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Abstract: In this paper, we outline the analysis of a fully provable traffic system based on the Kol-
mogorov entropy. The completeness of the traffic node dynamics is realized in the form of a nonlinear
dynamical model of the participating transport objects. The goal of this study is to determine the
completeness of transport nodes based on the Kolmogorov entropy of the traffic trajectories of a
node with an unspecified number of actors, like cars and pedestrians. The completeness of a highly
autonomous driving detection system describing a traffic node could be realized if the entropy-based
error-doubling time of the trajectories of the Euler–Lagrange equation interpreted at the transport
junction is less than 1.3.

Keywords: system completeness; highly autonomous driving; Kolmogorov entropy

1. Introduction

Self-driving vehicles are a hot topic these days, but the idea is nothing new. Radio-
controlled cars have existed since as early as 1925 [1]. In 1958, the Chrysler Imperial was
capable of maintaining speed, similar to the way that cruise control works today [2]. In
1995, a Mercedes was equipped with an almost fully self-driving capability and covered
2000 km, although there was no room for anyone but the driver because of all of the
electronic equipment [3].

To bring them into our everyday lives today, both new, more accurate sensors [4]
and new research in artificial intelligence [5] are needed. Some research has focused on
autonomous cruise control for remotely piloted ships [6] and decision-making related to
maritime self-driving navigation [7] or autonomous underwater vehicles [8], but in this
paper, we focus on road transport, which is a much more challenging area for researchers
due to the complexity of traffic situations [9,10]. More and more researchers are taking up
research in this complex area.

There is research that looks at how comfort and trust ratings are influenced by certain
features of the fully automated, real-world, and shared vehicle experience [11]. There are a
number of lines of research that are exploring ways to support autonomous simulations
with better-quality map information [12]. There is research investigating fast and reliable
V2X communication between self-driving vehicles to implement a collective detection
service for traffic situations [13]. An important direction of the current research is the
recognition of road conditions for autonomous driving using LiDAR [14] and exploring the
links between sunny and adverse weather conditions for autonomous driving and driving
simulation [15].

Research that is more closely related to machine learning, such as autonomous race
driving with model predictive control [16] or cyber treats [17] and stability analysis for
autonomous vehicle navigation [18], is also very important too.
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Despite extensive research in the area of self-driving vehicles, we are still far from
having fully self-driving cars (SAE level 5) on the roads.

One reason for this is the difficulty of applying automotive safety standards to au-
tonomous driving systems [19,20].

So far, very few projects have addressed the issue of completeness in the analysis
of deep learning systems for sensing in highly autonomous vehicles [21,22]. The main
reason for this is that the complexity required to determine the completeness of the system
dynamics of a given traffic node could not be provided by conventional methods, and this
requires an extension of the operations [23–25].

The usability of highly and fully automated vehicles on the road has been one of the
most debated issues since the first demonstrations of this technology were made. To answer
this question, the following three basic dimensions need to be considered:

(1) The legal/regulatory dimension.
(2) The technical dimension (system design).
(3) The reasoning dimension (proof).

The first step is to define the scope and context of the automated driving system. The
basic function of the product is to transport a person or payload from point A to point B.
For a commercial product, the system must also perform other functions. These will not be
discussed further here.

The central issue for approval is whether the system meets all the requirements, in
particular, those of the legislator and those of society, such as ethical requirements.

The operational domain of the AD system is called the operational design domain,
ODD (SAE J3016). The ODD includes, among others, the geographical operational domain
or the weather conditions, i.e., in general, the environment in which the AD system can be
operated, according to the specification.

To gain an understanding of how an AD system works and functions, it is necessary
to model the system. In particular, a comparison with the human driver is useful, on the
one hand, to learn from the human information processing chain and to imitate or improve
suitable elements, and on the other hand, to be able to argue the suitability of the system
for public road traffic compared to a human driver to an approval authority.

Accident statistics show that accidents are caused by typical driving errors, the majority
of which can be divided into three categories:

1. Errors of perception (as a rule, a road user was not seen).
2. Errors of judgment (the prediction of the situation and the behavior of others or one’s

own movement does not correspond to reality).
3. Manual driving errors (the vehicle is not operated adequately).

Extensive technical systems have been developed in the past to compensate for these
driving errors, particularly for type 3. These include ESP, ABS, emergency brake assist
systems, etc. For the design of a technical system to solve the driving tasks of a human
driver, this results in a sequence of steps that include the following:

1. Object/environment perception.
2. Scene formation.
3. Prediction.
4. Generation and evaluation of alternative actions.
5. Action determination.
6. Conversion of action into a movement.
7. Re-evaluation of the influence of one’s own behavior on the environment.

The approval of an AD system for safe and, at the same time, economically attractive
use in public road traffic must satisfy the following several aspects:

1. The system must represent a real benefit or safety gain, according to the state of the art.
For RB, this must be achieved in the best possible way in accordance with RB/GF182.

2. The system must be approved by the authorities. To this end, there must be compre-
hensible and officially recognized evidence and reasoning that justifies the safety and
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regulatory compliance of the system and withstands a legal review of the engineering
duty of care at all times.

3. The system must be performant. The system must enable the transportation of persons
or goods in road traffic in such a way that the legitimate expectations of users and
operators are met.

The system must be able to move in road traffic without presenting an unacceptably
low benefit or even an unreasonable obstacle for users and other road users.

To achieve the legal and regulatory requirements, these are analyzed and systemati-
cally included as mandatory requirements in the specification of the system at the beginning
of the design phase. The approval regulations that are valid at the time are essential for
official approval. Their compliance must be demonstrated through suitable activities. As
things stand today, a sufficiently positive risk–benefit balance and proof of due diligence in
the design and development of the system will be key points.

In general, the duty of care includes consideration of the state of the art in science
and technology, consideration of the safety generally expected by the public, consideration
of reasonably foreseeable misuse, conformity of the product, and compliance with or
exceeding relevant norms and standards. For a pure black-box verification of this rate on
the basis of endurance driving, driving performance in the range of 6 × 107 h would be
required.

System probability and completeness are necessary for release processes. Therefore,
in this article, we introduce a fully provable and complete dynamical system for a traffic
node based on the Euler–Lagrange equations. A main prerequisite for the Euler–Lagrange
equations for AD systems is proof of a sufficiently low risk in relation to the limited release.
The fixed threshold value of 5 × 10−8 h−1 for the occurrence of an accident with the damage
class S1–3 serves as the starting point.

The task is therefore to develop a method, approximating the Euler–Lagrange system
or procedure, with which the residual risk that the occurrence rate does not meet the
required verification target can be estimated on the basis of significantly fewer endurance
driving hours.

One way to reduce the required endurance driving hours without losing confidence
in the mathematical verification of the targets is to use a higher information density than
the counting of accident damage events and to combine this with valid, justifiable models
of the system behavior. In addition, further qualitative, expert-based methods are used to
support the required assumptions.

The concept of entropy is used to approximate the Euler–Lagrange equations. And to
evaluate the entropy concept in embedded systems in real time, we introduce Kolmogorov
entropy.

The utilization of a higher information density can be achieved, for example, by mea-
suring the internal interfaces in the signal processing chain and the definition of criticality
metrics in combination with statistical extrapolation methods. A corresponding procedure
has already been successfully developed for a reduction in the scope of continuous runs
for the validation of AEB functions. Furthermore, there is the possibility of information
enrichment and system modeling within the framework of SiL simulations.

The addition of models (e.g., in the SiL simulation, but also implicitly in criticality
metrics) introduces assumptions whose validity can usually be justified but not proven.
For this reason, several options for residual risk estimation are described below, which are
based on different principles and checked against each other for plausibility.

After the basics of Euler–Lagrange equations and Kolmogorov entropy, we present
the completeness determination. Finally, we present our first results and conclusions.

2. Methods

In highly autonomous driving engineering practice, it is often necessary to create a
system that is provable. In addition to provability, the completeness of the system is also
important and should be treated together in practice.
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Generally, a provable system means that at all times of operation, it can be seen that
the system components are working as intended.

Provability means that, for a traffic node (with actors like cars and pedestrians), the
following are analyzed and quantified using the Euler–Lagrange system:

• The geometry;
• The traffic dynamics;
• The boundaries;
• The mathematical, algorithmic object detection of the node.

System provability and completeness are necessary for system release processes.
In this article, we introduce a method that defines the provable and complete descrip-

tive dynamical system for traffic nodes based on the thermodynamics of the Euler–Lagrange
system of a traffic node to allow for a full proof of the completeness of the descriptive
dynamics (detection software). Generally, research usually focuses on the proof of correct-
ness of a traffic node with environments, dynamics, and topology for a road junction (see
Figure 1) to prove the completeness and correctness of the description, whereby they try to
solve the analytical solution of Euler–Lagrange’s differential equation, taking into account
the geometrical, topological, physical, and dynamic parameters. The final task is to prove
the completeness of the transport node, i.e., that the dynamics of the transport node can be
described with the existing toolset (algorithms, hardware, and software). In this case, the
blue vehicle turns left in a large curve, while the other vehicles want to continue straight.
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Our ultimate goal could be to give a formalism on how to simply prove completeness
and correctness.

But the greatest problem in proving the completeness of the transport node is that
the resulting tool is not embedding compatible and the model used is linear, although
measurements and experience show that the dynamics of the traffic node are nonlinear
(not predictable). It is probably also known from our own experience that the behavior of
traffic participants is not always reducible to ground rules and is sometimes chaotic.

There is also a need to create methods that occur in real time, which is usually desirable
in most applications where computational time is critical. Consequently, in the embedded
microcontroller environment, there is a need for a more efficient and accurate method to
solve the completeness problem in the traffic node.

For the embedded microcontroller applications in the chassis control engineering
literature, the Euler–Lagrange method combined with the globally converged Newton–
Raphson method is well suited for this kind of problem for completeness and understanding
traffic node dynamics with different sensor sets, actors, and boundaries. The advantages of
this method lie in its fast convergence in the neighborhood of the optimal solution. The
solutions can also be obtained with extremely high precision.
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However, this method has two major disadvantages. First, it may converge to a local
optimum → it requires good initial guesses that lie within the domain of convergence.
This requirement is especially difficult because it involves the use of Lagrange multipliers,
whose physical meaning is nonintuitive.

In particular, we present here a new method (beyond the Euler–Lagrangian) based on
Kolmogorov entropy, i.e., the completeness of a node is not a partial differential equation
description of the energy of the transport participants and the initial and boundary condi-
tions of the system, but the information content of the renderer is analyzed in a real-time
embedded environment.

2.1. The Euler–Lagrange Method

The basis of the Euler–Lagrange method, according to which the completeness of the
system, is represented by the solvability of the system of partial differential equations [26]
for a given traffic node, as we mentioned, since the realization of solvability is sometimes
difficult, the study of Kolmogorov entropy is a prerequisite for the performance of the
analytical solution.

We emphasize, which is the most important innovation of this article, that solving
Euler–Lagrange equations in real time in embedded environments is not possible due to
the energy requirements. Hence, we use the entropy concept for approximation. And to
evaluate the entropy notion in embedded systems in real time, we introduce Kolmogorov
entropy, as it is the most obvious procedure to fully cover the logarithm function of the
classical Shannon definition.

In the Euler–Lagrange system, we approximate the dynamics of the traffic node with
the variational principles, which apparently had a large impact on vehicle dynamics, ap-
proaching the various chapters on a single base. In many fields of autonomous driving, the
basic equation of a physical and open-world principle can be discussed with “elegant sim-
plicity” as the consequence of an extremal principle. However, several authors have already
pointed out that this program cannot be performed on an “absolute general” basis [1–4].
Even in the most completely developed classical vehicle mechanics, all phenomena cannot
be described by equations of motion derived from the Hamilton principle.

Although, according to their opinion, many variational principles can be created to
a differential equation, creating variational principles is not a useless activity from our
point of view, since not even vehicle mechanics easily leads to the solving of Newtonian
equations and the solution, but using other principles is more effective (e.g., the analysis of
impacts).

In the Euler–Lagrange system, the derivation of usual autonomous driving equations
for release issues in an open-world context from Lagrange’s principle will be addressed.
The usual solution to autonomous driving problems involves the balance equations of
mass, momentum, and angular momentum, in addition to the open-world environmental
equation, an equation system that considers the initial and boundary conditions. It is a
remarkable fact that the balance equation of kinetic and potential energy, which are the
only mechanical energy forms in autonomous driving nomenclatures, is not necessary to
the solution. Ziegler [27] also calls our attention to the significant differences between the
momentum equations and the energy equations:

There is an essential difference between the momentum theorem demand and the
energy theorem:

In the momentum theorems, the internal forces are absent;
In the energy theorem, they play an essential role (consideration of internal forces can
be important, for example, to take into account hardware elements in the autonomous
driving).

However, it is found that the derivation of formalism generally does not require
kinetic and potential energy, and the number of elements, only the Lagrange density, but
the density in the final equation, can be applied to both thermodynamic and kinetic and
potential for the Schrödinger equation, i.e., systems used in self-driving automation.
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It is very important that the trajectories represent “what happened at the node”,
and that this could be characterized as the descriptive dynamics of the traffic node. The
descriptive means that we want to test software for object detection in traffic dynamics.

In highly automated driving engineering practice, it is often necessary to create a
system that is fully demonstrable or provable. In addition to provability, the completeness
of the system is also important.

In general, the duty of care includes consideration of the state of the art in science
and technology, consideration of the safety generally expected by the public, consideration
of reasonably foreseeable misuse, conformity of the product, and compliance with or
exceeding relevant norms and standards. → The system provability and completeness are
necessary for release processes. Therefore, in this article, we introduce a fully provable and
complete dynamical system for a traffic node based on the Euler–Lagrange equations.

A main prerequisite for the Euler–Lagrange equations for AD systems is proof of a suffi-
ciently low risk in relation to the limited release. The fixed threshold value of 5 × 10−8 h−1 for
the occurrence of an accident with the damage class S1–3 serves as the starting point.

For a pure black-box verification of this rate on the basis of endurance driving, driving
performance in the range of 6 × 107 h would be required.

The task is therefore to develop a method, approximating the Euler–Lagrange system
or procedure, with which the residual risk that the occurrence rate does not meet the
required verification target can be estimated on the basis of significantly fewer endurance
driving hours.

One way to reduce the required endurance driving hours without losing confidence
in the statistical verification of the targets is to use a higher information density than the
counting of accident damage events and to combine this with valid, justifiable models of
the system behavior. In addition, further qualitative, expert-based methods are used to
support the required assumptions. The utilization of a higher information density can be
achieved, for example, by measuring internal interfaces in the signal processing chain and
the definition of criticality metrics (see Section 3.2) in combination with statistical extrap-
olation methods. A corresponding procedure has already been successfully developed
for a reduction in the scope of continuous runs for the validation of AEB functions. Fur-
thermore, there is the possibility of information enrichment and system modeling within
the framework of SiL simulations. The addition of models (e.g., in the SiL simulation but
also implicitly in criticality metrics) introduces assumptions whose validity can usually be
justified but not proven. For this reason, several options for residual risk estimation are
described below, which are based on different principles and checked against each other
for plausibility.

Fully provable means, for a traffic node, that the geometry, the traffic dynamics, the
boundaries, and the mathematical, algorithmic detection of the node are analyzed and
quantified using Lagrangian densities. The dynamics of a transport node are determined
by discretizing the node and recording the movements of each transport participant in a
“state–next state” system.

For product owners in software engineering and system engineering, the procedure
may be important to design a system where completeness and provability are ensured from
the outset.

As part of the highly autonomous vehicle project at Óbuda University, we analyze
the safety and reliability of the system in a separate project based on the Euler–Lagrange
system. The goals of this project were as follows:

1. To determine completeness based on the Euler–Lagrange system.
2. To create a topological model for a real traffic node.
3. To collect traffic data on the intersection.
4. To analyze the completeness of the traffic node using the Euler–Lagrange system,

Determining the completeness of a system describing the descriptive dynamics of
the detectability of a traffic node based on the entropy analysis of the solvability of Euler–
Lagrange equations is an important application area.
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The main task of this article is to define a method to create and design a mobility
solution system that is completely (releasable in the open-world context) based on the dy-
namical Lagrangians, boundary conditions, and the experience of the detection knowledge.

The advantages of the method are as follows:

1. The analysis of entropy is equivalent to examining the solvability of the Euler–
Lagrange equation, which is a mainstage of the completeness analysis of traffic node
descriptive dynamics (object detection software).

2. The method is valid for an unspecified number of participants.
3. Analyzing entropy is much simpler than other methods for examining the analytical

solutions of the Euler–Lagrange equation.
4. The method helps test a system that is consistent, complete, and releasable.
5. The previous know-how, which means detection, perception, classification, etc., can

be integrated into the entropy analysis system.
6. The system can be easily expanded (more cars, pedestrians, boundaries, sensor sets

for the detection, algorithmic experience, and different numerical methods (neural
nets and moving averages)).

7. The procedure can be used not only to check the completeness of the systems but also
in the design, as we can change and prescribe the condition of the elements involved
in the traffic situation until the proportion of attractor areas is negligible and the
system has a dominant attractor.

8. When comparing different traffic nodes, analyzing via entropy is simple and has
advantages in an embedded real-time environment.

9. The method can also be applied to embedded real-time systems.

The Euler–Lagrange Equations

The intent of this section is to give a brief look at the idea of Euler–Lagrange problems
and to give enough information to allow us to conduct some basic partial differential
equations in the next chapter. Now, with that out of the way, the first thing that we need
to do is define just what we mean by a Euler–Lagrange problem. With the initial value
problems, we had a differential equation, and we specified the value of the solution and an
appropriate number of derivatives at the same point (collectively called initial conditions).
For instance, for a second-order differential equation, the initial conditions are (1) as follows:

y(t0) = y0 y′(t0) = y′0 (1)

With Euler–Lagrange problems, we will have a differential equation and we will spec-
ify the function and/or derivatives at different points, which we will call Euler–Lagranges.
For second-order differential equations, which we will be looking at pretty much exclusively
here, any of the following can and will be used for the boundary conditions (2)–(5):

y(x0) = y0 y(x1) = y1 (2)

y′(x0) = y0 y′(x1) = y1 (3)

y′(x0) = y0 y(x1) = y1 (4)

y(x0) = y0 y′(x1) = y1 (5)

As mentioned above, we will be looking pretty much exclusively at Euler–Lagrange
second-order differential equations. We will also be restricting ourselves down to linear
differential equations. So, for the purposes of our discussion here, we will be looking
almost exclusively at differential equations in the form (6),

y′′ + p(x)y′ + q(x)y = g(x) (6)
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Along with one of the sets of boundary conditions given in 1–4. We will, on occasion,
look at some different boundary conditions, but the Euler–Lagrange differential equation
will always be one that can be written in this form. As we will soon see, much of what
we know about initial value problems will not hold here. We can, of course, solve 5,
provided the coefficients are constant and for a few cases in which they are not. None of
that will change. The changes (and perhaps the problems) arise when we move from initial
conditions to boundary conditions. A differential equation is homogeneous if g(x) = 0 for
all x. Here, we will say that a Euler–Lagrange problem is homogeneous if, in addition to
g(x) = 0, we also have y0 = 0 and y1 = 0 (regardless of the boundary conditions that we
use). If any of these are not zero, we will call the Euler–Lagrange nonhomogeneous. It is
important to now remember that when we say homogeneous (or nonhomogeneous), we are
saying something not only about the differential equation itself but also about the boundary
conditions as well. The change that we are going to see here comes when we go to solve
the Euler–Lagrange problem. When solving linear initial value problems, a unique solution
will be guaranteed under very mild conditions. We only looked at this idea for first-order
IVPs, but the idea does extend to higher-order IVPs. With Euler–Lagrange problems, we
will often either have no solution or many infinite solutions, even for very nice differential
equations that would yield a unique solution if we had the initial conditions instead of
boundary conditions. Before we get into solving some of these, let us next address the
question of why we are even talking about them in the first place. As we will see in the
next chapter, in the process of solving some partial differential equations, we will run into
Euler–Lagrange problems that will need to be solved as well. In fact, a large part of the
solution process will have to deal with the solution to the BVP. In these cases, the boundary
conditions will represent things like the temperature at either end of a bar or the heat flow
into/out of either end of a bar. Or maybe they will represent the location of the ends of a
vibrating string. So, for the boundary conditions, there will be conditions on the boundary
of some processes. So, with some of the basic stuff out of the way, let us find some solutions
to a few Euler–Lagrange problems. It must be noted as well that there really is not anything
new here yet. We know how to solve the differential equation, and we know how to find the
constants by applying the conditions. The only difference is that here we will be applying
boundary conditions instead of initial conditions.

One excellent way to ‘analytically’ solve the Euler–Lagrange differential equation
in real time in an embedded environment is the entropy method. The essence of this
method is to represent the completeness or incompleteness of the system by the changes in
the value of an indicator (in this case, Kolmogorov entropy) interpreted in the system of
equations [28,29].

It might look odd that a powerful concept. such as entropy, whose importance is
extended but not limited to mechanics, thermodynamics, information theory, and geo-
statistics, has not found an essential role in other disciplines, like, for instance, the systems
theory field. Only a few attempts have been made [30,31] to introduce entropy-based tools
into control theory. In this paper, an entropy-based approach, which is derived from the
theory of the thermodynamics of curves, is suggested and adapted for systems theory
applications [32]. A new entropic indicator is introduced with interesting properties. It is
different from other known algorithms used to classify nonlinear systems or attracting sets,
like Lyapunov exponents or dimension-like concepts [33]. The classification of nonlinear
systems is somehow a tough subject, and there is not yet a systematic approach to tackle it,
at least to the authors’ knowledge. Some attempts can be found where invariant moments
of distribution of particles undergoing a Hamiltonian system are investigated [34,35], and
where the classification of nonlinear stochastic systems is performed using input–output
measurements. In this paper, a new indicator is proposed that has the property of providing
a unitary value whenever applied to linear systems. Moreover, the proposed indicator
does not depend on stability issues, and it is generally able to describe the disorder or
irregularity in the evolution of a dynamic system. By irregularity, this means the distance
from an ordered sequence of points along a line. The proposed indicator can be used within
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any dynamic system; differences arise when the steady state is an equilibrium point, the
attracting set is a periodic sequence, or it presents chaotic behavior.

The next section of our article is dedicated to a review of the entropy of curves, and
basic concepts from the thermodynamics of curves are recalled. We present how the entropy
indicator has been developed within a system theory framework, and the most important
properties of the proposed algorithm are proved.

2.2. Kolmogorov Entropy Method

As mentioned above, in this project, we want to formulate a complete description
of the traffic situation in real time. To do this, while keeping the basics, it is necessary
to revolutionize the elaboration mechanism to implement the system on the embedded
microcontroller.

This is achieved by introducing Kolmogorov entropy. The analytical solution of the
Euler–Lagrange system for a traffic node could be described (7)

{Yn}, n = 1, . . ., N (7)

and can be unfolded in a multi-dimensional effective phase space using time delay coordi-
nates (t is a delay time (embedding)) (8).

Yn = (Yn−(m−1)t, . . ., Yn) (8)

An important observation is that the Euler–Lagrange equation always has a {Yn}
solution, but a distinction must be made between the solutions that belong to the analyt-
ical solutions and those that do not, i.e., in which case we can make statements for the
completeness of the node.

If {Yn} is an analytical solution of a Euler–Lagrange dynamical system for a given
traffic scenario, it can be shown under certain genericity conditions that the reconstructed
point set is a one-to-one image of the original trajectory of the traffic node dynamical
system, where completeness and provability are to be defined.

In our article, to test the comparability of the traffic node, we use Kolmogorov en-
tropy [36], which is an important characteristic describing the degree of solvability of the
Euler–Lagrange system [37]. The entropy gives the average rate of information loss about
the position of the phase point on the attractor.

In our article, we are looking for the traffic node, which is completely provable and
consistent if (9)

0 < K < ∞ (9)

Incidentally, our entropy method can also be used to characterize the existing traffic
node state because of the following:

• K is infinite in a random traffic node dynamics system -> the system is not complete.
• K = 0 in a chaotic traffic node dynamics system -> the system is not complete.

The Kolmogorov entropy Kq can be defined as follows; -> Let Y(t) and t > 0 be the
trajectory of the Euler–Lagrange equation for a traffic node in an n-dimensional phase space
sampled at discrete time intervals ∆t. Let us divide the phase space into the n-dimensional
hypercubes of side r. Let Pi1,i2,· · · ,iN be the joint probability that the trajectory Y(t) on the
Euler–Lagrange equation subsequently visits cubes i1, i2, · · · , and iN at times t = ∆t, t = 2∆t,
· · · , and N∆t.

The Kolmogorov entropy Is then (1′′)

Kq = −lim
r→0

lim
∆t→0

lim
N→∞

1
N∆t

1
q − 1

ln ∑
i1i2 ...iN

Pq
i1i2 ...iN

(10)
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In our article, we use the K2 form (11)

K2 ∼ lim
m→∞

lim
r→0

Km
2 (r), (11)

where (12)

Km
2 =

1
k∆t

ln
Cm(r)

Cm+k(r)
(12)

and k is a sufficiently small integer number and m is the embedding dimension. The
saturation value of Km

2 as m increases is regarded as K2 and Cm(r), and the correlations
integral defined by (13)

Cm(i, r) =
1

M − 1

M

∑
j=1
i ̸=j

θ
(
r −

∥∥Yi − Yj
∥∥ ) (13)

where M = N − (m − 1)/∆t and N is the number of data points in the Euler–Lagrange
trajectory. θ(x) is a Heaviside step function defined by (14)

θ(x) =
{

1 f or x ≥ 0
0 f or x < 0

}
(14)

In the following, we show how we can use entropy to prove the completeness of a
transport node.

3. Results
3.1. The Determining the Completeness

There is a certain degree of uncertainty in estimating the entropy from Euler–Lagrange
trajectories. In our article, in order to reduce fluctuations and improve the statistics, the
formula, Km

2 is averaged over five values computed for different embedding dimensions.
This yields (15)

Km
2 (r) =

1
L

L

∑
l=1

1
2l∆t

ln
Cm−2l(r)

Cm(r)
, L = 5 (15)

The dependence of Km
2 on the embedding dimension m is approximated by means of

least-squares fit by the function (16)

f (x) = a +
b
xc (16)

This function converges to a for c > 0 and x → ∞. Therefore, (17)

Km
2 (r) = K2(r) +

b
mc , c > 0 (17)

b and c are real parameters, m is the embedding dimension, and K2(r) is the entropy,
which depends on the selection of the scaling region. Parameters a, b, and c can be deter-
mined from real traffic node dynamic experiments.

The entropy-based value of an error-doubling time is the most important parameter
analyzing the solvability of the Euler–Lagrange system and the completeness of the traffic
node -> the entropy-based error-doubling time is defined as follows (18):

T2 =
ln2
K2

< 1.3 → complete (18)

If the entropy-based error-doubling time of the Euler–Lagrange trajectory of a given
traffic node with Lagrangians of the following is less than 1.3 → the system is complete
and provable:
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− The geometry.
− The traffic dynamics.
− The boundaries.
− The mathematical and algorithmic detection of the node.

In Figure 2, the flowchart of the method can be seen.
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The steps are as follows:

A: The completeness of the descriptive dynamics of the traffic node is to be determined.
B: Euler–Lagrange trajectories solution in a phase space.
C: For a given embedding dimension m the entropy if L = 5.
D: Decision, if complete or not, based on the error doubling time.

3.2. Real Measurements

In the project on self-driving cars at the University of Óbuda, we captured a variety of
convergence situations that provide a broad cross-section of the different traffic dynamics,
the characterization of the completeness of which in the embedded environment and in
real time is of utmost importance.

Table 1 presents a description of the experiments used to describe the completeness of
transport systems, a description of the sensor set, a description of the location and time of
the experiments, and a summary of the results.

Figure 3 shows the traffic scenarios recorded with a video camera and a corner radar set.
The task is to determine the completeness of the description of the traffic situation dynamics
using Kolmogorov entropy (Panasonic Automotive Systems Camera, Langen Germany).

Figure 4 shows the plots of the Kolmogorov entropy variation with respect to the six
experiments performed. The system is considered complete, i.e., perfectly described by the
sensors, if the entropy is at the upper (near 0) position. Outliers indicate that at a given
moment, the system cannot give a clear answer about the traffic situation based on the
video image. In this case, another sensor needs to be activated.
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Table 1. The table characterizes and describes the experiments carried out. Here, we also present the
results of the Kolmogorov entropy-based teleconditioning, i.e., whether the sensor set is sufficient to
obtain the system’s completeness in a given traffic situation.

Experiment Who Sensorset Time Results of the Entropy Method

1. Urban traffic Budapest, Hungary

Panasonic Video Camera
(Panasonic Automotive

Systems Camera, Langen
Germany), 4 HTU Corner

Radar

June 2023

The many outliers (incomplete) in
urban traffic show that the entropy

method is an excellent way to
demonstrate the inadequacy of the
sensor set. In this case, many more

sensors would be needed.

2. Urban Motorway Budapest, Hungary Panasonic Video Camera, 4
HTU Corner Radar August 2023

On the urban motorway, we can
characterise the completeness of the

system in terms of entropy in the
same way as for urban traffic.

3. Highway M1 highway near Budaörs
Hungary

Panasonic Video Camera, 4
HTU Corner Radar July 2023

Entropy-based completeness testing
for motorways is of limited use

because of all the outliers.

4. Rural minor road Füle, Near Polgárdi
Hungary

Panasonic Video Camera, 4
HTU Corner Radar June 2023

On the rural minor road, the system’s
completeness can be fully guaranteed
by the Panasonic video sensor set, as

the entropy shows (no outliers)

5. Montain Road Gödöllő,
Hungary

Panasonic Video Camera, 4
HTU Corner Radar

August
2023

for mountain road at low speeds, the
system completeness, based on

Kolmogorov entropy, is adequate.

6. Working on the Highway M1 highway near Tata
Hungary

Panasonic Video Camera, 4
HTU Corner Radar

June
2023

the low speed and lack of complexity
before working on the motorway

makes the system complete, as
shown by the entropyAppl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18 
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The system is considered complete, i.e., perfectly described by the sensors, if the
entropy is at the upper (near 0) position. Outliers indicate that at a given moment, the
system cannot give a clear answer about the traffic situation based on the video image. In
this case, another sensor needs to be activated.

The main problem that we have addressed in this paper is to develop a measure of
the completeness and provability of a given AD system in real-time and under embedded
conditions. For this purpose, we have used Euler–Lagrange equations as the mathematical
basis, which cannot be solved in real time, and an embedded system without large energy
consumption.

The Euler–Lagrange equations are approximated by Kolmogorov entropy. Figures 4–9
show time on the horizontal axis and entropy on the vertical axis. This entropy can be seen,
for example, on the interior screen of the AD car, i.e., the L3–L4 driver can see the behavior
of the system in real time.

What does the figure mean? The greater the outlier content of the Kolmogorov entropy,
the more likely the system will remain chaotic and uncertain going forward, because the
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sensors do not provide enough information (their entropy changes suddenly) to perform
the perception, and so an additional sensor has to be switched on. The figures show a
typical entropy pattern, as indicated in Table 1, when it is necessary to consider switching
on an additional sensor, which of course, results in an increase in the energy demand.

4. Conclusions

The main task of the article was to define a method to test a system that is provable
and complete (releasable in the open-world context) based on the Kolmogorov entropy
analysis of the Euler–Lagrange equation, boundary conditions, and the experience of the
detection knowledge.

The main issue of the article is as follows:
The completeness of the detection system describing a traffic node could be realized if

the entropy-based error-doubling time of the trajectories of the Euler–Lagrange equation,
interpreted at the transport junction, is less than 1.3. The error doubling is defined as
follows (19):

T2 =
ln2
K2

< 1.3 (19)

where K2 is the Kolmogorov entropy of the trajectory. The analysis of the error doubling is
equivalent to testing the solvability of the Euler–Lagrange system.

The advantages of the method are as follows:

1. It helps the designer build a system that is consistent, complete, and releasable.
2. Due to the application of the variation principle, the created system becomes extreme,

i.e., we can find the minimum or maximum of all existing systems.
3. The previous know-how, which means detection, perception, classification, etc., can

be integrated into the system.
4. The system can be easily expanded (more cars, boundaries, sensor sets for detection,

and the complexity of the node can be changed), and then all we have to do is solve
the partial differential equation to see whether the completeness or provability of the
system exists. If not, what decisions need to be made to ensure completeness.

We have presented tests of extensive real traffic scenarios ((1) urban traffic, (2) urban
highway, (3) freeway, (4) minor road, (5) mountain road, and (6) construction area on a
highway) and found that the Kolmogorov entropy is an excellent tool to characterize the
completeness of the traffic situation in real-time embedded environments. The outliers
observed in Figure 4 show that in this case, the information content of the system is not
sufficient, and another additional sensor needs to be activated.

The next steps in modeling are as follows:

1. Recording the traffic dynamics of the selected traffic node.
2. Constructing the Euler –Lagrange system and using it to calculate the completeness.
3. Creating a small-scale model and sensor set and performing traffic experiments.
4. Comparing and scaling the results.
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