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Abstract: After many years of exploitation in the petroleum field, most of the oil fields are in advanced
stages of development, with a strong non-homogeneity of the reservoir, more residual oil, and low
recovery efficiency. Therefore, research on various methods has been carried out by scholars to
improve the rate of recovery and to understand the distribution pattern of residual oil in reservoirs.
Among the whole clastic reservoirs, fluvial reservoirs occupy a large proportion, so fluvial reservoirs
will be the priority for future reservoir research in China. The key to the fine characterization of
fluvial-phase reservoirs is to able to reproduce the continuous curvature of the channel, and one
important parameter is the width of the channel. The width of the channel sand body is one of
the key factors in designing well programs, and accurately identifying the channel boundary is the
key to identifying a single channel. Traditional research methods cannot accurately characterize the
continuous bending and oscillating morphology of underwater diversion channels, and it is not easy
to quantitatively characterize the spatial structure. Therefore, in this paper, a deep learning method
is applied to quantitatively identify the width of a single channel within an underwater diversion
channel at the delta front edge. Based on the sedimentary background of the block and modern
depositional studies, we established candidate models for underwater diversion channels with
channel widths of 100, 130, 160, 190, 220, and 250 m based on target simulation and human–computer
interactions. The results show that when the width of the underwater diversion channel is 160 m,
it has the highest matching rate with the conditional data and corresponds to the actual situation.
Therefore, it can be determined that it is the common width of underwater diversion channel in
the study area. And it is shown that the method can accurately identify the width of underwater
diversion channels, and the results provide a basis for reservoir fine characterization studies.

Keywords: neural network; underwater distributary channel; channel width; quantitative evaluation

1. Introduction

Delta depositional systems are widely developed in fault basins, providing favorable
conditions for hydrocarbon generation, accumulation, and traps, and are natural places of
oil and gas enrichment [1]. The delta front reservoir is a major reservoir type in China. The
frequent swing of underwater distributary channels gradually increases the width of sand
bodies, forming complex channel sand bodies, which is the best reservoir group of delta
front [2]. Although the features of the distribution of the composite channels reflect the
macro-heterogeneity of the reservoir to some extent, studies on the fine-scale heterogeneity
of single-channel sand body reservoirs are insufficient. Due to the heterogeneity of single-
channel sand reservoirs and the existence of interlayers, underground fluid flow is blocked
by vertical and lateral barriers, resulting in the enrichment of the remaining oil in composite
sand [3–5]. Nowadays, most oilfields have entered the advanced stage of exploitation,
with a low rate of recovery and a strong non-homogeneity of reservoirs, so the study of
residual oil distribution and the enhancement of recovery has become a common concern
for all oilfields.
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Understanding how the residual oil is distributed is key to improving recovery. Its
controlling factors include two main aspects, development factors and geological factors.
The geological factors are manifested in reservoir heterogeneity. In braided river delta
sedimentary systems, sand deposits in underwater distributary channels are the main
type, and are characterized by channel curvature, a continuous swing, and rapid lateral
change [6]. The description of channel width constitutes a difficulty in the study of this
type of reservoir configuration [7]. Therefore, it is necessary to start from the identification
of a single channel, and, step by step, to dissect and analyze the composite channel sand
body heterogeneity, so as to have a higher prediction of the residual oil distribution and
improve the extraction efficiency [8–10]. The width of the channel sand body is one of the
key factors to design the well location scheme, and the key to identify a single channel is to
accurately identify the channel boundary. Therefore, in order to identify a single channel,
the width of the channel must be determined.

At present, various methods have been used to interpret the channel scale. Liu Huiy-
ing used sedimentological theory, combined with the core information and well-logging
results, and quantitatively identified a single channel sand body in a submerged catchment
channel along the fan delta front [11]. Wang Nan used a multi-parameter analysis method
to conduct anatomical analysis on the single sand body configuration of the underwater
distributary channel belt of the delta front [12]. By using physical simulation and changing
control factors, Wei Kangqiang studied the development process of underwater distributary
channels in lake deltas and systematically analyzed the scale characteristics of underwater
distributary channels [13]. Ma Shizhong conducted an in-depth analysis of modern un-
derwater distributary channels by using a remote sensing information image method, and
discussed their formation conditions and channel characteristics [14]. Xiang Chuangang
used multi-point geostatistics to simulate the underwater diversion channels along the
delta force, and calculated the channel drilling rate to determine the channel width [15].
Although these methods have made a certain contribution to the identification of the river
size, this kind of river width based on manual de-identification is mostly subjective, and
therefore these methods can only determine a general range, which is more dependent on
the researcher’s empirical knowledge, and cannot accurately and quickly identify the river
size information.

With the rapid development of deep learning, it has become a hot research topic
in recent years to apply deep learning to the reservoir modelling field. For example,
Adel used the ANN method for a Sequoia gas field by combining deep learning with
reservoir feature prediction to predict reservoir petrophysical properties based on seismic
amplitude data [16]. Pallabi combined deep learning with reservoir characterization to
study the evolution of ANN in reservoir characterization over time, providing a basis for
the intelligent interpretation of reservoirs in the future [17].

Deep learning has a strong nonlinear analysis ability, and the biggest advantage
of this method is that it can extract key features through the independent learning of a
large number of sample data, which can obtain a more accurate recognition effect [18,19].
Theoretically, the process of identifying the model with the highest match to the conditioned
data is essentially a nonlinear problem of quantitatively evaluating the spatial structure
characteristics of discrete distribution points’ similarity to regular gridded data. Therefore,
we apply deep learning methods to identify the channel size, generate multiple candidate
models with different channel widths through multi-point geostatistical methods, and then
use deep learning methods to select the model that best matches the channel width in the
study area from the multiple candidate models to quantitatively study the channel width
in that area.

This method, combined with deep learning, is able to accurately identify the most
suitable single channel width model. The results are more objective as they do not rely on
subjective judgement. Not only can it solve the problem of traditional methods that can
only determine the range but not identify the most accurate width, but can also solve the
problem of high time-consumption in the previous methods.
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2. Channel width Quantization Method Based on Deep Learning
2.1. Deep Convolutional Neural Networks

A machine learning algorithm has the advantages of automation and high accuracy.
Since entering the 21st century, machine learning has developed explosively, and deep
learning is one of the most important algorithms, and the main driving force for the speedy
advances in machine learning in recent years. It has been applied to various fields, such
as image recognition, speech processing, automobile manufacturing, and engineering
construction [20–24]. Nowadays, it is difficult to find fields unrelated to deep learning.
Combining deep learning with traditional theoretical research in reservoir modeling and
oil and gas prediction can often produce better results; examples include CNN-based
seismic log interpretation [25,26], and a GAN-based approach to reservoir geological
modelling [27,28]. The biggest advantage of deep learning is that by providing it with a
large amount of sample data, it can automatically learn to extract the key features, and the
identification effect is more accurate than that of traditional indicators.

Deep convolutional neural networks (CNNs) are feed-forward neural networks that
contain convolutional computation and have a deep structure. Common deep convolutional
neural network models are AlexNet, VGG-Net, ResNet, and GooLeNet. The Inception-
Resnet-v2 model based on GooLeNet introduces the residual network jump connection
on the basis of Inception V3 [29], which integrates the “residual” structure of Resnet into
the Inception structural module to optimize the convergence efficiency of the network
and avoid the gradient caused by network deepening. Inception-Resnet-v2 extracts the
features of the input layer image through the process of convolution, pooling, and tensor
connection, and finally uses the SoftMax classifier to identify the features and predict the
probability that the image belongs to a category [30].

Assuming the number of input images is N. Define the input image as xi, its category
label as yi, and the total number of categories output by the model as m (m ≥ 2). Assume
that the probability of the function fθ(xi) corresponding to the category is P(yi = j|xi). Then,
the function is expressed as Equation (1).

fθ(xi) =


P(yi = 1|xi; θ)

P(yi = 2|xi; θ)
...

P(yi = m|xi; θ)

 =
1

∑m
j=1 eθT

j xi


eθT

1 xi

eθT
2 xi

...
eθT

mxi

 (1)

where 1

∑m
j=1 e

θT
j xi

denotes the normalisation of the probability distribution, and where the

parameter matrix θ has a dimension 1792 × m as in Equation (2).

θ =

θ11 · · · θm1
...

. . .
...

θ1n · · · θmn

 (2)

where n = 1792. Each column parameter of matrix θ is involved in the prediction of each
category, and the loss function is defined as:

J(x, y, θ) = − 1
N

N

∑
j=1

m

∑
j=1

1{yi = j}log2

 eθT
j xi

∑m
j=1 eθT

j xi

 (3)

where 1{yi = j} is an indicative function, and its value is as follows:

1(yi = j) =
{

1 yi = j
0 yi ̸= j

(4)
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The random gradient descent method is used to minimize the error function and
obtain the final weight values. Practical applications of deep convolutional neural networks
are usually implemented using transfer learning. Transfer learning involves migrating
the parameters of a trained model (pre-trained model) to a new model to help train the
new model. The basic idea is to use pre-training, take the weight values trained on an
existing large dataset as the initialization value, and transfer it to the dataset of the actual
problem for fine-tuning the training. Transfer learning avoids the drawbacks of learning
from zero training and speeds up the learning efficiency of the optimized model by sharing
the already learned model parameters with the new model.

2.2. Methodology

We propose a preference method that combines CNN with channel width modelling.
The basic idea is shown in Figure 1. The conditional data C of the actual workspace include
k data points, and the channel models A and B are the models to be selected. To select the
model that most closely matches C from A and B, we first sample n times from model A
and model B, and randomly select k points each time. The set of sampling points is denoted
as Ai and Bi, where I ∈ {1, . . ., n}. Then, we add tags to the sampling point sets Ai and
Bi, the discrete point set from model A labeled “A”, and by the same token, the discrete
points from model B labeled “B”. Both sampling point sets Ai and Bi are taken as training
sets, and the deep convolutional neural network Inception-Resnet-v2 is used for migration
training. Finally, using the trained convolutional network model, the river model A or B
that most closely matches the conditional data C is identified.
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Figure 1. Channel width model optimization process based on convolutional neural network approach.

Based on the basic idea of the method, the calculation flow is as follows:

(1) Input the conditional data C of the actual work area, which is essentially a set contain-
ing K points.

(2) Input M candidate models; Wm represents the m candidate model, where m = 1, . . ., M.
(3) Define the number of times to sample from the candidate model as n.
(4) Define the training dataset PS for convolutional deep learning.
(5) Select k points randomly from Wm to get the point set Pm(i).
(6) Add the label {m} to Pm(i) as the identity of the ith candidate model Wm.
(7) Add Pm(i) to PS.
(8) Increase i by 1 each time; if i ≤ n, go to steps (5), (6), (7); otherwise, go to step (9).
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(9) Increase m by 1 each time; if m ≤ M then go to step (8); otherwise, go to step (10).
(10) Training the PS using CNN based on migration learning, to obtain the trained

model CNNPS.
(11) Using CNNPS to test C, identify the model that best matches C from M candidate models.

2.3. Methodology Testing

Fundamental to the search for the candidate model with the closest match to the
conditioned data is the ability to quantitatively evaluate the similarity of spatial features
between the discrete points and the grid. The candidate model does not need to satisfy the
conditioned data as an a priori geological model, but must have spatial features similar
to the conditioned data, such as the conditional data for the stable river phase, and the
non-stationary sector model is obviously not the best option. This means that the more
similar the spatial features of the candidate model are to the conditional data, the more
similar the spatial features of the random sample based on the candidate model are to
the conditional data. Therefore, during the test, except for the parameter of the channel
width, the other parameters were kept unchanged to ensure the spatial similarity between
the candidate model and the conditional data, and the results were only affected by the
channel width parameter.

Figure 2 shows the models of four sedimentary facies with different channel widths.
The parameters of the generated channel sand body model are shown in Table 1, with
an NTG of 50%, an amplitude of 150 m, and a wavelength of 320 m; the width of the
channel sand bodies follows the triangular distribution shown in Table 2. The channels
of models A and E are densely distributed, and the width of each channel is relatively
narrow. The channel widths of models B and F are medium. Models C and G have wider
channel widths, and models D and H have the widest channel widths. Models E, F, G, and
H are taken as virtual workspaces, and 1% of the data are randomly extracted from the
virtual workspaces as conditional data. Then, 1% data points are randomly selected from
candidate models A, B, C, and D, respectively, and each model is required to be sampled
100 times. Therefore, there are 400 random samples in the four models and every sample is
assigned a label to recognize which candidate model it is part of. The labeling rule is that
samples of the same model have the same label. Then, all 400 samples are trained in deep
learning to obtain a deep convolutional network model.
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Table 1. Parameter values for generating candidate models of channel sand bodies.

Channel
Model NTG (%) Amplitude (m) Wavelength (m) Width (m) Thickness (m)

Models A, E 50 150 320 50 1
Models B, F 50 150 320 100 1
Models C, G 50 150 320 150 1
Models D, H 50 150 320 200 1

Table 2. Triangular distribution of width values for four channel sand body candidate models.

Channel Model Min. Width (m) Mean Width (m) Max. Width (m)

Models A, E 40 50 60
Models B, F 90 100 110
Models C, G 140 150 160
Models D, H 190 200 210

After testing, when the sampling ratio reaches more than 4%, the recognition accuracy
is better, so the sampling ratio of 5% is used for testing. The test results are shown in Table 3
and Figure 3. The accuracies of conditioned data cd_W1, cd-W2, and cd-W4, recognized as
the corresponding candidate models, are above 95%, and the recognition rate of cd_W1 and
cd-W4 is close to 100%. Meanwhile, the accuracy of conditioned data cd-W3, recognized
as the middle channel model, is above 90%, so the test shows that the deep convolutional
neural network is more sensitive to the width information.

Table 3. Recognition rates of four different channel widths.

Recognition Rate 50 m Channel 100 m Channel 150 m Channel 200 m Channel

cd_W1 99% 1% 0 0
cd_W2 0% 96% 2% 2%
cd_W3 0 7% 94% 1%
cd_W4 0 0 1% 99%
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Unlike the 2D case, when preferring 3D models based on well data, the horizontal
2D slices of the models are used as the input sample data for training the convolutional
neural network, and similarly, the test data are also the horizontal 2D slices of the well
data. The calculation is performed layer by layer, all the sliced layer identification results
are counted, and the candidate model with the highest statistical frequency is taken as the
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final preferred result. As shown in Figure 4, the channel widths of models 1, 2, 3, and 4
differ significantly, and the sand body widths obey the triangular distribution in Table 1.
Models 5, 6, 7, and 8 are used as virtual work zones, and data with a well density of 1% are
randomly selected from the virtual work zones as conditioned data, which are used to test
the model preference performance.
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Through 50 tests, the results are shown in Table 4 and Figure 5. According to the results,
the recognition rate of the 3D channel model with 50 m width is the highest, followed by
the channel model with 100 m width, and both of them have a recognition rate of more
than 90%. The recognition rate of the 3D channel width models with 150 m and 200 m is
poorer, and is in the range of 80–90%. It can be seen that, compared with the 2D model, the
method has a lower accuracy of the model training in the 3D space, but it also reaches a
recognition rate of 80%. It is more sensitive to the width information.
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Table 4. Recognition rates for four different channel width models.

Recognition Rate 50 m Channel 100 m Channel 150 m Channel 200 m Channel

cd_W1 96% 4% 0% 0%
cd_W2 4% 90% 4% 2%
cd_W3 0% 12% 80% 8%
cd_W4 0% 0% 14% 86%

2.4. Comparison with Other Algorithms

In 2017, Feng proposed a model preference method based on Minimum Data Event
Distance (MDevD) [31]. This method builds a set of MDevD attributes by calculating the
MDevD of conditional data events in each candidate model. The candidate models are
then evaluated and ranked based on the mean and variance of the MDevD attributes. The
smaller the mean and variance of the MDevD attributes, the higher the compatibility of the
corresponding candidate model with the conditional data. The model preference method
based on the CNN method used in this paper is compared with the MDevD-based method
to test the practicality and reliability of the method in this paper.

A comparative study was conducted using the 2D data in Section 2.3. Firstly, we
randomly selected 1% of the data from four different channel models A, B, C, and D as the
conditioned data, and then calculated the candidate models E, F, G, and H by applying
the MDevD attribute of the conditioned data, respectively (Figure 6). The smaller the
average value of MDevD, the higher the match between the candidate model and the
conditioned data. The comparison of the test results between this paper’s method and
the MDevD method was conducted 100 times, as shown in Figure 7. The results show
that the recognition rates of this paper’s method and the MDevD method are very similar,
indicating the reliability of the proposed method. In the process of 100 tests, the MDevD
method takes a lot of time, with the total time consumption reaching 13.7 h, while the
method proposed in this paper takes 53 s, indicating that the algorithm in this paper marks
a great improvement in computational efficiency, and has a high degree of practicality.
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3. Application
3.1. Geological Setting

This research selected the L oil field in the north of Gurbantunggut Desert in the
abdomen of Junggar Basin as the test area (Figure 8). The oil reservoir in the research area
belongs to the Hutubi section of the Hutubi River Formation of the Cretaceous System.
Based on the principle of “rotational comparison and hierarchical control”, and combined
with the stratigraphic thickness, the development of sands, and oil and water distribution
laws, we divided the target layers of this oil group into seven sand groups and eighteen
single sand layers. The whole is a set of brown and grey-green mudstone and fine sandstone
interbedded in the delta-front facies, with several sets of reservoir-cover combinations
developed. The source of material mainly comes from the north-northwest direction, and
the sedimentary microphase is mainly dominated by the underwater distributary channel,
part of which is sheet sand and estuarine dam. Reservoir porosity is mainly concentrated
in 25–29%, permeability is generally less than 1000 mD, and the permeability correlativity
of the reservoirs is relatively good, for high pore medium-high permeability reservoirs. At
present, the development of the L oilfield is facing a difficult problem, namely, the unclear
recognition of the distribution laws of the residual oil in the reservoir. One part of the
residual reserves is distributed in some thin unused and lenticular reservoirs, and the other
part is distributed in the edge and the interior of the developed reservoirs, so it is necessary
to re-recognize the oil-bearing single sand body and analyze the scale of the sand body. The
petroleum group reservoir permeability varies greatly, and the reservoir non-homogeneity
is strong. The key to study the non-homogeneity of this type of reservoir is to be able to
accurately describe the size of the development of the underwater distributary channel. The
channel sand body width is one of the key factors for designing the well placement scheme,
and it is of great significance to deduce the width and characteristics of the distribution of
the channel sand body in the actual work area according to the existing conditioned data.
Therefore, it is necessary to determine the width of the underwater distributary channel,
and then describe the reservoir heterogeneity on the basis of it.

The candidate model’s data source is a sand layer in the Hu1 oil group of the L field.
The reservoir in this area is of the braided river delta front deposition, the source is mainly
from the N-NW direction, and the sedimentary microfacies are mainly distributary channels.
Multi-stage channel deposits are developed on the plane, and the sand bodies between
channels are in tangential and overlapping contact, with different reservoir properties
in different channels. The development of sand body in this study area is relatively
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thin, the sand body thickness is generally less than 5 m, and the number of sand body
developments is relatively small. The boundary of the channel was determined according
to the thickness distribution map of the sand body, and the sedimentary facies map was
established (Figure 9). The sedimentary micro geomorphological study indicated that the
vertical flow profile was lenticular and the underwater distribution of the river channel
oscillated faster.
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Due to the heavy workload of manual identification, high requirements on the knowl-
edge reserve and experience of the cartographer, and strong subjectivity, it is impossible to
quickly and accurately identify the channel width in this area. Therefore, the method pro-
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posed in this paper can be well applied to the identification of the width of the underwater
distributary channel in this area.

3.2. Channel Candidate Models of Different Widths

In this study, candidate models of different channel widths were established by combin-
ing drilling and seismic data based on target simulation and human–computer interaction
according to the sedimentary background of the block and modern sedimentary research,
as shown in Figure 10.
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In establishing the model, the background and modern sedimentary research achieve-
ments in the study area and the geological understanding were taken into account, through
the well and seismic combination of regional sedimentary background, previous research
results, and coring wells in an integrated analysis of sedimentary facies marks. Full use was
made of well logging, coring, and other data, combined with the superimposed relationship
of sand bodies to further study the sedimentary microfacies and sand body distribution.
According to the lateral comparison of the logging data from the dense well network, the
direction of the river channel could be basically determined. From the statistical results
and the planar microphase distribution map, a table of geometric parameters for mod-
elling the underwater diversion channel using the target-based approach was determined
(Table 5). The width of the channel sand body follows the triangular distribution in Table 6.
Combined with the results of well seismic prediction, the underwater diversion channel
models were developed using target-based simulation and human–computer interaction
for channel widths of 100, 130, 160, 190, 220, and 250 m, respectively. The results can
reflect the qualitative distribution pattern of underwater distributary channels, and can
also provide a model basis for multi-point geostatistical stochastic simulation.

Table 5. Geometric parameters of underwater diversion channels in the study area.

Amplitude (m) Wavelength (m) Thickness (m) Width (m)

400−1000 1500−3000 1−5 100−250
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Table 6. Triangular distribution of width values for six channel sand body candidate models.

Channel Model Min. Width (m) Mean Width (m) Max. Width (m)

Model a 90 100 110
Model b 120 130 140
Model c 150 160 170
Model d 180 190 200
Model e 210 220 230
Model f 240 250 260

3.3. Analysis of Underwater Distributary Channel Width

Using the method described in Section 1, each candidate model was sampled 100 times.
Every sample had a tag to identify the candidate model to which it belongs. All the training
results were trained together in deep learning to obtain the fitted deep convolutional
network model. The candidate models of different channel widths were compared with
the conditional data to determine the underwater distributary channel widths in the study
area. The results show that the model with a channel width of 160 m is the most consistent
with the data in the study area.

The combined prediction of well earthquakes in the study area was studied from
a geological perspective. According to the combination characteristics of lithology and
electricity, the type of sedimentary cycle of the second stage, and the reservoir’s oil content
rate, the target interval was subdivided step by step, and the isochronous relationship of
each well point and all levels of the formation in the whole area was established under the
guidance of sedimentological theory, so as to realize the unified division and correlation in
the field. Through the extraction of well earthquake and prediction results in this block,
the single sand body thickness was mainly concentrated in the range of 2–4 m, indicating
that the width of the channel in this research area is roughly between 130 and 200 m, with
160 m of channel width in the majority. This is consistent with the prediction results in this
paper, so it can be determined that the width of the channel in this research area is 160 m.

4. Conclusions

In this paper, candidate models of sedimentary facies with different channel widths
were optimized by using a deep learning method, and the channel widths in the study area
were finally determined using comparative analysis. Three points of understanding are
as follows:

(1) A deep convolutional neural network implemented the channel width optimization
method, taking the candidate model as the population and randomly sampling it
many times, ensuring that the sampling density is equal to the conditional data
density. If the difference between the spatial characteristics of the sample points
and the conditional data is smaller, the spatial characteristics of the model and the
conditional data are considered to be more similar. After testing, the candidate models
with different widths were identified as the corresponding channel width models, with
over 95% accuracy in the 2D model. Compared to the two-dimensional model, the
accuracy of the model training of the method in three-dimensional space was lower,
but still above 80%. This shows that the method is sensitive to river channel width.

(2) A comparison of the method with the MDevD-based method was carried out to verify
the practicality and reliability of the method, and it was demonstrated that the recog-
nition rate of this paper’s method closely matches the MDevD method’s recognition
rate, indicating the reliability of the proposed method. In the process of conducting
100 tests, using the MDevD method took a lot of time, with the total time consumption
reaching 13.7 h, while the method proposed in this paper took 53 s, indicating that
the algorithm in this paper marks a great improvement in computational efficiency,
and has a high degree of practicality. It can be used to analyze the channel width of
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the actual work area, and provide more accurate guidance for oilfield development to
formulate a more reasonable development plan.

(3) Based on the geological understanding and previous experience, the approximate
range of channel width in the study area was determined to be between 100 and
250 m, and accordingly, candidate models with channel widths of 100 m, 130 m, 160 m,
190 m, 220 m, and 250 m were designed. Using the deep convolutional network-based
channel width optimization method, candidate models for different channel widths
in the research area were compared and analyzed, and the results showed that when
the channel width was 160 m, it was most compatible with the conditional data in
the research area. The quantitative analysis of the width of the underwater diversion
channel provides a basis for the study of the fine inhomogeneity of the reservoir, which
is of practical significance for the inverse deduction of the width of the river sands
and the distribution characteristics of the actual workings based on the well-point
data, and also provides a basis for multi-point geostatistical stochastic modeling.
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