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Abstract: High-resolution remote sensing imagery comprises spatial structure features of multispec-
tral bands varying in scale, color, and shape. These heterogeneous geographical features introduce
grave challenges to the fine segmentation required for classification applications in remote sensing
imagery, where direct application of traditional image classification models fails to deliver optimal
results. To overcome these challenges, a multispectral, multi-label model, MMDL-Net, has been
developed. This model is integrated with the multi-label BigEarthNet dataset, primarily employed
for land cover classification research in remote sensing imagery, with each image composed of
13 spectral bands and spatial resolutions of 10 m, 20 m, and 60 m. To effectively utilize the informa-
tion across these bands, a multispectral stacking module has been introduced to concatenate this
spectral information. To proficiently process three distinct large-scale remote sensing image datasets,
a multi-label classification module has been incorporated for training and inference. To better learn
and represent the intricate features within the images, a twin-number residual structure has been
proposed. The results demonstrate that the MMDL-Net model achieves a top accuracy of 83.52% and
an F1 score of 77.97%, surpassing other deep learning models and conventional methods, thereby
exhibiting exceptional performance in the task of multispectral multi-label classification of remote
sensing imagery.

Keywords: high-resolution remote sensing images; multiband multispectral; ResNet; multilabel
classification; deep learning

1. Introduction

A prominent application of remote sensing (RS) imagery is land use and land cover
(LULC) classification. Traditional classification methods often fail to fully exploit the
geometric information in remote sensing images, although texture features are sometimes
utilized to supplement the spectral characteristics of such images [1]. There are a plethora
of approaches to analyzing remote sensing images, including machine learning-based
methods [2,3], such as Support Vector Machines (SVMs) [4] and Random Forests (RFs) [5],
as well as deep learning methods like Convolutional Neural Networks (CNNs) and Deep
Neural Networks (DNNs).

Remote sensing images are rich in information, necessitating classification methods
that are both efficient and yield precise results. The advent of deep learning has effectively
addressed this issue. The use of deep learning for the analysis of remote sensing images
is becoming increasingly widespread across various research fields, such as perimeter
mapping, ecosystem services [6,7], delineation of agricultural fields [8], large-scale mapping
of tree crops [9], extensive road extraction [10], and detection of burned areas [11] Deep
learning has also demonstrated high performance in classifying and extracting the necessary
information from remote sensing images, as evidenced by achievements with network
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models like U-Net [12], Residual Networks (ResNet) [13], Deep Residual U-Net (ResU-
Net) [14], convolutional network-based semantic segmentation [15], and Pyramid Scene
Parsing Network (MP-Net) [16].

Existing image datasets are predominantly composed of three-channel RGB images
formulated for computer vision tasks with single-label categorization. Standard CNN
architectures are primarily tailored for processing these RGB images and lack the capa-
bility to effectively exploit the complex interrelationships among multispectral channels.
When applied to remote sensing imagery, these models exhibit deficiencies, including
but not limited to inadequate handling of the inherent high-dimensional characteristics
of hyperspectral images and challenges in addressing the spectral and spatial correla-
tions within these images. Consequently, conventional CNNs are insufficient for remote
sensing tasks. Sumbul provided a multi-label, multi-resolution dataset named BigEarth-
Net, comprising 590,326 images, each annotated with multiple labels from the CORINE
Land Cover database [17]. In the context of LULC scene classification tasks, Mañas et al.
demonstrated that models pre-trained with contrastive learning on BigEarthNet outper-
formed those pre-trained on ImageNet [18]. Sumbul et al. proposed a triplet sampling
strategy utilizing BigEarthNet data for learning high-quality feature representations for
content retrieval [19]. Stojnic and Risojevic employed contrastive multiview coding for
self-supervised pre-training [20]. Vincenzi et al. introduced a self-supervised learning
method for satellite imagery, utilizing BigEarthNet labels for LULC scene classification,
achieving significant results with their initialization approach [21].

In the application of remote sensing classification, Convolutional Neural Networks
(CNNs) possess powerful feature extraction and model generalization capabilities, rapidly
advancing in the field of computer vision, with a plethora of CNN-based models be-
ing employed for remote sensing image classification. Diakogiannis et al. presented a
novel framework composed of a deep learning architecture, ResUNet-a, coupled with a
new loss function based on the Dice coefficient, which achieved remarkable convergence
characteristics [22]. However, the model may encounter blurring or incorrect segmentation
in complex scenes. Kim et al. explored methods for quantifying the bias in DNNs for land
usage, implementing DNN-based models through fine-tuning existing pre-trained models
for school building recognition [23], but the accuracy and bias analysis results might not
generalize to other regions or countries. Sumbul and Demir utilized a multi-attention
strategy employing bidirectional long short-term memory networks to capture and lever-
age the spectral and spatial information content of RS images [24], employing complex
multi-branch CNNs and multi-attention mechanisms, which resulted in high computational
complexity. Koßmann et al. proposed an oversampling approach to address the issue of
class imbalance in BigEarthNet’s land use/cover categories [25], but an excessive focus
on minority classes could lead the model to perform well on these while underperform-
ing in other classes. Dixit et al. used the Dilated-ResUnet deep learning architecture for
extracting buildings and small objects [26], with the proposed model performing well on
the FCC (NIR, Red, Green) dataset, but its performance may decrease on other spectral
band combinations.

Among a plethora of models, we have discerned that the residual learning framework
introduced by ResNet facilitates the simplification of training processes for otherwise chal-
lenging deep networks. Furthermore, the deep structure of ResNet is capable of learning a
broad spectrum of features ranging from generic to specific, which proves to be extremely
beneficial for classifying the diverse categories present within remote sensing data. The
block structure of ResNet also permits easy modifications and expansions of the network to
meet the specific requirements of the task at hand. Mobeen ur Rehman et al. have proposed
a deep architecture endowed with a Region Proposal Network (RPN) that exploits the
texture and edges of images to extract pertinent regions by sliding a network over feature
maps extracted from deep architectures, namely VGGNet and ResNet, where the deep
capabilities of ResNet have exhibited commendable performance [27]. Long Wen et al.
have introduced a novel 51-layer TCNN (ResNet-50) for fault diagnosis, which utilizes the



Appl. Sci. 2024, 14, 2226 3 of 15

ResNet-50, trained on ImageNet, as a feature extractor for fault diagnosis, outperforming
other deep learning models and traditional methods, thus reaffirming the transfer learning
capabilities of ResNet [28]. Devvi Sarwinda et al. have put forth an image classification
methodology based on the ResNet architecture for the detection of colorectal cancer, demon-
strating favorable classification performance. ResNet has also produced highly reliable and
reproducible results in biomedical image analysis [29]. Tao Zhou et al. have proposed a
COVID-ResNet auxiliary diagnostic model based on CT images, where the squeeze-and-
excitation mechanism of ResNet’s residual connections, coupled with the easily modifiable
and expandable block structure of ResNet, has resulted in enhanced performance [30].
Swalpa Kumar Roy et al. have introduced an attention-based adaptive spectral-spatial
kernel improved residual network (A2S2K-ResNet), incorporating an attention mechanism
and refining the residual modules of ResNet with three-dimensional ResBlocks to jointly ex-
tract spectral-spatial features, yielding impressive classification outcomes [31]. The feature
fusion capability of the ResNet model, which integrates layers or modules that combine
spatial and spectral features, along with its customized classification head, exhibits clear
advantages in the design of multi-label classification.

To address the complex task of classifying remote sensing imagery applications, this
paper introduces MMDL-Net, a multispectral, multi-label classification model designed for
high-resolution remote sensing imagery. It incorporates a multispectral stacking module, a
multi-label classification module, and a feature extraction module that combines Residual
Networks (ResNets) with TensorFlow. This module captures global information as base-
level features from feature maps, and by increasing the number of channels, it ensures the
transfer of more detailed information, providing an expanded feature representation space.
The network’s input layer and fully connected layer are further designed to enhance the
network’s robustness to changes and noise in the input images, thereby improving classifi-
cation accuracy. A multi-label classification sigmoid function is designed to independently
output a probability for each category, with each category’s output being independent,
making it highly suitable for multi-label classification tasks.

The paper makes significant contributions in the following areas:

1. Through meticulous analysis and comparison of existing remote sensing image clas-
sification methods, it adopts a multispectral multi-label classification strategy to
efficiently extract features from high-resolution remote sensing images;

2. It proposes a novel dual-number residual structure and multi-label classification
module that can better learn and capture the details and semantic information of the
input images, enabling the network to better adapt to the complex task of classifying
remote sensing imagery applications;

3. It introduces a multispectral stacking module that effectively integrates information
from bands of varying resolutions, thereby enriching the surface information available.

Based on these contributions, the paper presents MMDL-Net, a powerful model
aimed at effectively solving the task of application classification for high-resolution remote
sensing imagery.

The organization of the work is as follows: Section 2 provides an overview of the
structure of the MMDL-Net model and introduces the MMDL-Net model along with all its
internal components. Section 3 describes the experimental setup and the analysis of results.
Discussions are presented in Section 4. Conclusions are drawn in Section 5.

2. Materials and Methods

In recent years, the continuous enhancement in the spatial resolution of remote sensing
images has encapsulated more complex features, significantly raising the bar for image
feature extraction. Considering the prowess of the ResNet architecture in deep feature
extraction, multiscale processing, and overcoming spectral limitations, this work adopts
it as the foundational framework. It integrates a multispectral stacking module and a
multi-label classification module, with optimizations conducted from four perspectives: the
residual blocks, input and output layers, fully connected layers, and loss functions. During
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the feature extraction phase, to better learn and represent the intricate features in remote
sensing imagery, this paper doubles the number of channels within each residual block and
adjusts the threshold to prevent overfitting. To achieve enhanced classification performance,
the pixel size of the input layer is modified to 120 × 120 to align with the dataset, while the
output layer is linked with the fully connected layer, utilizing 19 classes. For an appropriate
loss function within multi-label multi-classification tasks, the binary cross-entropy loss
function is employed in the TensorFlow design. This choice facilitates easier gradient
computation without the need for any encoding transformations of the labels.

2.1. Multispectral Stacking Module

The BigEarthNet remote sensing image repository is sourced from the Sentinel-2
satellite, which is equipped with 13 multispectral bands and is a product of the European
Space Agency (ESA), headquartered in Paris, France. It provides diverse typologies of
Earth’s surface information. These bands span the spectral regions of visible light, near-
infrared, and shortwave infrared, a design that confers an advantage in applications such
as monitoring vegetation health, agricultural management, forest surveillance, and land
cover change detection. In contrast, other common satellites like Landsat or MODIS may
be more suitable for long-term time series analysis, atmospheric and oceanic studies, as
well as broad-scale global dynamic monitoring. The primary uses of each band and the
types of information they typically represent are shown in Table 1.

Table 1. Information represented by the 13 bands and their primary uses.

Band Number Central Wavelength
(nm) Primary Use

B01 443 Coastal aerosol detection and atmospheric conditions
B02 490 Blue band–Vegetation, soil, and water bodies
B03 560 Green band–Vegetation health and vitality
B04 665 Red band–Chlorophyll content for plant health
B05 705 Red edge–Vegetation characteristics and biomass
B06 740 Red edge–Vegetation characteristics and biomass
B07 783 Red edge–Vegetation characteristics and biomass
B08 842 NIR–Plant health and biomass estimation
B8A 865 Narrow NIR–Improved vegetation health assessment
B09 940 Water vapor estimation
B10 1375 Cirrus cloud detection
B11 1610 SWIR–Moisture content, vegetation stress
B12 2190 SWIR–Mineral content, soil properties, heat detection

The multispectral stacking module is positioned before the input module of the model,
leveraging information from 12 distinct spectral bands while excluding the 10th band,
which does not reflect surface information. In contrast to conventional RGB images, which
comprise only three bands—where the R (red) channel corresponds to the B04 band, the G
(green) channel corresponds to the B03 band, and the B (blue) channel corresponds to the
B02 band—this module aims to effectively integrate information from a larger number of
bands. To accommodate the varying resolutions of satellite image data, the 12 bands are
divided into three groups.

The four bands with a resolution of 10 m (B02, B03, B04, B08), each with dimensions of
120 × 120, are stacked along the third dimension to create a new tensor, thereby generating
an image with four channels. Similarly, the six bands with a resolution of 20 m (B05, B06,
B07, B8A, B11, B12), each sized at 60 × 60, are stacked along the third dimension to form
a new tensor, resulting in an image with six channels. The remaining two bands with
a resolution of 60 m (B01, B09), each sized at 20 × 20, are also stacked along the third
dimension to produce an image with two channels. Subsequently, images of bands with
20 m and 60 m resolutions are resized to match the 120 × 120 dimensions of the 10-m bands
using bicubic interpolation. Finally, the module concatenates these three tensors along
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the third dimension, generating a new tensor that yields a multi-channel image of size
120 × 120. The structure of the multispectral stacking module is illustrated in Figure 1.
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2.2. Model Input Adaptation and Interpolation in MMDL-Net

In order to accommodate the varying pixel sizes of remote sensing images in the
BigEarthNet dataset, ranging from 20 × 20, 60 × 60, to 120 × 120, we enhanced the input
layer of the ResNet network by adjusting the commonly used standard 224 × 224 size of
RGB images to the maximum size within the dataset, which is 120 × 120. This modification
aims to reduce computational demands, enhance efficiency, and better capture the details
and features present in the images.

For images with dimensions smaller than 120 × 120 pixels, specifically those mea-
suring 20 × 20 and 60 × 60 pixels, bicubic interpolation is implemented. In the context
of multispectral remote sensing imagery, bicubic interpolation provides smoother transi-
tions at edges compared to nearest-neighbor and bilinear interpolation techniques, thereby
maintaining greater detail and image sharpness upon enlargement. This is particularly
critical for the analysis of remote sensing images as it aids in preserving the delineation and
intricate features of land objects, contributing to enhanced classification and recognition
of these features. Accurate color interpolation is essential when processing multispectral
remote sensing images due to its relation to the identification of spectral characteristics
of land objects. Bicubic interpolation facilitates a more precise estimation of intermediate
color values, thereby better preserving the spectral attributes of the original image, which
is crucial for subsequent spectral analysis and classification tasks. Additionally, bicubic
interpolation more effectively maintains spatial consistency across multiple bands. In mul-
tispectral images, each band represents different spectral information, and it is imperative
to maintain correct alignment among these bands during enlargement to prevent distortion
of spectral information.

Bicubic interpolation generates new pixel values by interpolating among known pixels.
By taking into account the grayscale values and the distances of surrounding pixels, it
yields a more accurate estimation of new pixel intensities, thereby preserving image details.
This method also reduces the occurrence of aliasing, resulting in smoother edges in the
enlarged images and consequently minimizing information loss as much as possible. The
fundamental structure of the interpolation method is depicted in Figure 2.
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By mapping, the pixel values in the enlarged image are obtained through weighting
in the neighborhood of the mapped points. Bicubic interpolation uses 16 neighboring
points to calculate the weights, so a BiCubic function needs to be constructed. This function
calculates the weights for the points based on the relative position between the neighboring
points and the P point as follows:

W(x) =


x = (a + 2)|x|3 − (a + 3)|x|2 + 1 for |x| ≤ 1

y = a|x|3 − 5a|x|2 + 8a|x| − 4a for 1 < |x| < 2

z = 0 otherwise

(1)

Here, a is set to −0.5.
To find the parameter x in the BiCubic function, we obtain the weights W(x) corre-

sponding to the 16 pixels. Then, the pixel values of these 16 points are weighted and
calculated using the interpolation formula as follows:

f (x, y) = ∑3
i=0 ∑3

j=0 f (xi, yj)W(x − xi)W(y − yj) (2)

Assuming the size of image A is m × m, and after scaling it K times, the size of image
B becomes M × M. The pixel values of image A are known, while those of image B are
unknown. The objective now is to find the value of each pixel D(X,Y) in image B. To achieve
this, we need to find the corresponding pixel point P(x,y) in image A. Then, we consider
the 16 nearest neighboring pixels to P(x,y) in image A as the parameters for calculating the
pixel value at D(X,Y). We use the BiCubic basis function to calculate the weights of these
16 pixels. The value of pixel D(X,Y) is obtained by summing up the weighted contributions
of these 16 pixels. The structure of the interpolation pixel weighting system in MMDL-Net
is shown in Figure 3.

By altering the input image size, the data introduce remote-sensing image information
at various scales, thereby enhancing the model’s adaptability to remote-sensing images of
different scales. This is critical for tasks such as classification applications in remote sensing
imagery, as the objects and land features within these images often exist at varying scales.
Such a network design is more rational and can better adapt to the characteristics of remote
sensing images in the BigEarthNet dataset. The MMDL-Net model still retains its depth,
residual connections, and the structural attributes of its convolutional layers, as well as
possessing robust feature extraction capabilities and exceptional performance.
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2.3. Dual-Number Residual Structure

The MMDL-Net model is implemented using TensorFlow and comprises four stages,
each with a different scale. After comparing ResNet50, ResNet101, and ResNet152, the
foundational stage from ResNet50 is retained, which consists of stages with ratios of 3:4:6:3.
Unlike traditional computer vision that utilizes RGB images with only three spectral bands,
Sentinel-2 images possess 13 spectral bands, and there is also a distinction in the way
class labels are defined semantically between computer vision and remote sensing (RS)
imagery. Therefore, the channel numbers of these stages are not universally applicable for
bridging this semantic gap, which could lead to weaker recognition capabilities for land
cover categories. To address this, the channel counts of the stages are doubled, adhering
to multiples of two to fully leverage hardware architecture characteristics for enhanced
data processing efficiency and performance. This adjustment allows the MMDL-Net model
to provide a greater feature representation space to better learn and capture the details
and semantic information of the input images, thereby better adapting to complex land
use classification tasks. This enhancement ensures improved robustness of the model to
variations and noise in the input images, and it increases the accuracy of classification. The
channel numbers for each stage are doubled to (128, 256, 512, 1024). Although increasing
the number of channels adds to the model’s parameter count and computational complexity,
the optimization of modern hardware devices and the TensorFlow framework still allow
for the network’s efficient training and inference. The overall structure of the MMDL-Net
model is illustrated in Figure 4.
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Specifically, channel doubling can be achieved by increasing the number of filters in
the 1 × 1 convolutional layers. Within each residual block, a 1 × 1 convolutional layer is
used to reduce the number of channels, followed by a 3 × 3 convolutional layer for feature
extraction, and finally, another 1 × 1 convolutional layer to increase the number of channels.
In the traditional ResNet, the number of filters in these three convolutional layers is c1,
c2, and c3, respectively. However, in the MMDL-Net model, we can set the number of
filters in these three layers to 2c1, 2c2, and 2c3, respectively, thus doubling the number of
channels. In TensorFlow, this increase in the number of channels for each residual block
can be achieved by modifying the filter parameters of conv1 and conv2 in the ResBlock
class. When using the ResNet model, the number of channels for each residual block can be
modified as needed. For example, to increase the number of channels in the first residual
block from 64 to 128, one could set filters1 and filters2 to 128, respectively, when defining
the MMDL-Net model. In TensorFlow, this will double the number of channels for each
residual block, thereby improving the performance of ResNet for remote sensing image
classification tasks.

The MMDL-Net model contains multiple residual blocks, with the first residual block
having 64 channels. In the channel-doubling enhancement, this block’s channel count is
increased from 64 to 128. Similarly, for the other residual blocks, their channel numbers are
also doubled. For instance, the channel number of the second residual block is increased
from 128 to 256, and the third residual block from 256 to 512, and so on. The two types of
residual structures in the MMDL-Net model are shown in Figure 5.
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2.4. Multi-Label Classification Module

The BigEarthNet dataset is processed and trained within TensorFlow, being trans-
formed into tensor-type image data. During the classification of remote sensing imagery
using the MMDL-Net model, fully connected layers are primarily employed to transform
the output feature maps from the convolutional layers into the final classification outputs.
These fully connected layers are typically situated at the terminus of the MMDL-Net archi-
tecture, accepting a flattened feature vector as input. The initial stages of the MMDL-Net
model are dedicated to feature extraction, followed typically by a global average pooling
operation. After this operation, the feature maps assume a shape of 1 × 1 × N, where N
represents the number of channels. Flattening these feature maps results in a feature vector
of length N. This flattened feature vector is then multiplied by a weight matrix, yielding a
vector that represents the scores for the various classes. Subsequently, the sigmoid function
is adopted as the activation function for the fully connected layer in lieu of the softmax
function. This is due to the fact that, in multilabel classification problems, each sample may
simultaneously belong to multiple categories rather than a single category. This diverges
from the premise of the softmax function, which assumes that each sample can be allocated
to only one category, making it suitable for multiclass single-label classification tasks. The
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softmax function is designed to model a categorical probability distribution over class
labels, ensuring that the sum of probabilities of all possible labels for a given sample equals
one. This is achieved through the exponentiation and normalization of the output scores
from the last layer of the network. However, in the context of remote sensing imagery,
where an image may concurrently contain multiple types of land cover, such as water
bodies, vegetation, and wetlands, the model should be capable of reflecting the presence
of multiple categories. The sigmoid function enables this capacity by being applied inde-
pendently to each output node, treating the presence of each label as a separate binary
classification problem. The fundamental rationale for employing the sigmoid activation
function in a multilabel context is that it treats the output for each label independently,
which allows the model to represent the probability of the existence of each class label
independently. Additionally, as a nonlinear function, it is particularly useful for handling
data that possess a high degree of complexity and variability, such as remote sensing
imagery. The multiclass infrastructure of the MMDL-Net model is illustrated in Figure 6.
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2.5. Construction of the MMDL-Net Loss Function

In TensorFlow, we use the binary cross-entropy loss function, which is easy to compute
gradients for and is suitable for multi-label, multi-class tasks without the need for any
encoding conversion of labels. In the MMDL-Net model, the output of the fully connected
layer is activated through the sigmoid function to obtain the predicted probabilities for
each category. Afterward, the binary cross-entropy loss function is used to calculate the
discrepancy between the predicted probabilities and the true labels. In multi-label, multi-
class tasks, the cross-entropy loss function can effectively be used to compute the loss value
of the network and update the network parameters through backpropagation. The formula
for the cross-entropy loss function in multi-label, multi-class tasks is as follows:

L = −∑[y log x + (1 − y) log(1 − x)] (3)

Here, y represents the true labels and x represents the predicted values by the network.
Both y and x are processed through appropriate encoding to fit the requirements of multi-
label multi-class tasks. The formula calculates the prediction x based on the network’s
output and the true labels. The predicted results x and the true labels y are input into
the cross-entropy loss function formula to calculate the loss value L. Based on the loss
value L, the gradient is computed using the backpropagation algorithm, and the network
parameters are updated.

During the calculation process, the predicted values need to be processed by an
activation function, typically in combination with the sigmoid function, to ensure that their
values are between 0 and 1 and that the sum of the predicted probabilities for each class is 1.
The Adam algorithm is used for optimization, which updates the network parameters based
on the first-order moment estimate and the second-order moment estimate of the parameter
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gradients. It combines the properties of momentum and adaptive learning rate, enabling
efficient optimization of network parameters and improving network performance.

3. Results
3.1. Dataset Introduction and Experimental Configuration

BigEarthNet is a substantial dataset comprised of Earth Observation images, collabo-
ratively developed by the Technical University of Berlin and the German Aerospace Center
(DLR). The dataset is designed to advance research in machine learning and deep learning
within the remote sensing domain. BigEarthNet encompasses over 590,000 multispectral
images captured by the multispectral instrument aboard the Sentinel-2 satellite between
the years 2017 and 2018. The dataset’s coverage includes land areas from 10 European
countries spanning Western and Northern Europe. Each image in the dataset consists of
13 spectral bands ranging from the visible to the near-infrared spectrum. BigEarthNet is
publicly accessible, allowing researchers to download the dataset from its official website
(http://bigearth.net/, accessed on 10 August 2023). Detailed information regarding the
experimental setup is presented in Table 2.

Table 2. Detailed information on experimental configurations.

Configuration Item Details

Deep Learning Library TensorFlow
software PyCharm PROFESSIONAL 2019.3
Server AMAX, Fremont, CA, USA

Graphics Card NVIDIA GeForce 2080 Ti, Santa Clara, CA, USA
Optimizer 0.001

Training Cycles 500 epochs

3.2. Evaluation Metrics

The model is evaluated and monitored using accuracy, precision, recall, and F1 score
metrics. By observing changes in accuracy through these metrics, we can discern whether
the model is overfitting. Precision allows us to determine how many of the samples
predicted as positive by the model are actually positive. Recall shows us how many of
the actual positive samples are correctly predicted by the model. The F1 score provides a
comprehensive evaluation of the balance between the model’s precision and recall. These
metrics help us identify the strengths and shortcomings of the MMDL-Net model and guide
us to make necessary adjustments and improvements, thereby enhancing the effectiveness
and accuracy of the multi-label classification tasks.

According to the concept of the confusion matrix, a “matching matrix” is often used.
Each column in the matrix represents the predicted values, while each row represents the
actual categories. It indicates whether there is confusion among multiple categories, that is,
whether one class is predicted as another class. By understanding the parameters in Table 3,
we can comprehend and calculate the evaluation metrics such as accuracy, precision, recall,
and the F1 score.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2 × Precision × Recall

Precision + Recall
(7)

http://bigearth.net/
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Table 3. Values of different dimensions for calculating evaluation metrics.

Positive Negative

True True Positive (TP) True Negative (TN)
False False Positive (FP) False Negative (FN)

3.3. Result Analysis

In the original BigEarthNet paper [32], the highest precision score achieved by the
authors in training was 80.05% for the ResNet50 model. However, with the MMDL-
Net model, we achieved a precision score of 83.52%. In a recent study by Papoutsis
Ioannis et al. [33], benchmark testing was conducted on the BigEarthNet dataset using
62 DL models for multi-label, multi-class LULC single-image classification tasks. These
models included ResNet50, ResNet101, ResNet152, WRN-B4-ECA, among others. The
WRN-B4-ECA network achieved the best overall accuracy score of 82.4% for them.

To better evaluate the performance of the models and the improvement achieved,
comparative experiments were conducted on ResNet50, ResNet101, ResNet152, and MMDL-
Net. The performance metrics of MMDL-Net and ResNet are shown in Table 4.

Table 4. Performance metrics of MMDL-Net and ResNet.

Model Precision (%) Accuracy (%) Recall (%) F1 (%)

MMDL-Net 83.52 77.08 77.30 77.97
ResNet50 75.56 60.86 70.30 70.53
ResNet101 79.97 65.46 75.19 75.15
ResNet152 80.51 66.01 75.52 75.63

It can be observed that as the network depth increases, the performance gradually
improves with ResNet models. However, there is still a significant gap compared to
MMDL-Net. This indicates that although deeper network structures can generally capture
more complex features and potentially provide better performance to some extent, the
performance gain of ResNet tends to plateau as the network depth continues to increase.
This suggests that simply increasing the depth of the network is insufficient to adapt to the
classification of multi-band, multi-label remote sensing images. This phenomenon may be
caused by various factors such as overfitting, vanishing gradients, or saturation of learnable
features in the given dataset. However, our MMDL-Net model has been improved in
various aspects to better adapt to the classification task of remote sensing images, resulting
in better performance than the ResNet model. MMDL-Net and ResNet evaluation results
are compared in Figure 7.

Continue to observe the precision of the 19 categories in the application classification
of remote sensing images, and it is found that the performance of the MMDL-Net model
has improved significantly in most categories. This indicates that our MMDL-Net model
has achieved commendable results in these 19 classifications. The precision metrics of the
MMDL-Net and three types of ResNet for the 19 categories are shown in Table 5.

Overall, it is evident that the MMDL-Net model outperforms the standard ResNet in
most categories. The highest recognition precision occurs in the “Marine water bodies”
category, which may be due to their relatively homogenous features that are easier to
identify. The lowest recognition precision is observed in the “Beaches, dunes, sand areas”
category, possibly because the features of these landforms are more complex and difficult
to discern. For landforms such as “Pastures” and “Agroforestry areas”, the performance of
the MMDL-Net model is significantly better than that of the standard ResNet, likely due to
the superiority of the MMDL-Net model in handling such complex features. The MMDL-
Net model performs better when dealing with complex landform features. The average
Precision scores for the classification results of MMDL-Net and ResNet are illustrated
in Figure 8.
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Table 5. Precision metrics for 19 categories of MMDL-Net and three variants of ResNet.

Category MMDL-Net ResNet50 ResNet101 ResNet152

Urban buildings 78.43 79.31 76.12 78.21
Commercial and industrial units 65.89 63.36 60.51 63.17

Arable land 85.65 80.81 87.80 85.07
Permanent crops 72.61 68.53 69.62 68.13

Pastures 78.56 83.67 79.56 80.29
Complex farming systems 73.71 68.96 66.58 69.60

Agricultural and vegetation land 71.13 66.20 67.30 67.99
Agroforestry areas 76.82 79.27 71.12 75.95
Broadleaf forests 78.51 74.51 78.25 76.85

Coniferous forests 86.42 76.21 84.72 86.54
Mixed forests 81.38 71.44 81.76 79.56

Grasslands and sparse vegetation 63.54 65.47 66.87 61.98
Swamps and wastelands 65.92 71.35 65.66 64.92

Transitional woodland and shrub 65.03 68.33 64.59 64.98
Beaches, dunes, sandy areas 57.20 57.07 55.28 49.96

Inland wetlands 73.00 71.16 74.94 77.54
Coastal wetlands 67.48 55.75 72.48 62.56

Inland water bodies 87.85 60.32 73.14 72.84
Marine water bodies 96.41 96.98 98.32 98.39
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The results above confirm the effectiveness of the MMDL-Net model in the task of
remote sensing image classification. Whether compared with the experiments conducted
by Sumbul et al. [32], who proposed the BigEarthNet dataset, or the recent benchmark tests
conducted by Papoutsis Ioannis et al. [33] on 62 DL models, the MMDL-Net model has
demonstrated good performance. However, we also note that the recognition performance
of the MMDL-Net model is not very good for certain categories. This may be due to the
model’s inability to adapt to individual classifications, resulting in the loss or inadequate
extraction of features for such categories. Nevertheless, the introduction of the MMDL-Net
model still provides an effective approach for handling remote sensing image data and
offers valuable insights for the optimization and improvement of deep learning models for
remote sensing images.

4. Discussion

The aim of this study is to fully leverage the information from high-resolution re-
mote sensing images. By processing and analyzing the multi-spectral and multi-band
multi-label remote sensing image data, a wealth of geographic information can be ob-
tained, which has extensive applications in various fields. For example, Chen et al. [34]
extracted information from mountainous road networks, which is of great significance
for road planning, traffic management, and environmental protection in mountainous
areas. W. Liu et al. [35] conducted research on identifying agricultural land parcels, pro-
viding accurate land use information for agricultural management and decision-making.
Wang et al. [36] developed a method for water extraction, which is crucial for water re-
source management, environmental monitoring, and disaster response. Faisal et al. [37]
investigated land cover change, providing important references for urban planning and
land management. Shimabukuro et al. [38] studied land use classification, contributing
to land management and environmental monitoring in the region. These studies demon-
strate the potential of our research in obtaining surface information and assisting scientific
research and decision-making processes.

The research findings demonstrate that the MMDL-Net model outperforms the ResNet
model in handling categories with complex landform features, such as pastures and agro-
forestry mixed areas. The MMDL-Net model performs exceptionally well in classifying
marine waters, achieving an accuracy of over 95%. Although the accuracy of the MMDL-
Net model is slightly lower in categories like beaches, sand dunes, and sandy land, it still
shows improvement compared to the ResNet model.

This study involves the identification and classification of various land features, such
as forests, farmland, urban areas, water bodies, and natural vegetation. It provides valu-
able information for decision-making processes related to sustainable development, land
management, and conservation efforts. It plays a crucial role in managing land resources,
urban planning, environmental monitoring, and natural resource management.

5. Conclusions

To address the issue of accurate classification of multi-band, multi-label, high-resolution
remote sensing images, this paper proposes a novel MMDL-Net model. The model intro-
duces a multi-band stacking module and a multi-label classification module and combines
a residual network with TensorFlow for feature extraction. It effectively concatenates the
information from multiple bands and adjusts the input and output, integrating a multi-label
classification strategy to generate more accurate classification outputs. Experimental results
demonstrate that the proposed MMDL-Net model exhibits superior classification capability
in handling multi-band, multi-label remote sensing image classification. It also performs
well in complex remote sensing spatial geographic information. Additionally, the paper
explores the impact of changes in network depth and channel numbers on the model.
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