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I. Resistance of Concrete with

Crystalline Hydrophilic Additives to

Freeze–Thaw Cycles. Appl. Sci. 2024,

14, 2303. https://doi.org/10.3390/

app14062303

Academic Editors: Mouhamadou

Amar and Nor Edine Abriak

Received: 21 February 2024

Revised: 5 March 2024

Accepted: 8 March 2024

Published: 9 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Resistance of Concrete with Crystalline Hydrophilic Additives to
Freeze–Thaw Cycles
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Abstract: The study explores the hypothesis that crystalline hydrophilic additives (CA) can enhance
concrete’s resistance to freeze/thaw cycles, crucial for assessing building durability. Employing EU
standards, the research evaluates concrete resistance through standardized European freeze/thaw
procedures. Monitoring concrete slabs exposed to freezing in the presence of deionized water and
in the presence of 3% sodium chloride solution, the study measures surface damage and relative
dynamic modulus of elasticity. Additionally, it assesses internal damage through monitoring of
relative dynamic modulus of elasticity on cubes and prisms submerged in water and exposed to
freezing/thawing. The pore spacing factor measured here aids in predicting concrete behavior
in freeze/thaw conditions. Results suggest that the standard air-entraining agent offers effective
protection against surface and internal damage due to freeze/thaw cycles. However, the CA displays
potential in enhancing resistance to freeze/thaw cycles, primarily in reducing internal damage
at a 1% cement weight dosage. Notably, a 3% replacement of cement with CA adversely affects
concrete resistance, leading to increased surface and internal damage. The findings contribute to
understanding materials that can bolster concrete durability against freeze–thaw cycles, crucial for
ensuring the longevity of buildings and infrastructure.

Keywords: concrete; durability; crystalline hydrophilic additives; freeze–thaw cycles; surface damage;
internal damage; pore spacing factor

1. Introduction

The durability of buildings is mostly influenced by the durability of the materials
used in their construction. A primary factor that undermines this durability is the freeze–
thaw cycle [1]. When temperatures dip below zero, water within the material freezes and
expands, exerting stress on the material’s walls [2]. Through repeated freeze–thaw cycles,
this stress leads to material damage, consequently diminishing its durability. In cement
composites, such damage manifests as surface scaling or internal cracking [3].

A common approach to enhancing concrete’s durability against freeze/thaw cycles
involves incorporating air-entraining agents into the concrete mixture [4]. These agents
introduce air bubbles during mixing, which disrupt the capillaries through which water
could penetrate the concrete. By minimizing water content in the concrete, issues related
to freeze–thaw cycles are mitigated. However, it is important to exercise caution with
these agents, as they may adversely affect the compressive strength of the concrete [5]. The
literature also suggests that concrete durability can be improved by incorporating mineral
additives like slag [6], fly ash [7], and silica fume [8]. Furthermore, concrete durability
can be enhanced by partially replacing aggregate with rubber [9–12], employing polymer
binders [13,14], modifying [15–17] or impregnating concrete with polymers [18,19], using
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polycarbonate superplasticizers [20,21], employing biomimetic polymer additives [22], and
utilizing polymer fibers and biofibers [23,24].

Crystalline admixtures (CA) are primarily commercially available products offered by
various manufacturers (such as Xypex, Richmond, BC, Canada; Kryton, Vancouver, BC,
Canada; Penetron, East Setauket, NY, USA; Harbin, China). They serve a dual function:
reducing concrete permeability and repairing cracks [25]. The recommended dosage of
CA in concrete typically ranges from 0.3% to 5% by the weight of the cement [26,27].
Several authors have studied the impact of CA on the durability properties of concrete by
monitoring crack healing, with most concluding its effectiveness in this regard [28–32]. It
was noted that the highest rate of healing was observed when samples containing CA were
consistently immersed in water [28–30]. According to [29,33], calcium carbonate in the
form of aragonite is formed in concrete cracks treated with CA, effectively sealing them.

Considering the confirmed effectiveness of CA in the concrete crack healing process
and the fact that cracks occur in concrete during freeze–thaw cycles, it would be intrigu-
ing to precisely determine the effectiveness of CA in enhancing concrete resistance to
freeze–thaw cycles. European legislation mandates testing the resistance of concrete to
freeze–thaw cycles through procedures outlined in standards CEN/TS 12390-9 [34] and
CEN/TR 15177 [35]. In the method outlined in CEN/TS 12390-9 [34], concrete samples
saturated with deionized water or a 3% sodium chloride solution undergo freeze/thaw
cycles (56 cycles), during which surface scaling and mass loss of concrete are measured.
The procedure described in CEN/TR 15177 [35] can be employed to monitor damage to
the internal structure. Additionally, EN 480-11 [36] is used to predict concrete behavior
under freeze–thaw conditions, involving microscopic observation of hardened concrete
samples, measurement of pore spacing, and calculation of the pore spacing factor which
is defined as distance of any point in cement paste to the edge of the nearest air void.
Cement-based materials are considered resistant to freeze–thaw cycles if the spacing factor
is less than 0.2 mm.

Since the authors in [37] have already confirmed reduced water absorption by using
CA in concrete as an indicator of concrete resistance to freeze–thaw cycles, and the authors
in [32] have confirmed reduced water penetration in concrete with CA, the hypothesis arises
that the application of CA could potentially improve concrete resistance to freeze–thaw
cycles. Therefore, this study aims to examine the resistance of concrete to freeze–thaw
cycles according to standardized procedures prescribed by EU standards.

2. Experimental Part

In the experimental part of the paper, four concrete mixtures were prepared; a reference
mixture (M1), a mixture with an air entraining agent (M2), and mixtures with a crystalline
hydrophilic admixture in two different amounts per cement weight (M3, M4).

2.1. Properties of Aggregates, Binders, and Additives to Concrete

In this research, dolomite was used as an aggregate in fractions 0–4 mm, 4–8 mm,
8–16 mm, and 16–31.5 mm, as well as a dolomite-type filler. The density of dolomite
aggregate and filler determined according to EN 1097-6 standard [38] was 2780 kg/m3. The
specific surface area for filler determined using the BET method according to the standard
ISO 9277 [39] was 2.32 m2/g. Sieve curves for dolomite fractions are shown together with
target and actual cumulative aggregate curve in Figure 1, where it should be noted that 5%
of the 0–4 mm fraction was replaced with filler.

The cement used for making concrete mixtures was CEM I 52.5 N. In all mixtures, the
superplasticiser ViscoCrete 5380, Sika Croatia, Zagreb, Croatia was used in the amount of
1% of the mass of binder. In mixture M2, the air-entraining agent LPS A 94 from Sika was
used in the amount of 0.2% of the mass of cement. The crystalline hydrophilic admixture
Penetron Admix from Penetra, Sesvete, Croatia was used in the amount of 1% of binder in
mixtures M3 and 3% of the mass of binder in mixtures M4. The density of binders (cement
and crystalline hydrophilic admixture) was determined according to the standard EN
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1096-6 [40], and the specific surface area was determined using the BET method according
to ISO 9277 [39]. The densities of the superplasticizer and air entraining agent are adopted
from the additive producer. The densities of binders, superplasticizer, and air-entraining
agent, as well as the specific surface areas of binders, are shown in Table 1.
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Table 1. Densities of binders, superplasticizer, and air-entraining agent, and specific surface area of
binders.

Components Density, kg/m3 Specific Surface
Area, m2/g

Cement, CEM I 52.5 N 2960 3.76
Superplasticiser, ViscoCrete 5380 1080 -
Air entraining agent, LPS A 94 1000 -

Crystalline hydrophilic admixture (CA), Penetron 2910 2.70

2.2. Composition of Concrete Mixtures

The composition of concrete mixtures is shown in Table 2. All mixtures have the same
water/cement ratio of 0.35, the same amount of aggregate, and the same amount of binder
(400 kg). In mixtures M1 and M2 it is cement, while in mixtures M3 and M4 it is the total
amount of cement and crystalline hydrophilic additive.

Table 2. Composition of concrete mixtures for 1 m3 of concrete.

Mixture/Components M1 M2 M3 M4

Cement (kg) 400 400 396 388
Water (kg) 140 140 140 140

Superplasticizer (kg) 4 4 4 4
Air entraining agent (kg) - 0.8 - -

Crystalline hydrophilic admixture (kg) - - 4 12

A
gg

re
ga

te

Dolomite 0–4 mm (kg) 576.6 576.6 576.6 576.6
Dolomite 4–8 mm (kg) 195.6 195.6 195.6 195.6
Dolomite 8–16 mm (kg) 469.8 469.8 469.8 469.8
Dolomite 16–31.5 mm (kg) 685 685 685 685

Filler (kg) 30.2 30.2 30.2 30.2
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The aggregates used for preparing concrete were first saturated and then surface-dried.
This was achieved in an artificial way by dipping the aggregates into a water tank for 24 h,
taking them out, and then wiping excess water from their surface. First, coarse and fine
aggregate was mixed for 1 min, then binder was added and the mixing was continued for
an additional 2 min. In the end, water was added and the mixing was continued for an
additional 2 min. Mixing the concrete in a pan mixer (DZ 100VS, Diemwerke, Hörbranz,
Austria) took a total of 5 min.

2.3. Properties of Fresh and Hardened Concrete

The consistency of the concrete was determined according to EN 12350-2 [41], the
density of fresh concrete according to EN 12350-6 [42], and the air content according to the
standard EN 12350-7, with the pressure gauge method [43]. The obtained results are shown
in Table 3.

Table 3. Properties of concrete mixtures in their fresh state.

Mixture M1 M2 M3 M4

Consistency–slump (cm) 12 14 11 11
Density (kg/m3) 2504 2439 2520 2489
Air content (%) 1.5 5 1.5 1.6

According to Table 3, all mixtures belong to consistency class S3 (10–15 cm) according
to EN 206 [44]. The addition of crystalline hydrophilic admixture had no impact on
workability, which is in accordance with [45]. In terms of density, all mixtures can be
considered normal weight concrete. As expected, mixture M2 has the highest air content
in fresh concrete, for which the air-entraining agent in the mixture is directly responsible.
Crystalline hydrophilic admixture did not affect the air content in fresh concrete for both
tested doses, but Shetiya et al. [46] tested mixtures with different concentrations of Penetron
crystalline admixture (1% and 2.5% of the cement mass) and found that the mixture with
1% crystalline admixture had the highest air content of all tested concretes.

From each mixture, 14 cubes of dimensions 15 cm × 15 cm × 15 cm and 3 prisms of
dimensions 10 cm × 10 cm × 40 cm were prepared. After casting, the concrete specimens
were stored under cover for 24 h under laboratory conditions until demolding to prevent
water evaporation. After demolding, the specimens were in the mist room at 20 ± 2 ◦C
and RH ≥ 95% until the age of testing. On 3 out of 14 cubes, the compressive strength of
28-day-old specimens is determined according to EN 12390-3 [47], and the results and their
corresponding standard deviations are shown in Figure 2.
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From Figure 2, it is evident that CA present in concrete mixtures M3 and M4 did
not significantly affect the compressive strength of the concrete, which is in line with the
conclusions presented in [32,48,49]. The presence of air entraining agent in mixture M2
significantly reduced the compressive strength of the concrete which is consistent with the
well-known fact that air entraining agent negatively affects concrete strength [5].

Furthermore, from each of the eight cubes, one slab of dimensions 15 cm × 15 cm × 5 cm
(total of eight slabs) was sawn out to monitor scaling due to freeze/thaw cycles according
to CEN/TS 12390-9 [34], and the relative dynamic modulus of elasticity due to freeze/thaw
cycles according to Clause 8 of CEN/TR 15177 standard [35] using an ultrasonic pulse
transmission time device, and one slab of dimensions 10 cm × 15 cm × 4 cm to measure the
spacing factor according to EN 480-11 standard [36]. Half of the slabs intended for scaling
and relative dynamic modulus of elasticity monitoring were subjected to freeze/thaw
attack in the presence of a 3 mm deep layer of deionized water, and the other half were
subjected to freeze/thaw attack in the presence of a 3% sodium chloride solution. Figure 3
shows all the slab samples in the freezing and thawing chamber (producer: Schleibinger,
Buchbach, Germany), and Figure 4 shows the monitoring of the amount of scaled material
and dynamic modulus of elasticity during exposure to freeze/thaw cycles.
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Figure 5 shows the slab prepared for measuring the spacing factor and the measuring
device for the measuring. The remaining 3 out of a total of 14 cubes and 3 prisms of
each mixture were subjected to freeze/thaw cycles in the presence of water in the Mis
600 chamber, LT, Slovenia at 28 days of their age and the relative dynamic modulus of
elasticity was monitored during freeze/thaw cycles according to Clause 7 of CEN/TR
15177 standard [35]. Figure 6 shows specimens in the chamber immersed in water and
measuring of the pulse transmission time on the cube and prism specimens.
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3. Test Results

The results of scaling tests due to freeze/thaw cycles according to CEN/TS 12390-9 [34]
with corresponding standard deviations are shown in Figure 7, and the results of testing the
relative dynamic modulus of elasticity due to freeze/thaw cycles according to Clause 8 of
CEN/TR 15177 standard [35] are shown in Figure 8. Each point on the curves presented in
Figure 7 represents the mean value of four measurements. While the standard deviation of
results is expressed for absolute values (Figure 7), this was not possible for relative values
(Figure 8). However, it should be noted that the relative values were calculated from the
mean absolute values of four absolute measured values, with the exclusion of all values
that deviated from the mean absolute value by more than 10%.
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The results of spacing factor measurements according to EN 480-11 [36] are shown in
Figure 9.
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4. Discussion

From Figure 7a,b, it is evident that in mixture M2 containing an air-entraining agent,
there is a significant reduction in mass loss due to scaling after 56 freeze/thaw cycles
compared to mixture M1, while the crystalline hydrophilic additive in mixtures M3 and
M4 acted contrary to expectations, increasing the mass loss due to scaling, i.e., increasing
the mass loss due to exposure of samples to deionized water. The mixture with a lower
proportion of crystalline hydrophilic additive (M3) records a lower mass of scaled material
compared to the mixture with a higher proportion of crystalline hydrophilic additive (M4).
This is contrary to the observations in [50] where the mass loss ratio due to freeze/thaw
cycles is significantly lower in mixtures with the addition of CA compared to the reference
mixture. The mixture with the least amounts of scaled material, and therefore the best
resistance to freeze/thaw cycles according to this method, and under conditions of exposure
to deionized water, is mixture M2, followed by mixtures M1, M3, and M4 in sequence.
From Figure 7c,d, it is noticeable that in mixture M2 containing an air-entraining agent,
there is a drastic reduction in mass loss due to scaling after 56 freeze/thaw cycles compared
to mixture M1, while the crystalline hydrophilic additive in mixtures M3 and M4 acted
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contrary to expectations, increasing the mass loss due to scaling, i.e., increasing the mass
loss due to exposure of samples to a 3% sodium chloride solution. The mixture with a
lower proportion of crystalline hydrophilic additive (M3) records significantly lower scaled
material mass compared to the mixture with a higher proportion of crystalline hydrophilic
additive (M4). The lowest scaled material mass, and thus the best resistance to freeze/thaw
cycles according to this method and under conditions of exposure to a 3% sodium chloride
solution, is recorded by mixture M2, followed by mixtures M1, M3, and M4 in sequence.
When it comes to surface damage due to freeze/thaw cycles, the air-entraining agent
is evidently the most effective additive for preventing damage, almost equally effective
regardless of whether freezing/thawing occurs with or without salt presence, while the
negative effect of the crystalline hydrophilic additive is significantly more pronounced
during freezing/thawing in the presence of salt. Such research findings on the impact
of the crystalline hydrophilic additive are even worse than the results presented in [51].
Specifically, Manhanga et al. [51] concluded in part of their study addressing the scaling of
concrete exposed to a 3% sodium chloride solution that the crystalline hydrophilic additive
(in amount of 0.8% per cement weight) does not affect this type of damage caused by
freeze–thaw cycles.

From Figure 8a, it can be concluded that the drop in the dynamic modulus of elasticity
as a measure of internal damage during exposure to freezing/thawing in the presence of
deionized water is most pronounced in mixture M1. Mixture M4 has a smaller drop in
the dynamic modulus of elasticity than mixture M1, while mixtures M3 and M2 recorded
an increase in the dynamic modulus of elasticity. The increase in the dynamic modulus
of elasticity during the freeze/thaw cycles is consistent with the increase in mass during
freezing/thawing reported in [52]. The authors in [52] explain that freeze/thaw cycles
promote the mobility of pore solution through osmosis. As a result, portlandite dissolved
in pore water migrates, facilitating the reactions involved in the self-healing procedure.
Additional ice formation in pores likely contributed to the reported mass increase, thus
supporting the evolution of the self-healing process.

During exposure to freezing/thawing in the presence of a 3% sodium chloride solution
(Figure 8b), the highest drop in the dynamic modulus of elasticity was recorded by mixture
M4, while mixtures M1 and M3 recorded a somewhat smaller drop in the dynamic modulus
of elasticity, and mixture M2 recorded an increase in the dynamic modulus of elasticity.
In terms of internal damage, the air-entraining agent has shown the highest effectiveness
in protecting concrete from damages caused by freeze/thaw cycles, but the crystalline
hydrophilic additive at a 1% dosage (M3) has shown potential to improve concrete’s
resistance to freeze/thaw. This is in accordance with [53] where a positive effect on crack
self-healing (monitored through the recovery of compressive strength of samples cured in
water) of lower CA content has also been recorded, while a negative effect of higher CA
content in the total binder quantity was noted.

Figure 9 shows that mixture M2 has the smallest pore-spacing factor, followed by
mixtures M3 and M4, while mixture M1 has the largest pore-spacing factor. Considering
that this testing method requires a pore spacing factor smaller than 0.2 mm for concrete to
be considered resistant to freeze/thaw cycles, according to this method, only mixture M2
could be considered resistant to freeze/thaw cycles. The obtained value of the pore spacing
factor of 0.076 mm for the M2 is in accordance with range from 0.07 mm to 0.16 mm for
air-entrained concrete [54]. Compared with the mixture M1, the crystalline hydrophilic
additive reduced the spacing factor more than 60%, but the obtained values of 0.392 mm
(M3) and 0.326 mm (M4) are significantly higher than 0.2 mm requested for concrete to be
considered resistant to freeze/thaw cycles. Figure 10a,b confirm the conclusions regarding
Figure 8a,b, namely that regarding internal damage, the air-entraining agent has shown the
highest effectiveness in protecting concrete from damages caused by freeze/thaw cycles, but
the crystalline hydrophilic additive at a 1% dosage (M3) has shown potential to improve
concrete’s resistance to freeze/thaw cycles. Furthermore, regarding internal damages,
the crystalline hydrophilic additive used in this study achieved better performance in
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enhancing the concrete’s resistance to freeze/thaw cycles compared to the crystalline
hydrophilic additive used in [51]. Specifically, Manhanga et al. [51] concluded, in part
of their research focusing on the impact of the crystalline hydrophilic additive on the
strength of cubic specimens exposed to freeze/thaw cycles in the presence of water, that the
crystalline hydrophilic additive does not affect this type of damage caused by freeze–thaw
cycles. On the other hand, Ferrara et al. [55] have indeed confirmed that the velocity of
the ultrasonic wave passage is higher in concrete with a crystalline hydrophilic additive
compared to reference concrete during the self-healing process of cracks in concrete, leading
to the conclusion that the crystalline hydrophilic additive promotes crack healing. The
results presented in this paper are in line with the results shown in Ferrara et al. [55]
because cracks that occur as internal damage during freeze/thaw cycles are likely to be
healed faster when concrete contains a 1% crystalline hydrophilic additive compared to
reference concrete.

5. Conclusions

The paper investigates the effectiveness of the crystalline hydrophilic additive on
concrete resistance to freeze/thaw cycles according to standardized EU methods. Scal-
ing resulting from freeze/thaw cycles was observed on concrete slabs exposed to freez-
ing/thawing under two conditions: in the presence of deionized water, and in the presence
of a 3% sodium chloride solution. This served as a measure of surface damage. Addition-
ally, the relative dynamic modulus of elasticity was assessed on concrete slabs subjected
to freezing/thawing under the same conditions mentioned above. This measurement
provided insight into internal damage. Furthermore, the relative dynamic modulus of
elasticity was examined on concrete cubes and prisms submerged in water and exposed to
freezing/thawing. This served as a measure of internal damage. Lastly, the paper explored
the pore spacing factor. This factor is utilized more for predicting concrete behavior in
freeze/thaw conditions rather than monitoring actual concrete behavior in such conditions.
Based on the obtained results, it was concluded that the most effective protection against
surface and internal damage to concrete is provided by the standardly used air-entraining
agent, while the crystalline hydrophilic additive has the potential to improve concrete
resistance to freeze/thaw cycles in the context of reducing internal damage only if used
at a 1% cement weight dosage. A 3% replacement of cement with crystalline hydrophilic
additive has shown a negative effect on concrete resistance to freeze/thaw cycles in terms
of increased surface and internal damage.
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