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Abstract: The intrusion of foreign objects on airport runways during aircraft takeoff and landing
poses a significant safety threat to air transportation. Small-scale Foreign Object Debris (FOD) cannot
be ruled out on time by traditional manual inspection, and there is also a potential risk of secondary
foreign body intrusion. A deep-learning-based intelligent detection method is proposed to solve
the problem of low accuracy and low efficiency of small-scale FOD detection. Firstly, a dual light
camera system is utilized for the collection of FOD data. It generates a dual light FOD dataset
containing both infrared and visible light images. Subsequently, a multi-attention mechanism and
a bidirectional feature pyramid are integrated into the baseline network YOLOv5. This integration
prioritizes the extraction of foreign object features and boosts the network’s ability to distinguish FOD
from complex backgrounds. Additionally, it enhances the fusion of higher-level features to improve
the representation of multi-scale objects. To ensure fast and accurate localization and recognition of
targets, the Complete-IoU (CIoU) loss function is used to optimize the bounding boxes’ positions.
The experimental results indicate that the proposed model achieves a detection speed of 36.3 frame/s,
satisfying real-time detection requirements. The model also attains an average accuracy of 91.1%,
which is 7.4% higher than the baseline network. Consequently, this paper verifies the effectiveness
and practical utility of our algorithm for the detection of small-scale FOD targets.

Keywords: foreign object debris; small target detection; dual light; multi-attention; deep learning

1. Introduction

The runway is an essential infrastructure for aircraft takeoff and landing, affecting the
airport’s operational safety and support capacity. Foreign Object Debris (FOD) [1] poses a
direct threat to aircraft safety and is a major safety hazard in air transportation. Therefore,
real-time monitoring of airport runways, as well as real-time detection, identification,
and localization of FODs, are essential tasks to ensure the safety of air transportation.
Currently, the methods widely used for detecting FOD include manual inspection [2], radar
detection technology [3–5], and optical detection technology [6–8]. The manual inspection
method may be somewhat effective to some extent, but it lacks efficiency and reliability.
This method is unable to keep up with the growing demand for frequent takeoffs and
landings on airport runways, and it also poses a risk of secondary invasion of foreign
objects. Radar detection technologies such as millimeter wave radar and LiDAR have
high detection accuracy and precise localization, which are conducive to detecting FOD.
However, these products have exorbitant manufacturing and maintenance costs, which
limit their practical application. Additionally, some challenges exist, such as complex
signal processing procedures and inadequate information regarding target characteristics.
Traditional optical image processing techniques rely on the color and geometric features
of the target and use methods such as image difference, wavelet transform, edge feature
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extraction, and morphology to process and extract the feature information of targets,
achieving recognition and classification of targets. However, traditional object detection
methods require much time in feature design, and manually designed features have low
robustness to target diversity issues. Moreover, traditional image processing techniques
are susceptible to variability in imaging conditions such as lighting, occlusion, and defects.
As a result, significant variations in the output of these techniques can be observed. This
adversely impacts the precision and accuracy achievable in target recognition applications.

FOD detection is a challenging task of finding small targets in complex backgrounds [9].
Airport road surfaces are complex and varied, with oil stains, pavement textures, and ob-
jects obscuring them. Many researchers from different countries have proposed various
detection algorithms based on optical imaging technology. With the advancement of com-
puter hardware, deep learning algorithms, particularly convolutional neural networks
(CNN), have experienced significant progress. The detection accuracy of traditional meth-
ods is much lower than that of deep learning methods, so most of the current research in
target detection is focused on convolutional neural networks. It is also necessary to study
intelligent FOD detection algorithms based on images, which can overcome the limitations
of manual inspection, radar detection technology, and traditional optical detection technol-
ogy. Girshick et al. [10] proposed the classic two-stage object detection algorithm R-CNN
(Region Convolutional Neural Network); Redmon et al. [11] proposed the one-stage object
detection algorithm You Only Look Once (YOLO); and Liu et al. [12] proposed a single
shot multibox detector (SSD) combining the anchor mechanism of Faster R-CNN [13] and
YOLO’s regression idea. The aforementioned methodology utilizes visible light band im-
agery of the target as the input data source. Based on extracted visual features, this enables
global detection and recognition of the image. Visible light images have rich color and
texture features, so most deep learning detection algorithms can achieve good detection
accuracy for medium to large targets with sparse distribution in visible light images.

When the target is tested with a small size or in low lighting conditions, such as during
the night, visible light cannot effectively capture the image of the target. Many domestic
and international researchers have proposed methods for the fusion and recognition of
infrared and visible light images to address the challenge of detecting small targets in
visible light images [14–17]. Compared with existing radar detection systems, infrared
imaging technology is less susceptible to interference from electronic devices and can
compensate for the limitations of visible light detection systems in smoke, fog, and night
vision scenarios. Currently, fusion strategies for dual light data can be categorized into
data-level fusion, decision-level fusion, and feature-level fusion. The main idea of data-
level fusion is to decompose infrared and visible images with different filters and to fuse
feature vectors containing common characteristics at the pixel level or regionally [18,19].
Image fusion at the data level necessitates stringent requirements regarding the resolution,
pixel alignment, image quality, positional displacement, and additional aspects of the
constituent images. Failure to satisfy these prerequisites results in substantial fusion errors.
Figure 1c demonstrates image fusion using PCNN (Pulse Coupled Neural Network) [20]
for feature extraction followed by fusion, while Figure 1d shows fusion based on SIFT
(Scale Invariant Feature Transform) [21] feature point extraction. While these techniques
can effectively fuse and denoise infrared and visible images, they degrade image quality
for scenes containing small targets. Specifically, the fused result fails to enhance the feature
information of the small targets and actually reduces discernible information about them.
The fused image not only does not enhance the feature information of small targets but
also reduces the information of small targets. The target detection method by Bai et al. [22]
uses convolutional neural networks to detect targets in infrared and visible light images,
respectively, and combines the detection results through weighted fusion to improve
detection performance. However, this method only fuses the detection results and lacks
complementary feature information. Ning et al. [23] also proposed a decision-level fusion
algorithm for target detection of visible and infrared images. Although a model-based
reliable fusion strategy was used instead of the weighted fusion strategy proposed by Bai,
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the detection effect was improved. However, the essence was still to fuse the detection
results of the two models, lacking the extraction and complementarity of target feature
information. Zhang et al. [24] used fully convolutional neural networks to extract features
from infrared and visible light images, which were then weighted. They fused the features
by calculating weights under different modalities, enriching the target feature information.
However, this weighting method enriches the features and introduces more noise.
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Figure 1. Comparison of results of different fusion methods (The image inside the red box is a
partially enlarged drawing): (a) original visible light image; (b) original infrared image; (c) PCNN
fusion; (d) SIFT fusion; (e) pixel weighted average.

This paper aims to review existing research results and effectively utilize target in-
formation in infrared and visible light images to improve the accuracy and robustness
of small-scale FOD detection tasks in complex environments. A dual-mode small-scale
FOD detection algorithm, which integrates multiple attention mechanisms, was proposed
for this purpose. By improving the input layer of the model, the original infrared image
and visible light image are input into the model at the same time so that the network can
extract more and more original infrared and visible light feature information. Reduced
noise generation and enriched feature extraction information compared to previous studies.
And a large number of comparative experiments were conducted on collected datasets to
demonstrate the superiority of the proposed method.

The remaining sections of this paper are structured as follows: Chapter 2 introduces
the intelligent dual light camera and YOLOv5 model in detail, as well as this paper’s
proposed improvement method. Chapter 3 presents the experiments, including the dataset
construction and model performance comparisons. Finally, Chapter 4 summarizes the paper.

2. Methods
2.1. Dual Light Mode

This paper uses an intelligent dual light camera to collect images of related foreign
objects on the airport runway road surface. The image acquisition equipment consists of a
vanadium oxide uncooled infrared focal plane detector and a 1/2.7-inch two-megapixel
high-performance CMOS visible light detector. The detailed parameters are shown in
Table 1.

Table 1. Intelligent dual light camera equipment parameters.

Parameter Infrared Sensor Parameter Visible Sensor

Focal Length 15 mm Focal Length 6 mm
17 µm field of view angle 40.5◦ × 33.0◦ Resolution Ratio 1920 × 1080
12 µm field of view angle 28.6◦ × 23.3◦ White Balance Support

Monitoring range 25 m–75 m Day Night Conversion Automatic switching
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2.2. Benchmark Network

The single-stage object detection network YOLOv5 proposed by Glenn Jocher [25] in
2020 combines the advantages of the previous YOLO series algorithms, resulting in more
robust detection accuracy and speed. This paper selects YOLOv5, which has a faster speed
and smaller network model, as the benchmark network. The model structure and detailed
structure of each component are shown in Figure 2.
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Figure 2. Structural diagram of benchmark network.

The backbone of YOLOv5 uses CSPNet (Cross Stage Partial Network), which en-
hances the learning ability of the network, maintaining accuracy while being lightweight
enough [26]. The backbone network mainly comprises the CBS module, C3 module, and
SPPF (SPP-Fast) module. The CBS module includes a Convolutional Layer (Conv), a Batch
Normalization Layer (BN), and a SiLU activation function to extract information features
from images at different levels. The C3 module includes three Conv and multiple residual
components, optimizing the path of gradient backpropagation and improving network
learning ability while reducing computational costs and memory overhead. The SPPF
module draws inspiration from spatial pyramid pooling (SPP) [27], expands the receptive
field, and extracts the essential contextual features with a faster detection speed. The
prediction head is a module that generates features of different scales on images of different
scales, enabling the detection of multi-scale targets. It comprises two components: a Feature
Pyramid Network (FPN) [28] and a Path Aggregation Network (PAN) [29]. FPN is a feature
extractor that outputs proportionally sized feature maps at multiple levels, while PAN
is a feature enhancer that boosts information flow between different levels of the feature
pyramid. Due to the combination of semantic information conveyed by FPN from top to
bottom and positional information transferred by PAN from bottom to top, the YOLOv5
network has strong feature fusion ability.

2.3. Improvement Method
2.3.1. Overall Framework

Given the small scale of FOD targets, the utilization of visible light imagery for
detection introduces difficulties in discriminating the target from background clutter. For
example, it is difficult to distinguish between metallic (nuts, screws) foreign objects and
cement concrete backgrounds with similar color characteristics. Particularly in nighttime
or dim conditions, the efficacy of visible light imaging is severely compromised. Numerous
established and widely utilized object detection algorithms are not directly transferrable
for the task of identifying foreign objects on airport runways. Therefore, we introduce
infrared images to compensate for the shortcomings of visible light images. However, the
fusion between infrared and visible light images can be challenging and requires careful
design to effectively enhance the feature information of targets. On the contrary, such
approaches may introduce interference that obscures small targets, precluding the network
from sufficiently focusing on subtle features. The proposed methodology is illustrated
in Figure 3, which outlines the overall framework. Firstly, image fusion of infrared and
visible modalities is not implemented during preliminary data processing. Instead, both
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infrared and visible images are input simultaneously in the network’s input layer. This
enables the preservation of more low-level small target information at the input level.
Then, we introduce our multiple attention module (represented by MAM in the diagram),
which is designed for small targets in the benchmark network and uses multiple attention
mechanisms to enhance the extraction of small target feature information. Finally, the
bounding box regression loss function is designed as CIOU loss to improve the positioning
accuracy of small targets.
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2.3.2. Attention Module

The attention mechanism is widely used in computer vision tasks, with its efficacy
in enhancing model performance well established. Currently, the mainstream attention
mechanisms can be divided into channel, spatial, and self-attention. The purpose of channel
attention is to capture the relationship between different channels (feature maps). The
weight of each feature channel is automatically obtained through network learning. Then,
different weight coefficients are assigned to each channel to reinforce important features
and suppress non-important ones. Channel attention mechanisms, such as SE (Squeeze
and Excitation) [30], have been shown to be effective in lightweight network research.
Spatial attention is intended to enhance the expression of features in critical areas. Its
essence is to transform the spatial information in the original picture to another space and
retain the critical information through the spatial conversion module. It generates a weight
mask for each position and outputs it with weighting, enhancing the specific target area
of interest while weakening irrelevant background areas. Attention mechanisms can help
models focus on important features better, improving model performance. The CBAM
(Convolutional Block Attention Module) proposed by Woo et al. [31] combines attention
mechanisms from two dimensions: feature channel and feature space.

This paper proposes a multi-attention module to enhance the feature extraction of
small-scale targets, reduce background interference, and overcome the lack of visible
light images in dim environments. This module was added to the backbone to improve
the detection performance of the model in complex environments. Figure 4 shows the
structure of the module. It consists of two channel attention modules and one spatial
attention module. The features extracted from the previous layer are fed into the first
channel attention module, which outputs a channel-wise weighted feature map. The spatial
attention module then takes this feature map as input and outputs a spatially weighted
feature map. The second channel attention module further refines the feature map by
applying another channel-wise weighting. The final output is the refined feature map.
Figure 5 illustrates the detailed structure of each sub-module.
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The loss of information is first reduced by using parallel pooling, which consists of
a maximum pooling and an average pooling to represent the maximum pooled features
and average pooled features, respectively. Maximum pooling is a technique that selects the
maximum value within a local region of a feature map. It can preserve the texture features,
which are the most important information for image recognition. The maximum pooling
unit is sensitive to the local maximum value, which means it can enhance the contrast
and reduce the noise in the feature map. The input mixed feature map F ∈ RC×H×W

includes visible and infrared feature maps, and different descriptors, FMaxPool ∈ RC×1×1

and FAvgPool ∈ RC×1×1, are generated using maximum pooling and average pooling. Then,
these two descriptors are fed into a multi-layer perceptron (MLP) for learning, concatenating
the output results of the MLP. Then, the sigmoid function is used for mapping to obtain
the channel attention map CC1 ∈ RC×1×1, CC1 and F is input to obtain the output feature
map F′ ∈ RC×H×W through replication. The calculation of the channel attention module is
shown in Equation (1).

CC1(F) = Sig(MLP(MaxPool(F)) + MLP(AvgPool(F)))
F′ = CC1 ⊗ F

(1)

The location information of the target cannot be ignored, so we use a spatial attention
module right after the first channel attention module. Firstly, the output of the first channel
attention module is taken as the input of the spatial attention module. The maximum
pooling F′

MaxPool ∈ R1×H×W and average pooling F′
AcgPool ∈ R1×H×W operations are

applied along the channel axis, cascade feature descriptors, and standard convolution f 7×7

is used to generate spatial attention mapping CS. The calculation equation for the spatial
attention module is shown in Equation (2).

CS(F′) = Sig
(

f 7×7(concat([MaxPool(F′); AcgPool(F′)]))
)

F′′ = CS ⊗ F′ (2)
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In addition, since visible light images have little impact in dim environments, infrared
images contain more information. In other words, in dim environments, the weight of
infrared images should be as high as possible to be more conducive to object detection.
So, after the spatial attention module, we added a second channel attention mechanism
to enhance feature representation capabilities further. Firstly, the feature map output by
the spatial attention module is reduced to a scalar SC ∈ R1×1×C in the channel dimension
through a global average pooling operation. Then, the scalar is mapped into a channel
attention vector through two Fully Connected Layers (FCL), which are used to weigh the
channels of the feature map and obtain the attention feature map CC2 ∈ RW×H×C.

F′′
GlobleAvgPool =

1
W × H

W

∑
i=1

H

∑
j=1

F′′ (i, j) (3)

F′′
Scale(F′′ , SC) = F′′ ·SC (4)

2.4. Evaluating Indicator

In deep learning object detection, to verify the superiority and effectiveness of algo-
rithms, detection accuracy, inference speed, model size, and frames per second (frame
rate) are usually selected as the leading indicators for evaluating model performance.
Therefore, this paper adopts the following commonly used evaluation indicators in object
detection: (1) precision (P); (2) recall (R); (3) average precision (AP) of a single category;
(4) mean average precision (MAP); (5) frames per second (FPS) is used to measure the
model comprehensively.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Among them, TP (True Positive) is the number of targets correctly detected by the
model, FP (False Positive) is the number of targets for model error detection, FN (False
Negative) is the correct number of targets missed by the model.

The mean average precision (MAP) for a set of queries is the mean of the average
precision scores for each query, as shown in Equation (7).

MAP =
1
c

c

∑
i=1

APi =
1
c

c

∑
i=1

∫ 1

0
P(R)dR (7)

AP =
∫ 1

0
P(R)dR (8)

Among them, AP represents the accuracy of each category, and c represents the
number of categories in the dataset.

The number of frames detected per second refers to the average value of the model’s
detection speed for foreign object images in the test set, as shown in Equation (9).

FPS =
FT
TC

(9)

Among them, FT represents the total number of frames, and TC represents the total
time for model detection.

2.5. Boundary Box Regression Loss Function

The dataset established in this paper contains mainly small-scale FOD images, where
the pixel area is very small compared to the whole image. The default GIoU localization loss
function in the YOLOv5 network degenerates into IoU when two boxes have an inclusion
relationship, revealing the drawback of the IoU loss function, which is that small distance
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movements after the inclusion relationship do not reduce loss, leading to convergence
difficulties. To improve the model’s accuracy in locating foreign objects on airport runways,
the default GIoU localization loss function inherent to the YOLOv5 network architecture
is supplanted with a CIoU loss function. The distance, overlap rate, scale, and penalty
terms between the target and the frame anchor are taken into account by CIoU, which can
make the target box regression more stable. A schematic diagram of the Complete CIoU is
illustrated in Figure 6. The blue solid box denotes the predicted bounding box, the orange
solid box denotes the ground truth bounding box, the white dotted box represents the
smallest enclosing bounding box, with c indicating the diagonal distance of the minimum
enclosing box. The CIoU equation is defined in (14).

IoU =

(
b ∩ bgt

b ∪ bgt

)
(10)

LossGIoU = 1 −
(

IoU − c + b ∪ bgt

|c|

)
(11)

v =
4

π2

(
arctan

w
h
− arctan

wgt

hgt

)2

(12)

α =
v

(1 − IoU) + v
(13)

LossCIoU = 1 −
(

IoU −
ρ2(b, bgt)

c2 − αv

)
(14)
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Among them, the prediction box’s midpoint and the target box’s midpoint are repre-
sented by b and bgt, while ρ2(b, bgt) represents the distance between them. Based on the
positional relationship between the two boxes, the box that exactly covers them is defined
as the minimum bounding box, with a diagonal length of c.v reflects the similarity in aspect
ratio between the two boxes. w and wgt represent the width of the prediction box and
target box, respectively. h and hgt represent the height of the prediction box and target
box, respectively. α represents the weight function, which is the influencing factor of v.
Applying the CIoU loss function can reduce the target positioning error in the small target
intrusion detection task of airport runway foreign objects and enhance the fitting ability of
the prediction box to the genuine target box.

3. Experiment

In this section, we describe the experimental design process and provide an analysis
of the experimental results. Firstly, we introduce the experimental setup and configuration.
Then, a detailed description and analysis are conducted to establish the experimental
dataset, and the evaluation indicators are introduced. Finally, a comparison is made
between the attention mechanism proposed and various other attention mechanisms.
Additionally, a visual comparison is made to demonstrate its superior performance in
terms of both detection accuracy and speed.
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3.1. Experimental Configuration

All experiments were conducted based on the Pytorch1.12.1, with hardware consisting
of an NVIDIA RTX-3060Ti GPU and a 4.9 GHz (Inter Core i7-12700F) CPU. The program
was run on the Windows 11 operating system, with Python version 3.8.16, and accelerated
model training using CUDA11.1 and cuDNN8.0.4 during the experiment.

Throughout the experiments, we unified the input image size to 640 × 640 and added
batch size set to 2. In the training phase, the number of iterations is set to 200 epochs, and
the initial learning rate is set to 0.01. In the first three epochs, the learning rate of each
iteration is updated using warm-up learning rate preheating to improve the convergence
speed of model loss. After the three epochs, the learning rate is attenuated using the
cosine annealing method to ensure the stability of model loss convergence, and the weight
attenuation rate is set to 0.0005. Finally, after a comprehensive comparison of the accuracy
and inference speed of the training model, the optimal model is selected.

3.2. Experimental Dataset Creation and Analysis

FOD detection presents a challenge when dealing with small targets set against com-
plex backgrounds. These small-scale targets, owing to their diminutive physical dimensions
or the considerable distance from the imaging source, occupy a relatively minuscule portion
of the image, often encompassing only a few dozen pixels or even fewer. In the context of
the COCO dataset [32], small targets are defined as those encompassing dimensions less
than 32 × 32 pixels. Additionally, according to a definition from the International Society
for Optical Engineering [33], a small target constitutes any target encompassing less than
80 pixels within a 256 × 256-pixel image. In simpler terms, if the size of the target is less
than 0.12% of the original image area, it qualifies as a small target. The visual representation
of a small target is shown in Figure 7.
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FOD refers to any foreign objects, debris, or substances that have the potential to cause
damage to the aircraft. These can include metal components [34], crushed stones, paper
products, animals, plants, and more. Among them, metal components are ingested by the
engine, and it is very easy to cause accidents. Based on the distribution of foreign objects in
actual airport runway scenes and the technical characteristics of deep learning for sample
requirements, an Infrared-Visible Foreign Object Debris Dataset (IVFOD) was designed
and constructed. This dataset contains four types of foreign objects: screw; nut; key; bottle.

The IVFOD collected in this experiment used cement concrete pavement and asphalt
pavement on the Chenggong campus of Kunming University of Science and Technology
to simulate the airport runway pavement. The dual light camera was installed on the
equipment, and a twisted pair cable was utilized to interface the camera to the computer.
The designated shooting angle was 30◦, set on the roadside and on the road. However,
data collection was conducted over multiple sessions spanning several days; thus, there
may have been a deviation of ±1◦–2◦ in the actual shooting angle for each session. Foreign
objects at a distance of 5 m (±1–10 cm), 10 m (±1–10 cm), and 15 m (±1–10 cm) from the
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equipment were photographed in the morning, afternoon, and evening. The entire data
collection system is shown in Figure 8.
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Firstly, screened the target images captured by the dual light camera and finally
determined the number of images in the dataset to be 4137 pairs. Then, 7217 instance
targets containing four classes were labeled using Labelimg and converted into PASCAL
VOC2007 annotation format files. Using the Random library, 4137 pairs of images were
randomly divided into a training set and a validation set in an 8:2 ratio for model training
and validation, respectively. In addition, there were 100 sets of images to verify the
generalization ability of the final model. The original images and annotation images of
FOD are shown in Figure 9.
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image; (c) infrared annotation map; (d) visible annotation map.

The size and distribution of targets used in this experiment are shown in Figure 10. The
pixel area encompassed by the targets acquired in this experimental investigation uniformly
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comprises less than 5000 pixels, and the size of the target is less than 0.12% of the original
image area, thereby satisfying the aforementioned criteria for small target classification. In
addition, the numbers of the four types of targets collected in this experiment were 2093,
1822, 1768, and 1534, respectively, with a relatively balanced distribution.
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3.3. Experimental Dataset Creation and Analysis

This paper compares the MAP of several different attention mechanisms under the
YOLOv5 framework, including SA (Spatial Attention), CA (Channel Attention), CBAM,
and SE. PURE indicates a situation where no attention mechanism has been introduced.
According to Table 2, the introduction of a spatial attention mechanism reduced the model’s
accuracy by 5.8%. The model that used only channel attention achieved an accuracy
that was 6.1% higher than the model that used mixed attention, CBAM, indicating the
importance of channel attention for detecting small targets.

Table 2. Comparison test results of attention mechanism.

Precision Recall MAP Mean Loss

PURE 0.671 0.719 0.713 0.004258
SA 0.613 0.784 0.71 0.004475
CA 0.722 0.754 0.747 0.004151

CBAM 0.661 0.802 0.763 0.005930
SE 0.745 0.838 0.817 0.004216

Proposed 0.845 0.913 0.911 0.004054

With the above experimental results, it can be seen that on the IVFOD dataset, the
method proposed in this paper can effectively improve the recognition accuracy of the
model for small targets. Compared with the original YOLOv5 model, the accuracy and
generalization ability are both improved to some extent. The training convergence speed
and accuracy of the network are also improved after introducing the CIoU loss function. A
comparison of the loss functions CIoU and GIoU is shown in Figure 11c. The improvements
proposed in this paper are in line with the expected results. In order to show a more intuitive
comparison of the actual detection performance of each attention mechanism, Figure 11a,b
give the comparison plots of the detection accuracy and loss curves of several models.

Table 3 compares the mean average precision of different objects under different
models. In the case of visible images alone (single mode), the effect of increasing the depth
of the network on improving the accuracy of small target detection is not very significant.
In contrast, for objects such as bottles, which are significantly larger than the other three
types of objects, deepening the depth of the network can improve detection accuracy. By
comparing the first and third sets of data in the table, it can be observed that the addition of
infrared images improved the detection accuracy for small targets, even without increasing
the network depth. Moreover, the detection accuracy for tiny targets such as nuts was
enhanced by using infrared images. SLBAF-Net [35] has added an infrared and visible light
adaptive fusion layer to the front end of the network, which enhances feature extraction



Appl. Sci. 2024, 14, 2162 12 of 16

while fusing infrared and visible image feature information, effectively improving the
accuracy of small target detection. In order to better preserve the target information in the
original image, the model in this paper chooses to directly input the original infrared and
visible light images in the initial stage of the network. Subsequently, this paper’s newly
established attention module was added to the backbone to improve the accuracy of small
target detection further. The experimental results show that the model in this paper has
achieved good results in detecting four types of targets: bottle, screw, key, and nut.
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Table 3. MAP values for different categories and models.

Model Input Bottle Screw Key Nut

YOLOv5s Vis 0.934 0.617 0.837 0.478
YOLOv5m Vis 0.944 0.623 0.861 0.484
YOLOv5s Inf and Vis 0.942 0.608 0.665 0.634
YOLOv5m Inf and Vis 0.966 0.819 0.854 0.708
SLBAF-Net Inf and Vis 0.938 0.843 0.851 0.768
Proposed Inf and Vis 0.958 0.905 0.953 0.827

The specific training results for each model are shown in Table 4. To furnish a compre-
hensive evaluation of detection performance, operational efficiency, and resource demands,
MAP, frames per second (FPS), and parameters were employed as quantification metrics.

Table 4. Test results of different models.

Model Input MAP FPS (frame/s) Parameters Training Time Discrimination Time

YOLOv5s Vis 0.717 36.9 12.5 M 10.524 h 3.8 ms
YOLOv5m Vis 0.728 27.66 47.0 M 10.911 h 6.9 ms
YOLOv5s Inf and Vis 0.713 35.5 14.4 M 9.958 h 3.3 ms
YOLOv5m Inf and Vis 0.837 38.2 47.3 M 10.261 h 5.0 ms
SLBAF-Net Inf and Vis 0.850 25.13 5.7 M 10.730 h 16.1 ms
Proposed Inf and Vis 0.911 36.3 42.2 M 10.246 h 4.4 ms

When comparing the experimental results of training YOLOv5s and YOLOv5m on the
visible dataset for detecting small foreign objects, simply increasing the network depth does
not significantly improve small target detection accuracy, with only a 1.1% gain in MAP.
When comparing the experimental results of training YOLOv5s and YOLOv5m on infrared
and visible light datasets, enriching the feature information of small foreign objects using
combined infrared and visible images enables the deeper network to improve detection
accuracy. Specifically, there is a 12.4% increase in mean average precision (MAP), indicating
enhanced detection across various foreign object types overall. SLBAF-Net has an infrared
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and visible light adaptive fusion layer added to the front end of the network, which
enhances feature extraction and fuses the infrared and visible image features, effectively
improving small target detection accuracy. The model in this paper achieves a MAP of
91.1%, which is better than other models and has the highest detection accuracy for the
target. FPS reached 36.3, with a slightly slower detection speed than the baseline model.
While achieving high accuracy, the parameters of the improved model are 42.2 M, which
proves that our model is lightweight enough, easy to deploy, and can be applied to real-time
detection scenarios.

The original infrared image is shown in Figure 12a, and the original visible light image
is shown in Figure 12b. Small target detection based on visible light images suffers from
the challenges of tiny pixels, low resolution, unclear target texture features, and ineffective
color features due to the small size of the target. In poor lighting conditions, such as at
night, visible light loses its edge completely.
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The six exemplar image pairs were acquired at three distinct temporal instances—morning,
afternoon, and evening. Some results from different networks are shown in Figure 12c–f.
Given the diminutive scale of the small targets, the resultant detections were cropped to
showcase only the localized areas encompassing the targets.

Visible light images convey more information about the target under favorable lighting
conditions. However, there are still many things that could be improved by relying on
visible images for small target detection. Figure 12c shows the case of using only visible light
images as input to the network. Visible light images possess non-negligible advantages,
but the fifth and sixth images show missed and wrong detection. So, visible light images
have non-negligible drawbacks in poor lighting conditions, such as at night. Figure 12d
shows the use of SLBAF-Net with both visible and infrared images as inputs to the network.
SLBAF-Net effectively improves the network’s performance in detecting small targets at
night. However, as shown in the first figure, the target detection accuracy is unsatisfactory.
The third result plot in Figure 12d shows that the confidence level of correctly detecting the
target as a key is 0.34 and 0.55, respectively, which is a decrease of 0.47 and an increase of
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0.19, respectively, when compared to the third result plot in Figure 12c. Figure 12e shows the
use of YOLOv5m with both visible and infrared images as inputs to the network. The first
and fourth images both show missed detection. The third image shows the phenomenon
of wrong detection. Moreover, the detection accuracy is less satisfactory than SLBAF-Net.
Figure 12f shows the result images using the method proposed. Based on reducing wrong
and missed detection, it effectively improves the accuracy of network detection of small
targets. The third result plot in Figure 12f shows that the confidence level of correctly
detecting the target as a key is 0.68 and 0.89, respectively, which are increased by 0.34
compared to the third result plot in Figure 12d. Further, it improves the detection accuracy
of small targets at night.

4. Conclusions

The existing deep learning algorithms still have some problems when applied to FOD
detection tasks. In visible light images, the targets are minuscule, with texture and color
features that are not prominent, and the background features are noisy and diverse. This
paper addresses the above problems and draws the following conclusions:

1. In order to make up for the problem of missing target information in visible images,
the method of complementing the information of visible images and infrared images
is adopted to enrich the feature information of small targets;

2. A multi-attention mechanism is proposed to suppress the interference of background
features for effective recognition of small targets. This method not only improves
the accuracy of small target detection during the day but also takes into account the
detection performance of small targets at night. The model detection speed can also
meet the real-time detection demand of FOD;

3. A comprehensive experimental validation shows that the method in this paper is
superior to other methods for detecting small-scale FOD. Although the model pa-
rameters are not the lightest, they are still at a high level and meet expectations in
terms of quantitative results and visualization effects. The proposed model achieves a
detection speed of 36.3 frame/s. The model also attains an average accuracy of 91.1%,
which is 7.4% higher than the baseline network.

The method in this paper has a promising application in practical FOD detection. In
the future, we plan to augment the datasets across more weather variability (rain, snow, hail,
etc.), broader foreign object scales and categories, as well as expanded lighting parameters
(intensities, source types, spectra). Considering global airport diversity, targeted studies
will also be initiated with high-altitude sites like Kunming Changshui Airport. These efforts
seek to continuously boost model generalization and adaptability to novel environments.
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Abbreviations

FOD Foreign Object Debris
IVFOD Infrared-Visible Foreign Object Debris Dataset
CIoU Complete Intersection over Union
GIoU Generalized Intersection over Union
MPA Mean Pixel Accuracy
CNN Convolutional Neural Network
SiLU Sigmoid Linear Unit
MLP Multi-Layer Perception
FPS Frames Per Second
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