter-subject classification scenario, mainly to determine the
impact of NT on performance. In this case, the complexity of a four-class problem including
the effect of NT is proven to pose severe implications for the prediction rate when DTE,
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ROD, and LSA-MMFT are applied. Such implications are the result of significant individual
differences across domains, mainly because different sources respond differently to other
domains. Therefore, iterating through subjects and discarding a single less-beneficial
subject, while utilizing the remaining combination of both highly and less-beneficial subjects
as SDs, can drastically deteriorate the classification performance.

Hence, inferior performances are observed across individual TDs when DTE, ROD,
and LSA-MMFT are employed. Therefore, the highest CA of 38.7% is recorded across
S7 when LSA-MMFT is applied, while CAs of 35.6% and 36.25% are recorded across S7
when ROD and DTE are applied, respectively. However, a superior CA of 68.75% is noted
across S7 when EMC-MMFT is employed, while a 30.1% increase in CA is observed across
S7 when EMC-MMFT is compared with LSA-MMFT. From the comparison results, it can
be noted that, despite the complexity of a four-class problem, employing EMC-MMFT to
select the best combination of highly beneficial SDs can significantly enhance the CA and,
at the same time, minimize the effect of NT. Hence, superior classification performances
are observed across all the individual TDs when EMC-MMFT is employed compared to
the three domain selection algorithms tested, with a superior CA of 76.2% being recorded
across S3 when S2 and S4 are selected as the best combination of highly beneficial SDs
when EMC-MMFT is applied, as illustrated in Figure 14.
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Figure 14. EMC-MMFT performance evaluation based on a four-class inter-subject scenario (our own
SSMVEP subjects).

In this section, nine of our own recorded four-class MI subjects are further utilized
to carry out a comparative performance analysis, mainly to evaluate the effect of less-
beneficial and highly beneficial domains on transfer mapping performance. In this case, to
determine the impact of NT on transfer mapping, EMC-MMFT is compared with the DTE,
ROD, and LSA-MMFT algorithms under a four-class inter-subject classification scenario.
Consequently, the highest CA of 52.6% is observed across S1 when LSA-MMFT is employed
and two less-beneficial SDs are removed, compared to both DTE and ROD, with the
highest CAs of 51.87% and 52.5% being recorded across S2 and S1, respectively. Therefore,
employing EMC-MMFT is demonstrated to yield superior classification performances
across all the individual TDs, with a 25% increase in CA being observed when compared
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with all the three domain selection algorithms tested, whereby a superior CA of 77.6%
is recorded across S4 when S3 is selected as a highly beneficial SD using EMC-MMFT,
as illustrated in Figure 15. Notably, a significant increase of 50.1% in CA is observed
across S4 when EMC-MMFT is applied, compared to ROD, which instead achieves a CA of
27.5% across S4. Furthermore, discarding a single less-beneficial domain in each iteration
whilst including the complexity of a four-class problem is proven to significantly affect the
prediction rate, with the lowest CA of 17.5% being recorded across S2 when ROD is applied;
meanwhile, selecting the combination of highly beneficial domains is proven to minimize
the effect of NT and the complexity of a four-class problem. Hence, a 37.1% increase in CA
is observed across S2, while a CA of 54.6% is recorded when EMC-MMFT is applied.
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Figure 15. EMC-MMFT performance evaluation based on a four-class inter-subject scenario (our own
MI subjects).

A four-class inter-subject classification scenario is adopted when a comparative per-
formance analysis is carried out to further investigate the impact of NT on the classification
performance of TL. In this case, to examine the impact of NT on the performance of indi-
vidual TDs, four domain selection algorithms are employed to evaluate the effect of less-
and highly beneficial domains on TL. As such, EMC-MMFT is compared with DTE, ROD,
and LSA-MMFT, whereby a BCI competition IV-a dataset consisting of nine MI subjects is
utilized to facilitate this investigation. The complexity of a four-class problem including the
presence of less-beneficial SDs in each iteration is demonstrated to significantly contribute
to NT, denoted by poor classification performances across the individual TDs when the
DTE, ROD, and LSA-MMFT algorithms are applied [35]. Notably, the lowest CA of 29% is
observed across S9 when ROD is employed, while CAs of 33.5% and 31.5% are recorded
across S9 when DTE and LSA-MMFT are employed, respectively. However, employing
EMC-MMFT to select highly beneficial SDs for transfer mapping is demonstrated to min-
imize the effect of NT and, in turn, significantly enhance the CA. Hence, a 41% increase
in CA is observed across S9 compared to ROD, whereby a CA of 70% is recorded when
EMC-MMFT is employed, as depicted in Figure 16.
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scenario (BCI competition IV-a).

Furthermore, it can be noted from the comparison that EMC-MMFT maintains a superior
CAs across all TDs, with the highest CA of 71.5% being recorded across S6 when S3 and S7 are
selected as being highly beneficial SDs. However, removing a single less-beneficial domain in
each iteration results in a CA of 70.5% across S6 when ROD is applied, while CAs of 65.5%
and 67% are recorded across S6 when DTE and LSA-MMFT are applied, respectively.

From these results, one finds that the complexity of a four-class problem poses severe
implications for the classification performance regardless of iterating through the domains
and removing a single less-beneficial domain in each iteration. However, selecting only
highly beneficial sources is demonstrated to minimize the effect of NT and, at the same time,
reduce the impact of the complexity of a four-class problem, thus improving performance
across the individual TDs when EMC-MMFT is employed.

4.2.4. Optimal Combination of Selected Beneficial Sources

In this section, we evaluate and compare the classification performances of ROD,
DTE, EMC-MMFT, and LSA-MMFT across individual TDs when low-beneficial sources are
discarded and high beneficial sources are selected for transfer mapping under two-class,
three-class, and four-class inter-session and inter-subject classification scenarios. In this
case, ROD, DTE, and LSA-MMFT iterate through the domains and remove a single low-
beneficial domain in each iteration until only two domains remain, respectively, mainly
to minimize the effect of NT. However, whenever a session/subject is assigned the role of
TD, a single low-beneficial domain is removed in each iteration, and the remaining sources
are assigned the roles of the SDs utilized for TL [36]. EMC-MMFT first performs source
selection, whereby less-beneficial domains are discarded, while the best combination of
closely related high beneficial sources are selected as the SDs utilized when TL is performed.

Selected Combination of High Beneficial Source Domains Using EMC-MMFT

Table 1 depicts the optimal selected combination of closely related beneficial sources
with a high transferability, with X-Se and X-S1 representing the SSMVEP inter-session
and inter-subject, respectively. X-S2 represents the MI inter-subject (our own recorded
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MI dataset), and X-S3 also represents the MI inter-subject (BCI competition IV-a dataset),
whereby the selected sources are utilized as SDs to enhance the prediction rate across
individual TDs when TL is employed. In this case, the EMC-MMFT algorithm select
only the best combination of closely related high beneficial sources as the SDs from a
pool of SDs and then assign a single session/subject to be the TD while each of the nine
sessions/subjects takes a turn being the TD, respectively. Notably, EMC-MMFT maintains
superior classification performances across each of the nine TDs for all two-class inter-
subject and inter-session classification scenarios, with the highest CA being recorded when
EMC-MMFT is employed and selects Se1, Se5, and Se8 as the optimal combination of highly
beneficial SDs for the SSMVEP sessions, while the highest CA is observed when S3 and S8
are optimally selected as being high beneficial SDs for a two-class inter-subject classification
problem using the MI subjects acquired from the BCI competition IV-a dataset. Moreover,
selecting S2, S4, S7, and S9 and S3, S4, S5, S6, and S8 as high beneficial SDs yields superior
CAs for both of the two-class inter-subject classification problems, i.e., when using our own
recorded SSMVEP and the MI dataset, respectively.

A similar trend in classification performance is observed for a three-class problem,
when EMC-MMFT is employed to select only the best combination of high beneficial
sources as SDs. In this case, the highest CA is observed when Se4, Se5, Se6, Se7, and
Se8 are optimally selected as the best combination of high beneficial SDs for three-class
inter-session classification, while the highest CA is observed when S2 and S7 are selected
as the optimal combination of SDs for inter-subject classification, utilizing the MI subjects
acquired from the BCI competition IV-a dataset. In a similar manner, selecting S7 and S4 as
high beneficial SDs yields superior CAs for both of the three-class inter-subject classification
problems, using our own recorded SSMVEP and the MI dataset, respectively.

Furthermore, the EMC-MMFT framework yields superior CAs across the individual
TDs for a more complex classification problem—in this instance, a four-class problem.
Notably, the highest CA is recorded when Se7 and Se8 are selected as high beneficial SDs
for four-class inter-session classification, while the highest CA is recorded when S3 and
S7 are selected as the optimal combination of beneficial SDs for four-class inter-subject
classification using the MI subjects acquired from the BCI competition IV-a dataset. Notably,
superior CAs for both four-class inter-subject classification problems are recorded when
S2, S4, S7, and S9 and S3, S4, S5, S6, and S8 are selected as high beneficial SDs, using
our own recorded SSMVEP and the MI dataset, respectively. Hence, discarding low-
beneficial sources and selecting only a combination of high-beneficial sources is proven to
significantly enhance the prediction rate and yields superior classification performances
when the EMC-MMFT algorithm is employed.

Number of Removed Low-Beneficial Source Domains Using ROD

Table 2 depicts the number of discarded low-beneficial source domains across each
individual target domain when ROD is employed for two-class, three-class, and four-
class inter-session and inter-subject classification scenarios. In this case, the highest CA
is recorded when the ROD algorithm assigns Se1 to be the TD and three less-beneficial
SDs are removed, while the highest CA is observed when S3 is assigned the role of TD
and two low-beneficial SDs are removed for the two-class inter-session scenario using the
SSMVEP sessions and for the inter-subject classification problem using the MI subjects
acquired from the BCI competition IV-a dataset, respectively. Moreover, for the two-class
inter-subject classification problem using our own recorded SSMVEP subjects, the highest
CA is observed when the ROD algorithm assigns S7 to be the TD and a single low-beneficial
SD is removed, while the highest CA is observed when S2 is assigned the role of TD and
two low-beneficial SDs are removed for two-class inter-subject classification, using our
own recorded MI subjects.
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Table 2. Optimal selected combination of beneficial source domains using ROD.

TD Two-Class (SDs) Three-Class (SDs) Four-Class (SDs)

X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3

1 33 3 3 4 5 4 7 5 2 5 7 3

2 6 6 3 2 1 3 3 2 1 5 3 6

3 3 2 6 6 1 5 5 5 3 6 1 5

4 2 6 6 3 3 5 5 6 2 6 1 2

5 1 6 5 3 1 2 7 6 1 6 4 2

6 4 5 1 3 2 5 6 5 3 6 2 7

7 1 2 1 3 6 2 1 7 3 2 1 2

8 1 4 3 3 1 1 7 7 4 4 7 1

9 6 2 4 1 6 6 1 6 7 2 4 7

Furthermore, when the ROD algorithm is employed for a three-class problem, the
highest CA is recorded when Se6 is selected to be the TD and two low-beneficial SDs are
removed, while the highest CA is observed when S3 is assigned the role of TD and five
low-beneficial SDs are removed for both of the inter-session classification problem using the
SSMVEP sessions and the inter-subject classification scenario using MI subjects acquired
from the BCI competition IV-a database, respectively. In a similar manner, removing six
low-beneficial SDs and assigning S6 to be the TD yields the highest CA across all the TDs
when ROD is employed, based on a three-class inter-subject classification problem utilizing
SSMVEP subjects, while the highest CA is recorded when S9 is selected to be the TD and
six less-beneficial SDs are removed for the three-class inter-subject classification problem
using our own recorded MI subjects.

Employing ROD for source selection based on a more complex classification problem
results in a significant decline in CA across the individual TDs. Hence, the highest CA is
observed when Se4 is selected to be the TD and two low-beneficial SDs are removed for the
inter-session classification scenario utilizing the SSMVEP sessions; meanwhile, removing
five low-beneficial SDs and assigning S6 to be the TD yields a superior performance
compared to the other individual TDs for the inter-subject classification scenario using
MI subjects acquired from the BCI competition IV-a dataset. Furthermore, assigning S7
the role of TD and discarding six low-beneficial SDs yields the highest CA across all the
TDs when ROD is applied on SSMVEP subjects for a four-class inter-subject classification
scenario, while the highest CA is recorded when S9 is selected to be the TD and six low-
beneficial SDs are removed for a four-class inter-subject scenario using our own recorded
MI subjects. Significant variations in the classification performances across individual TDs
further validate that the number of domains causes a minimal impact on the classification
performance; however, discarding a single low-beneficial source domain in each iteration
demonstrates to significantly affect the prediction rate, resulting in massive variations in
the CAs across individual TDs.

Number of Removed Low-Beneficial Source Domains Using DTE

Table 3 shows the number of removed low-beneficial SDs across each individual target
domain when DTE is employed to perform source selection based on two-class, three-class,
and four-class inter-session and inter-subject classification scenarios. As such, removing
four low-beneficial SDs and assigning Se1 the role of TD yields a remarkable CA; however,
a decline in CA is observed across individual TDs when DTE is employed, based on the
two-class inter-session classification scenario, while a remarkable CA is observed when
S3 is assigned the role of TD and three low-beneficial SDs are removed for the two-class
inter-subject classification scenario using MI subjects acquired from the BCI competition
IV-a database. Moreover, removing three low-beneficial SDs and selecting S6 as the TD
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yields the highest CA across all the TDs when DTE is employed, based on a two-class
inter-subject scenario utilizing SSMVEP subjects, while the highest CA is recorded when
S2 is assigned the role of TD and four low-beneficial SDs are removed for the two-class
inter-subject scenario using our own recorded MI subjects.

Table 3. Optimal selected combination of beneficial source domains using DTE.

TD Two-Class (SDs) Three-Class (SDs) Four-Class (SDs)

X-Se X-S2 X-S3 X-S3 X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3

1 4 2 5 2 1 7 7 6 7 4 1 6

2 3 4 5 4 6 2 7 5 6 6 5 7

3 6 3 3 1 5 4 2 4 3 2 1 5

4 3 7 3 1 6 4 6 7 1 7 2 3

5 3 2 7 7 1 6 5 7 5 7 7 5

6 2 2 3 5 1 7 5 2 3 7 3 7

7 3 1 3 5 5 2 3 6 1 1 1 5

8 6 2 1 3 6 7 2 6 2 3 7 4

9 7 5 1 1 7 7 5 3 6 7 7 1

Furthermore, when the DTE algorithm is employed for a three-class problem, the
highest CA is recorded when Se1 is assigned the role of TD and a single less-beneficial
SD is removed, while the highest CA is observed when S6 is assigned the role of TD
and seven low-beneficial SDs are removed for both the inter-session scenario using the
SSMVEP sessions and the inter-subject classification scenario using our own recorded MI
subjects, respectively. In a similar manner, for a three-class inter-subject scenario using
our own recorded SSMVEP subjects, the highest CA is observed when the DTE algorithm
assigns S6 to be the TD and five low-beneficial SDs are removed, while the highest CA is
observed when S9 is assigned the role of TD and three low-beneficial SDs are removed for
the three-class inter-subject scenario using our own recorded MI subjects.

Furthermore, a significant decline in CA across the individual TDs is observed for
a more complex four-class classification problem when DTE is employed. In this case,
assigning Se2 the role of TD and removing six low-beneficial SDs in the scenario utilizing
the SSMVEP sessions yields a remarkable CA, while removing seven low-beneficial SDs
and assigning S6 the role of TD for the scenario using our own recorded MI subjects
acquired from the BCI competition IV-a database also yields a remarkable CA for both the
inter-session and inter-subject classification scenarios, respectively.

Notably, employing DTE based on a four-class inter-subject problem making use of
SSMVEP subjects yields the highest CA across all the TDs when a single less-beneficial SD
is removed and S7 is assigned the role of TD, while the highest CA is recorded when S2 is
selected as the TD and seven less-beneficial SDs are removed for the four-class inter-subject
scenario using our own recorded MI subjects. However, a decrease in the classification
performances is observed across the individual TDs whenever a single less-beneficial SD
is removed in each iteration, as a result of individual variations across the domains, since
different domains respond differently to other domains.

Number of Removed Low-Beneficial Source Domains Using LSA-MMFT

Table 4 depicts the number of low-beneficial SDs discarded in each iteration whenever
an individual target domain is assigned when the LSA-MMFT algorithm is employed
to perform source selection based on two-class, three-class, and four-class inter-session
and inter-subject classification scenarios. In this case, employing LSA-MMFT to select
high beneficial domains by evaluating label similarities across the domains and discard a
single low-beneficial domain in each iteration yields remarkable CAs. However, significant
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variations in the CAs across individual TDs is observed with LSA-MMFT performing
poorly across several individual TDs. As such, assigning Se1 the role of TD and discarding
a single low-beneficial SD yields a remarkable CA; however, significant variations in neural
dynamics result in a decline in the CAs across several individual TDs when LSA-MMFT is
employed, based on the two-class inter-session classification scenario using the SSMVEP
sessions, while a remarkable CA is also observed when S3 is selected as the TD and six
low-beneficial SDs are removed in the two-class inter-subject classification scenario using
the MI subjects acquired from the BCI competition IV-a database.

Table 4. Optimal selected combination of beneficial source domains using LSA-MMFT.

TD Two-Class (SDs) Three-Class (SDs) Four-Class (SDs)

X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3 X-Se X-S1 X-S2 X-S3

1 1 7 7 6 6 6 2 4 1 6 7 2

2 6 4 1 7 2 3 1 3 1 4 2 6

3 6 6 1 7 6 7 1 7 4 5 3 4

4 3 4 1 1 5 5 1 7 5 5 2 4

5 1 1 3 1 6 4 7 7 2 6 7 4

6 2 1 7 1 1 7 7 5 3 7 6 2

7 4 4 7 2 7 4 7 4 7 5 6 3

8 6 6 7 7 5 5 2 7 7 2 3 3

9 1 1 7 7 7 6 5 1 3 6 2 7

Moreover, employing LSA-MMFT based on a two-class inter-subject scenario making
use of SSMVEP subjects yields the highest CA across all the TDs when a seven low-beneficial
SD is removed and S7 is assigned the role of TD, while the highest CA is recorded when
S2 is assigned the role of TD and seven low-beneficial SDs are removed in the two-class
inter-subject scenario using our own recorded MI subjects.

When the LSA-MMFT framework is employed, based on a three-class problem using
SSMVEP sessions, the highest CA is recorded when Se6 is assigned the role of TD and a
single low-beneficial SD is removed, while the highest prediction rate is recorded when S3
is assigned the role of TD and seven low-beneficial SDs are discarded in the scenario using
our own MI subjects obtained from the BCI competition IV-a database. Selecting S6 as the
TD and removing seven low-beneficial SDs yield the highest CA across all the TDs when
LSA-MMFT is employed for the scenario using SSMVEP subjects, while the highest CA is
recorded when S9 is assigned the role of TD and a single low-beneficial SD is removed in
the three-class inter-subject scenario using our own recorded MI subjects.

Notably, the four-class classification problem demonstrates to pose severe implications
for the classification performance when LSA-MMFT is employed. Hence, assigning Se4 the
role of TD and removing five low-beneficial SDs yield a remarkable CA, while selecting
S6 as the TD and removing seven low-beneficial SDs also yield remarkable CAs for both
the inter-session and inter-subject classification scenarios using the BCI competition IV-a
dataset, respectively. Furthermore, for the four-class inter-subject scenario using our own
recorded SSMVEP subjects, the highest CA is observed when S7 is assigned the role of
TD and six low-beneficial SDs are removed, while the highest CA is observed when S1
is selected as the TD and two low-beneficial SDs are removed in the scenario using our
own recorded MI subjects. However, removing a single low-beneficial SD in each iteration
from a pool of domains consisting of both low- and high beneficial domains results in a
decrease in the CA across individual TDs, mainly as a result of individual variations across
the domains.

Table 5 depicts the mean prediction rate for a comparative performance evaluation
across all four domain selection algorithms under two-class, three-class, and four-class inter-
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session classification scenarios, whereby X-Sessions represents the inter-session classification
scenario using our own recorded SSMVEP sessions. As such, DTE outperforms both ROD
and LSA-MMFT, with a mean CA of 85.1% being recorded when DTE is employed for a
two-class problem. However, a 9.1% increase in CA is observed, with a superior mean CA of
94.2% being recorded when EMC-MMFT is applied in a two-class inter-session classification
scenario. Moreover, for a three-class inter-session scenario, DTE yields a remarkable mean
CA compared to both ROD and LSA-MMFT, with a mean CA of 68.9% being recorded when
DTE is employed. However, a superior mean CA of 84.1% is recorded when EMC-MMFT is
applied, whereby a 15.2% increase in CA is observed compared to DTE.

Table 5. Mean (%) and standard deviation (in parenthesis) for domain selection algorithms based on
cross-session classification.

Methods
Two-Class Three-Class Four-Class

X-Sessions X-Sessions X-Sessions

LSA-MMFT 75.7 (11.26) 64.1 (14.24) 58.3 (6.79)

DTE 85.1 (21.3) 68.9 (17.93) 61.2 (14.43)

ROD 81.6 (20.5) 63.2 (22.73) 57 (12.88)

EMC-MMFT 94.2 (11.26) 84.1 (14.24) 75.06 (6.79)

Furthermore, performance evaluation has also been carried out for a more complex
classification problem—in this instance, a four-class problem. Superior performances across
all inter-session classification scenarios under Table 5 is denoted by bold texts. As such,
DTE yields a superior performance compared to ROD and LSA-MMFT, with the highest
mean CA of 61.2% being recorded when DTE is employed in a four-class inter-session
scenario. However, a 13.85% increase in the mean CA is observed when EMC-MMFT is
employed and compared with DTE, with a superior mean CA of 75.05% being recorded
when EMC-MMFT is employed. In this case, the superior performances recorded when
EMC-MMFT is employed can be attributed to the minimal effect of NT, a result of the best
selected combination of closely related highly beneficial SDs, which, in turn, significant
increases the CA across individual TDs when TL is applied. However, a decline in CA
when ROD, DTE, and LSA-MMFT are employed can be attributed to removing only a
single low-beneficial SD in each iteration, since the remaining low-beneficial SDs still pose
severe implications for the CA in the next iteration as a result of each domain responding
differently to another domain.

Table 6 displays the mean classification result for a comparative performance evalua-
tion across all four domain selection algorithms under two-class, three-class, and four-class
inter-subject classification scenarios. In this case, X-S1 represent an inter-subject classifi-
cation scenario using MI subjects acquired from the BCI competition IV-a dataset, while
X-S2 represent an inter-subject classification scenario using our own recorded SSMVEP
subjects, and X-S3 represent an inter-subject classification scenario using our own recorded
MI subjects. Moreover, Superior performances across all inter-session classification sce-
narios under Table 6 is denoted by bold texts. From the comparison, one finds that the
complexity of a classification problem including the effect of low-beneficial sources has
severe implications for the classification performance when a single low-beneficial domain
is removed from a pool of domains in each iteration. Consequently, ROD outperforms both
DTE and LSA-MMFT, with a mean CA of 85.1% being recorded when ROD is employed.
However, an 8.5% increase is observed when EMC-MMFT is employed in X-S1, with a
superior mean CA of 93.9% being recorded. Moreover, a 20.5% increase and a superior
mean CA of 84.5% are observed when EMC-MMFT is applied and compared with DTE. In
this instance, DTE outperforms both ROD and LSA-MMFT, with a mean CA of 64% being
recorded when DTE is employed in X-S2 for a two-class problem. A superior mean CA of
78.4% is recorded when EMC-MMFT is employed in X-S3 for a two-class problem, and
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a 10.8% increase is observed as compared to the performance of ROD, which achieves a
mean CA of 67.6% and outperforms both DTE and LSA-MMFT.

Table 6. Mean (%) and standard deviation (in parenthesis) for domain selection algorithms based on
cross-subject classification.

Methods
Two-Class Three-Class Four-Class

X-S1 X-S2 X-S3 X-S1 X-S2 X-S3 X-S1 X-S2 X-S3

LSA-MMFT 83.3 (6.09) 60.4 (15.5) 65.1 (17.5) 67.1 (5.9) 40.9 (13.2) 41.8 (13.8) 56.6 (2.7) 30.7 (7.9) 35.2 (11.1)

DTE 83.7 (14.8) 64 (14.2) 60.3 (18.3) 67.1 (11.2) 42.3 (10.6) 44.9 (12.1) 56.9 (9.4) 32.2 (2.7) 36.5 (11.1)

ROD 85.1 (14.9) 58.2 (8.5) 67.6 (10.5) 69.4 (13.2) 42.1 (7.5) 47.6 (6.9) 56.8 (11.6) 30.2 (5.2) 27.8 (10)

EMC-MMFT 93.9 (6.09) 84.5 (8.7) 78.4 (12.4) 80 (5.9) 72.8 (10.7) 64.3 (7.6) 67.4 (2.7) 59.8 (12.6) 62.9 (10)

Moreover, for the three-class inter-subject scenario, ROD yields a remarkable mean
CA compared to both DTE and LSA-MMFT, with a mean CA of 69.4% being recorded
when ROD is employed in X-S1. However, a superior mean CA of 80% is recorded when
EMC-MMFT is applied, while a 10.6% increase in CA is observed compared to ROD’s. For
the three-class inter-subject classification scenario based on X-S2, a superior mean CA of
72.8% is recorded when EMC-MMFT is applied, while a 30.5% increase in CA is observed
when it is compared to DTE, whose highest mean CA of 42.3% is recorded when it is
applied and compared to both ROD and LSA-MMFT. A superior mean CA of 64.3% is
achieved when EMC-MMFT is implemented based on X-S3 for a three-class problem, with
a 16.7% increase in CA being observed when compared to ROD’s, which achieves a mean
CA of 47.6% and, at the same time, outperforms both DTE and LSA-MMFT.

Furthermore, in our study, performance evaluation has also been carried out for a
more complex classification problem—in this instance, a four-class problem. DTE yields a
superior performance compared to ROD and LSA-MMFT, with the highest mean CA of
56.9% being recorded when DTE is employed based on X-S1. However, a 10.5% increase in
the mean CA is observed when EMC-MMFT is employed and compared with DTE, with a
superior mean CA of 67.4% being recorded when EMC-MMFT is employed.

Moreover, a 27.6% increase in the mean CA is observed when EMC-MMFT is employed
and compared with DTE, with a superior mean CA of 59.8% being recorded when EMC-
MMFT is employed based on X-S2, while DTE achieves the highest mean CA of 59.8%
compared to both ROD and LSA-MMFT. An inferior mean CA is observed when ROD,
DTE, and LSA-MMFT are employed based on X-S3 for a four-class problem. However,
a 26.5% increase in CA is observed when EMC-MMFT is applied and compared to DTE,
which achieves a mean CA of 36.5% and outperforms both ROD and LSA-MMFT. The
superior classification performances achieved in this instance are attributed to the selected
optimal combination of high beneficial domains after low-beneficial domains have been
discarded at once, when EMC-MMFT is employed. In this case, high beneficial SDs are
mainly selected to minimize the effect of NT and utilized to enhance the prediction rate
across individual TDs. Hence, superior classification performances are observed when
EMC-MMFT is employed, while inferior performances are attributed to the remaining
non-related low-beneficial domains when a single low-beneficial domain is removed at a
time, when ROD, DTE, and LSA-MMFT are employed.

These results further validate the fact that removing a single low-beneficial domain in
each iteration poses severe implications for the classification performance across individual
TDs, while selecting only the best combination of closely related high beneficial sources,
denoted by superior classification performances, can significantly enhance the prediction
rate across individual TDs.

5. Discussion

The classification performance when TL is employed is dependent on the transferabil-
ity of features in the source domains, utilized to enhance the prediction rate in the target
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domain [37]. However, negative transfer has demonstrated to pose severe implications for
the classification performance across individual target domains when TL is employed [12].
As such, sessional and inter-subject variations have proven to significantly contribute to
the effect of NT, emerging as a result of the transfer of features from low-beneficial sources
in the target domain [38]. However, a combination of both low-beneficial and high benefi-
cial domains can positively and negatively affect classification performance, mainly as a
result of different sources responding differently to other individual sources. In this case,
low-beneficial sources can drastically deteriorate the prediction rate, while related high
beneficial sources improve the prediction rate across individual target domains [39]. Hence,
domain selection algorithms have been implemented to identify high beneficial sources
with a high transferability, mainly to minimize the effect of NT and enhance the prediction
rate across individual TDs when TL is employed after source selection.

In this paper, we investigated the impact of low-beneficial and high beneficial domains
on TL performance, at the same time addressing the challenge of NT, significantly contribut-
ing to poor classification performances across individual TDs. To facilitate the investigation,
four novel domain selection algorithms were introduced and compared to evaluate the
performance of each algorithm when beneficial sources ware selected for transfer mapping.
In this case, all the domain selection techniques (EMC-MMFT, ROD, DTE, and LSA-MMFT)
adapted a two-class inter-session and inter-subject scenario to a multi-class inter-subject
and inter-session scenario. The performances of EMC-MMFT, DTE, ROD, and LSA-MMFT
were evaluated and compared under three inter-session and inter-subject EEG classification
problems (namely, two-class, three-class, and four-class problems), mainly to validate the
performance of each algorithm across individual TDs [11,12].

Consequently, when the EMC-MMFT framework was employed, only a combination
of high beneficial domains was selected for transfer mapping, while low-beneficial domains
were discarded to minimize the effect of NT, which can drastically deteriorate the prediction
rate across individual TDs. A comparative performance evaluation illustrated that EMC-
MMFT could significantly improve the classification performance across individual TDs
compared to DTE, ROD, and LSA-MMFT. Consequently, all four algorithms achieved the
highest CA of 100% for the two-class inter-session classification scenario. However, a signif-
icant decline in CA across individual TDs was observed when LSA-MMFT, DTE, and ROD
were applied, while EMC-MMFT maintained superior classification performances across
all the individual TDs, as depicted in Figure 5. Similar classification performances were
observed for the two-class inter-subject classification scenario using the BCI competition
IV-a dataset, whereby the highest CAs of 96% and 97% were recorded when LSA-MMFT,
DTE, and ROD were applied, respectively, while EMC-MMFT achieved a superior CA of
98%. In this case, EMC-MMFT outperformed all the other three algorithms and maintained
superior performances across all the individual TDs, as illustrated in Figure 8. Moreover,
EMC-MMFT outperformed all three algorithms for the two-class inter-subject classification
scenarios using our own recorded SSMVEP and MI subjects, with superior CAs of 95% and
92.5% being recorded when optimal combinations of high beneficial SDs were selected,
as illustrated in Figures 6 and 7. Notably, the highest mean CA of 85.1% was recorded
when DTE was employed, compared to ROD and LSA-MMFT; however, a superior mean
CA of 94.2% was observed when EMC-MMFT was employed, based on the two-class
inter-session scenario, while a superior mean CA of 93.9% was achieved for the two-class
inter-subject classification scenario using the BCI competition IV-a dataset. EMC-MMFT
further outperformed the other three domain selection algorithms, with superior CAs of
84.5% and 78.4% being recorded for both of the inter-subject scenarios utilizing our own
recorded SSMVEP and MI subjects, respectively as depicted in Table 5.

Iterating through the domains while removing a single less-beneficial domain in each
iteration demonstrated to crucially cause a negative impact on the classification perfor-
mance when DTE and ROD were employed under the three-class scenario. Hence, mean
CAs of 68.9% and 63.2% were recorded for DTE and ROD, respectively. Iterating through
the domains utilizing LSA-MMFT to evaluate label similarities to identify the transferability
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between domains also demonstrated to be less efficient in enhancing performance, with a
mean CA of 64.1% being recorded. Therefore, selecting only a combination of high ben-
eficial domains when EMC-MMFT was employed yielded superior performances across
the individual TDs that translated to a mean CA of 84.1% for the three-class inter-session
classification scenario, while a superior mean CA of 80% was noted for the three-class
inter-subject classification scenario utilizing MI subjects acquired from the BCI competition
IV-a dataset. Moreover, EMC-MMFT achieved the highest mean CAs of 72.8% and 64.3%
for the three-class inter-subject classification scenarios using our own recorded SSMVEP
and MI subjects, respectively.

The complexity of the four-class inter-subject EEG classification problem including the
existence of NT proved to significantly affect classification performance when DTE, ROD,
and LSA-MMFT were employed. Hence, inferior mean CAs of 57%, 61.2%, and 58.27%
were recorded when DTE, ROD, and LSA-MMFT were employed to address the effect of
NT based on the four-class problem. Notably, selecting only the optimal combination of
highly beneficial SDs yielded remarkable performances regardless of the complexity of the
four-class problem, with the highest mean CA of 75.06% being recorded when EMC-MMFT
was employed, based on the four-class inter-session scenario, while a superior mean CA
of 67.4% was achieved for the four-class inter-subject classification scenario using the BCI
competition IV-a dataset, as depicted in Tables 5 and 6, respectively. EMC-MMFT further
demonstrated its superiority and outperformed the other three domain selection algorithms,
with superior mean CAs of 59.8% and 62.9% being recorded for the four-class inter-subject
classification scenarios using our own recorded SSMVEP and MI subjects.

These results further validate that selecting only the best combination of closely related
high beneficial sources can significantly minimize the effect of NT and, in turn, enhance the
prediction rate across individual TDs. However, iterating through the domains and removing
a single low-beneficial source domain at a time can still pose severe implications for the CA in
the next iteration, since different domains respond differently to other domains.

6. Conclusions

In this paper, the effect of NT on the classification performance of transfer learning
across individual target domains was investigated, whereby four domain selection algorithms
were introduced to evaluate the effect of low- and high beneficial source domains on TL
performance under three inter-session and inter-subject classification scenarios (two-class,
three-class, and four-class problems). In this case, the EMC-MMFT framework was compared
with three domain selection algorithms (LSA-MMFT, ROD, and DTE), mainly to determine
the impact of NT on classification performance across individual TDs. Hence, the performance
of each domain selection algorithm was evaluated based on the selection of high beneficial
domains and the rejection of low-beneficial domains to determine the effect of NT on the
performance. Therefore, discarding a single low-beneficial domain in each iteration from a
pool of domains consisting of significant individual differences demonstrated to pose severe
implications for classification performance. Hence, inferior classification performances were
recorded across individual TDs when ROD, DTE, and LSA-MMFT were employed under
the two-class and three-class problems. Moreover, the complexity of the four-class problem
including the presence of low-beneficial domains in each iteration when ROD, DTE, and
LSA-MMFT were employed to discard only a single low-beneficial domain per iteration
demonstrated to significantly deteriorate the prediction rate across individual TDs. However,
discarding all the low-beneficial SDs at once and selecting only the best combination of high
beneficial SDs demonstrated to minimize the effect of NT and, at the same time, significantly
enhance the prediction rate. Hence, superior classification performances were recorded across
all nine individual TDs when EMC-MMFT was employed under the two-class and three-class
problems. Moreover, the complexity of the four-class problem was demonstrated to cause
a minimal impact on the classification performance when EMC-MMFT was employed to
select only the optimal combination of high beneficial SDs, with superior performances being
recorded across each individual TD compared with the results obtained with the ROD, DTE,
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and LSA-MMFT algorithms. This proves the study’s hypothesis and indicates that selecting
only high beneficial domains can significantly minimize the effect of NT and, in turn, enhance
the performance of TL algorithms.
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