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Abstract: Although there have been crucial advancements in the diagnostic and treatment approaches,
the mortality rate of infective endocarditis is still an ongoing challenge in clinical practice. [18F]FDG
PET/CT imaging has recently proven its potential role in the early identification of prosthetic valve
endocarditis (PVE). Due to radiomics’ rising applicability, recent studies exhibit promising outcomes
in the clinical setting. The aim of the present study is the evaluation of potential radiomic-based
biomarkers of non-attenuation-corrected (NAC) [18F]FDG PET images for the diagnosis of PVE. An
adequate pre-processing and segmentation of the prosthetic ring metabolic activity were performed.
A reproducibility analysis prior to the image-based biomarkers’ identification was conducted in terms
of the intraclass correlation coefficient (ICC) derived from the variations in the radiomic extraction
configurations (bin number and voxel size). After the reliability analysis, statistical analysis was
performed by means of the Mann–Whitney U Test to study the differences between the PVE groups.
Only p values < 0.05 after the Benjamini Hochberg correction procedure for multiple comparisons
were considered statistically significant. Eight ML classification models for PVE classification based
on radiomic features were evaluated. Overall, 45.2% and 95.7% of the radiomic features showed
a consistency ICC above 0.82, demonstrating great reproducibility against variations in the bin
number and interpolation thickness, respectively. Variations in interpolation thickness demonstrated
great reproducibility in absolute agreement with 80.0% robust features, proving a non-dependency
relationship with radiomic values. In the present study, the utility of potential radiomic-based
biomarkers in the diagnosis of PVE in NAC [18F]FDG PET/CT images has been evaluated. Future
studies will be required to validate the use of this technology as a valuable tool to support the current
PVE diagnostic criteria.

Keywords: infective endocarditis; [18F]FDG PET/CT; reproducibility analysis; radiomics;
machine learning
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1. Introduction

Infective endocarditis (IE) is a pathological condition in the heart derived from the pro-
liferation of microorganisms causing inflammatory disease involving the heart valves [1].
It is a diagnostic challenge due to the high variability of the presentation of clinical signs.
The current diagnosis is a compendium of microbiological information and medical imag-
ing, interpreted in combination with clinical signs and symptoms. This information is
included as part of the criteria that define the gold standard of diagnosis, the modified
Duke criteria. These criteria classify endocarditis into three subcategories based on the
aforementioned findings: rejected, possible, and definite IE [2,3]. However, these criteria
exhibit limited sensitivity and specificity [4–6], as reported in the most recent AHA/IDSA
and ESC guidelines [3,7]. Despite the vast comprehension of IE clinical management, the
morbimortality of this disease is still unacceptably high (20% at 30 days and 40–50% at
subsequent follow-up) due to consequent complications [8].

The early identification of signs is crucial in preventing future complications and
thus reducing the associated morbidity and mortality. The transthoracic (TTE) and trans-
esophageal ultrasound (TEE) are usually employed as the gold standard in the diagnosis of
IE. However, TTE especially fails to identify approximately 30% of the cases with prosthetic
valve endocarditis (PVE) or infections in implantable electronic devices (CIED) [8]. In
fact, when echocardiography fails to detect infective valve endocarditis, the Duke criteria
show reduced diagnostic sensitivity [8]. Moreover, the sensitivity of echocardiography is
still limited depending on several factors related to the stage of the disease, the clinician’s
expertise, or even the prosthetic material-related imaging artifacts. This limited sensitivity
of diagnostic procedures leads to an important delay in the early diagnosis and consequent
structural damage due to the infection [4,9]. Precisely because of the limitations found in
the modified Duke criteria, especially in the context of PVE and cardiovascular device-
related infective endocarditis (CDRIE), additional imaging modalities were introduced as
part of the ESC guideline criteria. In particular, the AHA guidelines recently highlighted
the potential of the [18F]FDG PET/CT imaging in the diagnosis of PVE and native valve
endocarditis (NVE) [7]. [18F]FDG PET/CT imaging has demonstrated a major role in PVE
for the identification of valvular and perivalvular involvement [2,10–13]. In fact, [18F]FDG
PET/CT imaging maintained a sensitivity and specificity of 86% and 84%, respectively, in
those patients who demonstrated limited echocardiography sensitivity [14]. The major con-
tribution of this imaging modality occurs in those cases where there is a high suspicion of
IE and with a diagnosis of “Possible IE” or even “IE rejected” based on the other diagnostic
criteria [6,10,15–17]. The inclusion of the [18F]FDG PET/CT imaging modality in the Duke
criteria increased sensitivity from 57.1% to 83.5% [8].

The standardized uptake value (SUV)-related metrics have been widely used to ana-
lyze the metabolic patterns associated with cardiovascular infectious disease [2,9,17–25].
Although experience with SUV-based semiquantitative metrics has shown extensive use
in oncologic applications, their use is less widespread in infective endocarditis and there
is not yet a standard to obtain consistent values across studies [9,26–28]. Despite some
promising results in this regard, further technical developments are needed to consolidate
the potential value of [18F]FDG PET/CT in the diagnosis of IE [28,29]. In addition, recent
advances have shown that the uptake pattern could play a relevant role in decreasing false
positives. In fact, a homogeneous uptake pattern is related to reactive inflammatory activity
and not to infection. On the contrary, a heterogeneous uptake pattern with multiple foci is
related to an infectious process [3,8]. The radiomic-based approaches in diagnostic imaging
are increasingly expanding in the clinical setting [30–33]. This technology makes it possible
to study quantitative data extracted from images and generate multivariate models that
learn to identify patterns between the intensities of image voxels. Intensity changes and
patterns of homogeneity or heterogeneity are related to changes in signal intensity derived
from metabolic and physiological mechanisms that in turn produce changes in the tissue.
These patterns, often invisible to the human eye, provide extra information for the study
of uptake distribution in physiological images such as [18F]FDG PET. Indeed, previous
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works have demonstrated a positive contribution of radiomic models in the diagnosis of IE,
showing promising results [34,35].

Despite the marked increase in sensitivity resulting from the inclusion of [18F]FDG
PET/CT imaging in the Duke criteria [8], there is still room for improvement with regard
to the false positive rate. It has been described that false positives could be related to
several factors such as prolonged antibiotic treatment prior to the scan, inadequate patient
preparation [36], or image artifacts due to beam scattering and hardening due to prosthetic
device materials in attenuation-corrected (AC) images [3,8,29,37]. In fact, the clinical
guidelines’ recommendations call for special attention to diagnostic evaluation not only
in AC images, but also in non-attenuation-corrected (NAC) images, especially when an
implantable device or prosthetic valve is present to reduce the false positive rate [3].

The present study aims to identify potential radiomic-based biomarkers of PVE through
the analysis of the valvular metabolic activity in NAC [18F]FDG PET images. As such, the
usefulness of NAC [18F]FDG PET images is assessed, whose use is recommended by clinical
guidelines for the evaluation of uptake patterns. Moreover, the use of NAC images may lead
to a reduction in the false positive rate of the current criteria and previous research due to the
imaging artifacts produced by prosthetic and implantable devices.

2. Materials and Methods
2.1. Image Database

The current research work involves a retrospective re-evaluation of NAC [18F]FDG
PET/CT scans from a previously studied cohort of patients described in [25]. The previous
study report provides a comprehensive overview of the utilized methods. Briefly, a total of
20 image studies (with 9 confirmed PVE diagnoses) were collected in the Department of
Nuclear Medicine of the Hospital Universitario 12 de Octubre, Madrid, between 2019 and
2021 and included in the analysis. A case-by-case tabulation of the individual subjects and
their clinical outcome is detailed in Supplementary Materials Table S1.

2.2. Image Acquisition

The image acquisition protocol has been detailed previously in [25]. Nonetheless, it
should be noted that only the NAC [18F]FDG PET scans were eligible within this study. The
recruited patients adhered to a preparation protocol to enhance FDG cardiac uptake, based
on a low carbohydrate and high fat diet. Whole body images from a SIEMENS Biograph
6 True Point [18F]FDG PET/CT scanner (Siemens Healthineers AG, Erlangen, Germany)
with head-first supine patient orientation was utilized. The mean injected dose of [18F]FDG
was 308.23 ± 91.69 MBq. The reconstruction of the images led to a PET scan matrix of
168 × 168 pixels with 5 mm of slice thickness and 4.0728 mm for in-plane resolution and a
CT scan matrix of 512 × 512 pixels with 0.9766 mm for pixel pitch and 12 bits per pixel.

2.3. Image Processing and Feature Extraction

All image studies were processed using our in-house tool Cardiology Software Suite
(in-house version) for Image Analysis (CASSIA) [25]. A thorough description of the
image processing methodology is detailed in [25]. However, a few modifications are
incorporated for the processing of NAC images. Briefly, the co-registration of NAC PET
and corresponding CT images is performed, followed by the adequate segmentation of the
heart valve metabolic activity to analyze the metabolic patterns along the valve regions.
The segmentation of the valve is performed by defining a toroidal volume of interest (VOI)
that isolates the metabolically active region of the prosthetic valve ring.

Once the valvular VOI is segmented, radiomic features are extracted. The adequate
computation of radiomic features may require preprocessing of the segmented VOI. Ac-
cording to IBSI recommendations [38], the discretization of image gray values as well as
interpolation to achieve an isotropic volume must be performed prior to feature extraction.
In compliance with IBSI indications, the fixed bin number (FBN) discretization algorithm
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is the preferred method for arbitrary units as those in the NAC [18F]FDG PET images (no
re-segmentation range may be defined) [38].

In addition, some discretization and interpolation parameters such as the bin number or
voxel resampling size may alter the reproducibility of the radiomic features. To this purpose,
this study assessed the reproducibility of the extracted radiomic indices for the variations
in these extraction parameters, in terms of the intraclass correlation coefficient (ICC), as
a methodological step prior to statistical analysis for the identification of potential image-
based biomarkers. The bin number (4, 8, 16, 32, and 64 bins) and voxel size (1 × 1 × 1 mm3,
1 × 1 × 2 mm3, 1 × 1 × 3 mm3, and 1 × 1 × 4 mm3) configurations were defined in com-
pliance with the Image Biomarker Standardization Initiative (IBSI) criteria [38] and image
acquisition settings of the study population. An up-sampling approach is preferred to mini-
mize image aliasing artifacts [38]. As stated in previous work [39], an ICC(3,1) for a two-way
mixed-effects model was computed to quantify the reproducibility of the radiomic features
related to variations in the bin number (Experiment 1) and voxel size (Experiment 2) parame-
ters. A threshold of 0.82 (computed as the mean endpoint between intervals defined as good
[ICC 0.75–0.9] or excellent [ICC > 0.9] feature performance [40–42]) for ICC was used to group
radiomic features into sets of features showing reproducible and non-reproducible values in
response to variations in the feature calculation parameter configurations.

After the reproducibility analysis, the optimal feature extraction settings of parameters
are defined and radiomics data are obtained according to the selected robust extraction
parameters configuration.

Finally, radiomic features were extracted from the defined volume of interest encom-
passing the valvular region in the original non-filtered NAC [18F]FDG PET images using the
open-source python package Pyradiomics [43] with the default extraction parameters, unless
otherwise stated above. A total of 93 features were obtained that are categorized as follows:
18 First Order Statistics, 24 Gray Level Co-occurrence Matrix (GLCM), 16 Gray Level Run
Length Matrix (GLRLM), 16 Gray Level Size Zone Matrix (GLSZM), 5 Neighboring Gray Tone
Difference Matrix (NGTDM), and 14 Gray Level Dependence Matrix (GLDM).

2.4. Statistical Analysis

Quantitative variables are represented as the mean ± standard deviation. For all anal-
yses, only consistent features are eligible. Statistical analysis was conducted by categorizing
patients based on the confirmed diagnosis of PVE.

The differences in quantitative values were evaluated by means of the Mann–Whitney
U test and Benjamini Hochberg correction procedure for multiple comparison (only p
values < 0.05 after Benjamini Hochberg correction were considered statistically significant).
SPSS software version 19.00 (IBM Corp., Armonk, NY, USA) was employed to perform all
the statistical procedures. The Synthetic Minority Over-sampling Technique (SMOTE) [44]
was used to balance the dataset with respect to the diagnostic groups, increasing the
effective sample size (n = 22) and addressing class imbalance issues. To ensure further
reliability, non-parametric Spearman correlations were calculated between the remaining
radiomic features post-univariate and reproducibility analyses, with highly correlated
features (ρ ≥ 0.9) discarded to mitigate multicollinearity issues (correlation coefficients are
detailed in Supplementary Materials Figure S1).

Eight machine learning (ML) classification models were evaluated in Orange 3.31
software (Bioinformatics Laboratory at the University of Ljubljana, Slovenia; https://
orangedatamining.com/, accessed on 23 February 2024) for Confirmed PVE vs. Discarded
PVE classification based on the following remaining standardized radiomic features: lo-
gistic regression, neural network, k-nearest neighbor (kNN), naive bayes, support vector
machine (SVM), random forest, gradient boosting, and decision tree. The model hyperpa-
rameters are summarized in Supplementary Materials Table S2. A 5-fold cross validation
was performed to validate the ML models. The ML models’ performance was assessed in
terms of the area under the curve (AUC), accuracy, F1-score, precision, recall, and specificity.
A value greater than 0.75 was considered as an indicator of acceptable model performance.

https://orangedatamining.com/
https://orangedatamining.com/
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3. Results

According to the results of the reproducibility analysis (Figures 1 and 2), 95.7% (89 out
of 93) of the features remain consistent when varying the voxel size (median ICC val-
ues were 0.945 [IQR 0.764–0.997] and 0.987 [IQR 0.948–0.998] for absolute agreement and
consistency, respectively) whether only 45.2% (42 out of 93) of the features remain con-
sistent for variations in the discretization bin number (median ICC values were 0.250
[IQR 0.116–0.512] and 0.793 [IQR 0.459–0.984] for absolute agreement and consistency,
respectively). In compliance with IBSI recommendations and given the non-dependence
relationship of the radiomic features and voxel size configuration, an isotropic volume
resampling strategy with a 1.0 × 1.0 × 1.0 mm3 voxel size was employed. Conversely, some
further discrepancies could be noted within the radiomic features’ values when altering
the discretization bin number parameter. Therefore, the discretization bin number was set
to 64 bins in compliance with IBSI standards [38].
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The statistically significant differences between the diagnostic PVE groups in the
radiomic predictors which also maintain an ICC above the established threshold for consis-
tency (ICC > 0.82) are shown in Table 1. Notably, highly correlated features (ρ ≥ 0.9) were
also discarded to mitigate multicollinearity issues (see Supplementary Materials Figure S1).
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These features were acquired using the FBN method (64 bins) for gray level discretization
and a voxel size of 1.0 × 1.0 × 1.0 mm3. The statistically significant differences between
PVE groups were described in a total of 2 GLRLM, 1 first order, 1 GLDM, and 1 NGTDM
features. The differences between the subgroups are shown in Figure 3.

Table 1. Radiomic features with statistically significant differences between discarded and confirmed
PVE.

Feature Discarded PVE Confirmed PVE p-Value ICC [95% CI]

First order Entropy 5.00 ± 0.07 5.39 ± 0.03 0.003 * 0.999 [0.999–1.000]

GLDM DependenceEntropy 8.18 ± 0.02 8.49 ± 0.02 0.003 * 0.873 [0.767–0.942]

GLRLM
GrayLevelNonUniformity 648.90 ± 0.29 452.78 ± 0.38 0.025 0.910 [0.835–0.959]

RunEntropy 5.80 ± 0.02 6.09 ± 0.03 0.003 * 0.892 [0.802–0.951]

NGTDM Coarseness 0.0014 ± 0.001 0.002 ± 0.35 0.028 0.962 [0.930–0.983]

* Significant after Benjamini Hochberg multiple testing correction. PVE: prosthetic valve endocarditis; CI: confi-
dence interval.
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ML models based on radiomic features with significant differences between confirmed
and discarded PVE in the Mann–Whitney U test are evaluated (Table 2). Logistic regression
showed an AUC of 0.876 with an overall sensitivity (recall) and specificity of 0.864 and 0.864,
demonstrating a potential great capability of PVE classification. Similar performances were
obtained for models based on all radiomic variables (Supplementary Materials Table S3).

Table 2. Performances of the internal validation for the ML models based on the selected radiomic
features for Confirmed PVE and Discarded PVE classification.

Method AUC Accuracy F1-Score Precision Recall Specificity

Logistic Regression 0.876 * 0.864 * 0.863 * 0.867 * 0.864 * 0.864 *

Neural Network 0.876 * 0.818 * 0.818 * 0.818 * 0.818 * 0.818 *

SVM linear 0.860 * 0.818 * 0.818 * 0.818 * 0.818 * 0.818 *

Decision tree 0.769 * 0.682 0.681 0.683 * 0.682 0.682

Random Forest 0.839 * 0.818 * 0.817 * 0.829 * 0.818 * 0.818 *

Naive Bayes 0.855 * 0.773 * 0.768 * 0.795 * 0.773 * 0.773 *

Gradient Boosting 0.851 * 0.818 * 0.818 * 0.818 * 0.818 * 0.818 *

kNN 0.835 * 0.818 * 0.818 * 0.818 * 0.818 * 0.818 *

* Acceptable performance (>0.75).

4. Discussion

Despite recent advances and the increased sensitivity and specificity of current diag-
nostic criteria, IE still accounts for high morbidity and mortality [4–6,8]. [18F]FDG PET/CT
imaging has recently demonstrated its high value for the screening of IE [2,6,10–17]. How-
ever, the false-positive rate remains limited in those cases where implantable devices or
prosthetic valves are involved, which may produce artifacts in the non-attenuation cor-
rected images [3,8,29,37]. In fact, clinical guidelines recommend checking imaging findings
also in NAC images in order to reduce the false-positive rate [3]. Likewise, the analysis of
SUV-based metrics and uptake patterns based on the homogeneity/heterogeneity of radio-
pharmaceutical distribution has been shown to play a relevant role in the proper diagnosis
of IE [2,9,17–25]. Although these previous studies mainly propose SUV-based metrics to
describe valvular uptake patterns, emerging evidence suggests that uptake heterogeneity
through radiomic analysis may play a significant role in IE diagnosis. Nevertheless, despite
the recent increasing applicability of radiomics in some clinical scenarios such as oncol-
ogy [30–33], its usage is still scarce and poorly extended in the case of IE. Nonetheless, some
studies have recently demonstrated promising results for the early detection of IE [34,35].
However, to the best of our knowledge, the present study is the first to evaluate metabolic
uptake radiomic-based patterns in NAC [18F]FDG PET images in the setting of prosthetic
valve infective endocarditis (PVE) to support the current diagnostic criteria, following the
clinical guidelines’ recommendations for the diagnosis of PVE.

In our study, a total of 22 imaging studies were evaluated, with a total of 93 imag-
ing features per study. Additionally, a repeatability and reproducibility analysis of these
radiomic features was evaluated on NAC [18F]FDG PET/CT images. Reproducibility anal-
ysis showed that some radiomic features were consistent against changes in acquisition
settings. Consistency ICCs above the defined 0.82 threshold demonstrated reproducibility
against variations in the bin number and interpolation thickness, respectively. Moreover,
a non-dependency relationship of radiomic values with respect to variation in interpo-
lation thickness was evidenced. Furthermore, first order, GLCM, and GLRLM features
demonstrated greater consistency against variations in the number of bins. Specifically,
94.4% (17 out of 18), 43.8% (7 out of 16), and 41.7% (10 out of 24) of the first order features,
GLRLM, and GLCM remained consistent over variations in the number of bins.
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In the univariate analysis, five radiomic features showed statistically significant dif-
ferences between the confirmed and discarded PVE (Table 1) in addition to good repro-
ducibility of the results (ICC > 0.82). The differences between studies with confirmed and
discarded PVE show a trend of increased entropy in studies with confirmed PVE with
respect to studies with discarded PVE (Figure 3). According to the definition provided
by the IBSI standard [38], entropy refers to the uncertainty/randomness of the radiomic
values and, therefore, to the tissue uptake heterogeneity. That is, a higher entropy could
be explained by a greater dispersion of uptake values in the studied region, whereas a
reduced entropy would mean a greater uptake homogeneity. This finding is therefore
in line with the results described in previous studies, where a homogeneous uptake pat-
tern was previously related to reactive inflammatory activity and not to infection [3,8]
whereas a heterogeneous uptake pattern with multiple foci is related to an infectious pro-
cess. Previous studies have also demonstrated the usefulness of [18F]FDG PET/CT in the
assessment of patients with suspected PVIE [2,10–14]. However semi-quantitative metrics
and SUV ratios are commonly assessed which may miss valuable insights into the patterns
of homogeneity/heterogeneity in valvular uptake related to PVE diagnosis.

Reproducibility and univariate statistical analyses allowed to define statistically sig-
nificant radiomic potential predictors for PVE classification. Subsequently, a multivariate
analysis of radiomic features based on the evaluation of different ML models was per-
formed. In accordance with the outlined criteria for translating radiomics into clinically
useful tests, as detailed in previous research [45], the present study thoroughly revisited
these criteria in the study design. Moreover, the CLEAR checklist for radiomics research [46]
has been completed (see Supplementary files). Nonetheless, limitations were encountered,
and were primarily attributed to the restricted power sample size and challenges in fulfill-
ing the criteria associated with model development. Therefore, given the limited patient
cohort and limited statistical power, only an internal validation of these models was aimed
within a proof-of-concept framework, without the explicit objective of validating a clinically
feasible model. Therefore, this proof-of-concept multivariate analysis aims to conduct an
initial assessment of the potential value of NAC [18F]FDG PET imaging in improving the
accuracy of PVE diagnosis.

The ML models evaluated were constructed using the radiomic biomarkers selected
in the reproducibility and univariate analyses. The logistic regression model showed
the best performance within the internal validation, reaching an AUC of 0.876, with a
sensitivity of 0.864 and specificity of 0.864 (Table 2). The ML models show an acceptable
performance for the detection of PVE. However, all the models demonstrated comparable
performance outcomes, likely due to the restricted internal validation conducted with
a limited patient cohort. Further investigations with an enlarged patient cohort will
be necessary to enhance model disparities and assess their potential clinical relevance
and context-specific adequacy. The study by PA. Erba et al. [34] evaluated the potential
of radiomic analysis on AC [18F]FDG PET/CT imaging for the diagnosis of IE through
predictive models for the risk stratification of patients. Clinical data, imaging data, and
classification according to Duke criteria were collected in a total of 447 patients. Models
that integrated further information (image-based information and clinical data) achieved
higher performance (logistic regression model reached an AUC of 0.91). They established
that multivariable models based on radiomics and clinical information had a positive but
still limited contribution to the diagnosis of IE and stratification of patients into risk profiles.
In the study by T. Godefroy et al. [35], the usefulness of ML models based on radiomic
features for the diagnosis of PVE in AC [18F]FDG PET/CT imaging was evaluated. Clinical
and imaging data were collected from a total of 108 patients. The SVM model achieved
the best performance in the classification of IE reaching an AUC of 0.79 in the model that
included only radiomic features and 0.82 in the model that integrated clinical and imaging
information. They established that FDG PET/CT image-based machine learning algorithms
achieved acceptable performance in terms of sensitivity and specificity for IE classification.
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As previously stated, the present study is a re-evaluation of the analysis performed
in [25]. In the previous work, SUV-based ratios yielded patterns of heterogeneity in the
valvular uptake of AC [18F]FDG PET/CT images with a performance of the valvular het-
erogeneity index (VHI) and ring-to-center ratio (RCR) reaching an AUC of 0.727 and 0.808,
respectively. Moreover, univariate analysis demonstrated statistically significant differences
between the confirmed and discarded PVE groups for the RCR index (p = 0.02). On the
other hand, the present study demonstrates that multivariate models based on radiomic
features extracted from [18F]FDG PET/CT NAC images lead to a higher performance in
PVE classification (AUC = 0.876). Therefore, the preliminary findings from both univariate
analysis and the multivariate models proposed in this work suggest the potential of NAC
[18F]FDG PET imaging to enhance diagnostic sensitivity for IE, particularly in PVE. These
results would set the basis for future validation studies that incorporate radiomic technol-
ogy and ML models for the early detection of PVE. Thus, the radiomic-based biomarkers
approach may provide a better diagnostic accuracy in describing valvular uptake patterns
to characterize the specific pathophysiology of PVE. The inclusion of ML models in the
current diagnostic criteria would potentially increase their sensitivity and specificity.

Some limitations of the present study include the retrospective and single-center na-
ture of the investigation which may limit the generalizability of findings. Moreover, the
study did not control other imaging acquisition parameters, such as the scanner type, recon-
struction method, or multiple-reader segmentation reproducibility, all of which are known
to impact radiomic feature values. Furthermore, the study only performed an internal
validation of the multivariate models, lacking an independent test for validation. For this
purpose, an estimation of the power and sample size to avoid the underdetermination or
classification of the parameters [47,48] was additionally performed using G*power software
version 3.1 (https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-
und-arbeitspsychologie/gpower, accessed on 3 March 2024) [49]. For power and sample
size estimation, the parameters recommended in previous studies were employed [48].
Considering a minimum desired statistical power of 0.8, a large effect size of 0.8, an alpha
value of 0.05 for the Mann–Whitney U test, and a 1:1 ratio between groups, the sample
estimate obtained was a minimum of 54 patients, with 27 patients per group, to avoid the
underdetermination or classification of the parameters [47]. Nevertheless, the present study
utilized a limited sample of 20 imaging studies (22 observations after applying SMOTE).
Thus, conducting more extensive prospective studies with a larger pool of patients is of
great importance. This approach will enhance the comprehension of the clinical significance
of our findings, validate their reliability, and assess the potential of ML models based on
radiomic features for classifying PVE.

However, promising results concerning the radiomic-based approach have been ob-
tained, showing an improvement in the sensitivity and specificity of SUV-based metrics in
previous work, and setting the basis for future perspectives for the inclusion of ML models
as part of the diagnostic criteria. Therefore, an accurate diagnosis of infective endocarditis
is an important goal and there is significant potential for the radiomic-based biomarker
evaluation of PVE patients.

5. Conclusions

High morbidity and mortality still occur in patients who are diagnosed with IE. Despite
recent improvements in diagnostic criteria due to the incorporation of medical imaging as
one of the major criteria, there is still some ambiguity in the protocols, as well as a high false
positive rate in the case of PVE, leaving room for improvement. Radiomic technology based
on the information extracted from the images may lead to a significant improvement in the
early detection of PVE, with a consequent enhancement in the sensitivity and specificity
of the current diagnostic criteria. In the present study, the utility of potential radiomic-
based biomarkers in the diagnosis of PVE in NAC [18F]FDG PET/CT images has been
evaluated. While initial findings indicate that a radiomic-based approach holds promise

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
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for enhancing PVE diagnostic sensitivity, future studies will be required to validate the use
of this technology as a valuable tool to support the current PVE diagnostic criteria.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app14062296/s1, Table S1: Case-by-case tabulation of the individual
subjects and their clinical outcome. Table S2: Hyperparameters of the ML models for Confirmed
PVE and Discarded PVE classification.; Table S3: Performances of ML models based on all the
extracted radiomic features for Confirmed PVE and Discarded PVE classification. Figure S1: Non-
parametric Spearman correlations were calculated between the remaining radiomic features post-
univariate and reproducibility analyses, with highly correlated features (ρ≥ 0.9) discarded to mitigate
multicollinearity issues.
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