
Citation: Aljanabi, M.R.; Borna, K.;

Ghanbari, S.; Obaid, A.J. Multicast

Routing Based on Data Envelopment

Analysis and Markovian Decision

Processes for Multimodal

Transportation. Appl. Sci. 2024, 14,

2115. https://doi.org/10.3390/

app14052115

Academic Editor: Vicente Julian

Inglada

Received: 31 January 2024

Revised: 26 February 2024

Accepted: 29 February 2024

Published: 4 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multicast Routing Based on Data Envelopment Analysis and
Markovian Decision Processes for Multimodal Transportation
Mohanad R. Aljanabi 1,2 , Keivan Borna 1,* , Shamsollah Ghanbari 3 and Ahmed J. Obaid 2

1 Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran 15719-14911, Iran;
mohanad@khu.ac.ir or mohanadr.aljanabi@uokufa.edu.iq

2 Faculty of Computer Science and Mathematics, University of Kufa, Najaf 540011, Iraq;
ahmedj.aljanaby@uokufa.edu.iq

3 Department of Computer Science, Faculty of Engineering, Islamic Azad University, Ashtian Branch,
Ashtian 142744, Iran; dchpc@ipm.ir

* Correspondence: borna@khu.ac.ir; Tel.: +98-217-763-0040

Abstract: In the context of Iraq’s evolving transportation landscape and the strategic implications
of the Belt and Road Initiative, this study pioneers a comprehensive framework for optimizing
multimodal transportation systems. The study implemented a decision-making framework for
multimodal transportation, combining data envelopment analysis (DEA) efficiency scores and a
Markov decision process (MDP) to optimize transportation strategies. The DEA scores captured
decision-making unit (DMU) performance in various aspects, while the MDP rewards facilitated
strategic mode selection, promoting efficiency, cost-effectiveness, and environmental considerations.
Although our method incurs a total cost approximately 29% higher than MRMQoS, it delivers a
nearly 26% reduction in delay compared to MCSTM. Despite MRMQoS yielding an 8.3% higher profit
than our approach, our proposed scheme exhibits an 11.7% higher profit compared to MCSTM. In
terms of computational time, our method achieves an average CPU time positioned between MCSTM
and MRMQoS, with MCSTM showing about 1.6% better CPU time than our approach, while our
method displays a 9.5% improvement in computational time compared to MRMQoS. Additionally,
concerning CO2 emissions, the proposed model consistently outperforms other models across various
network sizes. The percentage decrease in CO2 emissions achieved by the proposed model is 7.26%
and 31.25% when compared against MRMQoS and MCSTM for a network size of 25, respectively.

Keywords: multicast routing; multimodal transportation; data envelopment analysis; decision-
making unit; markovian decision process; Iraq transportation network

1. Introduction

Multimodal transportation optimization has emerged as a crucial strategy to address
the complex challenges faced by nations worldwide, and Iraq is no exception. In the context
of Iraq’s transportation landscape, multimodal transportation optimization stands as a
beacon of hope, promising to alleviate unique challenges while leveraging the nation’s
geographical advantage for economic growth and development. Strategically positioned
in the heart of the Middle East, Iraq holds immense potential for a robust multimodal
transportation system, facilitated by vital waterways like the Persian Gulf and an extensive
road network linking major cities and neighboring nations. This geographic advantage,
when properly harnessed, can elevate Iraq’s transportation network to new heights [1–3].

Multimodal transportation integrates various modes such as road, rail, air, and sea to
efficiently move goods and people. Iraq’s diverse geography, including mountains, deserts,
and a substantial coastline along the Persian Gulf, necessitates a strategic approach to
transportation. Recognizing the varying needs of different regions, Iraq embraces multi-
modal transportation as a flexible solution [4–6]. This integrated approach proves vital for
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economic development and post-conflict reconstruction, ensuring efficient transportation
networks for rebuilding infrastructure.

The economic backbone of Iraq, particularly its reliance on oil exports, underscores
the importance of efficient transportation links from production centers to export terminals.
Multimodal transportation facilitates seamless movement, contributing to overall economic
resilience and growth. Additionally, Iraq’s geographical location, surrounded by neighbor-
ing countries, emphasizes the significance of regional connectivity. Adopting multimodal
transportation enhances collaboration, cross-border trade, and economic ties, fostering
a more interconnected and prosperous region. Efficiency, cost reduction, and security
are additional advantages offered by multimodal transportation, especially pertinent in
mitigating historical security challenges by diversifying transportation routes [4–6].

From an environmental perspective, multimodal transportation contributes to sus-
tainability efforts by reducing overall greenhouse gas emissions. By strategically utilizing
different modes based on their efficiencies and environmental impacts, Iraq can make
strides toward a more sustainable and eco-friendly transportation system. Addressing
urban congestion, particularly in major cities like Baghdad, is another benefit. Integrat-
ing public transit alongside other modes can alleviate traffic congestion, enhancing the
quality of life for urban residents. Moreover, well-developed transportation infrastructure,
including air travel and roads, promotes tourism, leading to economic growth, revenue
generation, and increased employment opportunities. In times of humanitarian crises,
efficient multimodal transportation is indispensable for delivering timely and essential
humanitarian aid to affected populations [4–6]. This comprehensive approach ensures
that aid reaches its destination promptly, contributing to the well-being of those in need.
In essence, Iraq’s adoption of multimodal transportation reflects a holistic strategy that
addresses diverse needs, promotes economic development, enhances security, and fosters
sustainability across various facets of the nation’s progress.

In light of these challenges, the integration of various transportation modes through
approaches like data envelopment analysis (DEA) and hidden Markov models (HMM)
becomes instrumental [7–11]. These methods offer tailored solutions that can address Iraq’s
transportation woes and unlock the full potential of its transportation network. In a context
where infrastructure quality profoundly influences safety and efficiency, DEA employed for
efficiency evaluation utilizes real-time data to assess the efficiency of each transportation
arc. Subsequently, targeted measures can be recommended to enhance efficiency and safety,
addressing critical aspects in a country where the quality of infrastructure significantly
impacts transportation safety and efficiency [7–11]. In tandem, the application of HMM
for predictive modeling proves instrumental in transforming transportation dynamics.
HMM predicts transportation costs and CO2 emissions based on historical data, providing
valuable insights for decision-making. Utilizing historical data for training, the HMM
enhances prediction accuracy and aids in optimizing transportation planning [7–11].

This paper marks a paradigm shift in multimodal transportation decision-making by
introducing a dynamic fusion of DEA and HMM. The study pioneers a holistic framework
that simultaneously evaluates financial and environmental impacts, showcasing a novel
approach in the cargo sector. The real-time adaptation to efficiency scores and predictive
modeling further contributes to the unprecedented depth and breadth of this research.
The primary contribution lies in emphasizing the crucial need for adopting multimodal
transportation optimization in Iraq, utilizing advanced techniques, specifically DEA and
HMM, as invaluable assets for addressing the complex challenges within the nation’s
transportation sector. These tailored approaches are recognized for their capacity to enhance
infrastructure, increase transportation efficiency, reduce emissions, and ensure the safety
and security of transportation routes.

Moreover, the paper advocates for the integration of these advanced techniques as
pivotal elements in Iraq’s journey toward establishing a modern, efficient, and sustainable
transportation network. It positions DEA and HMM as instrumental tools in unlocking
Iraq’s full economic potential through improved logistics and transportation systems.
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The acknowledgment of intricate environmental impacts associated with transportation
and logistics systems is a notable aspect, with an emphasis on proactive environmental
management strategies. The paper urges a transition from mere regulatory compliance to a
forward-thinking approach, identifying negative interactions, impact types, and alternative
methods to control pollution and natural resource degradation, aligning with contemporary
environmental standards and sustainable practices [3,4,12–14].

The structure of this paper is as follows: Section 2 presents the literature review, of-
fering a comprehensive overview of existing studies and findings related to multimodal
transportation networks. Section 3 explains the system model and design methodology.
Section 4 presents a performance evaluation of the paper, including simulation environ-
mental and simulation results evaluating the performance of the multimodal transportation
network system using various metrics. Finally, Section 5 concludes the paper by summariz-
ing the key findings and contributions of the study.

2. Literature Review

In the contemporary context, the transport industry emerges as a significant contrib-
utor to greenhouse gas emissions, responsible for roughly one-third of global emissions.
As the freight transportation sector experiences continuous growth, there is an urgent
requirement to create transportation networks that are both sustainable and effective.
Multimodal transportation networks offer a promising solution by seamlessly integrat-
ing various modes, including rail, road, and water, aiming to reduce costs and improve
supply chain performance. Nevertheless, the intricate task of designing such networks
is beset with challenges, necessitating a comprehensive approach. Past research has em-
ployed various methodologies, such as linear programming, integer programming, and
metaheuristic algorithms, to achieve a balance between multiple objectives in optimizing
transportation [15–17].

Multicasting, a crucial element in computer networks, involves the simultaneous
transmission of identical data from a source to a group of destinations. Multicast routing,
vital for multimedia information transmission, involves selecting a routing tree from a
source to encompass all destinations, addressing the NP-complete Steiner tree problem.
The challenge lies in constructing an optimal multicast tree with minimal cost, considering
quality of service (QoS) requirements like delay, delay jitter, bandwidth, and packet loss
inherent in multimedia communications. To address these constraints, multicast routing
introduces the concept of a constrained Steiner tree, an NP-complete problem tackled by
various heuristic algorithms [18–20].

Taboada et al. [8] evaluate the efficiency and sustainability of urban rail transit (URT)
through a two-stage methodology involving exploratory data analytics (EDA) and data
envelopment analysis (DEA). EDA characterizes URT efficiency and sustainability using
existing and suggested indicators, while DEA assesses URT efficiency through two original
models. The proposed methodology undergoes experimental validation using open data
from the Transport for London (TfL) URT network. Antunes et al. [9] address deficiencies
in previous road transportation sustainability research by considering epistemic uncer-
tainty related to innovation and research and development (R&D) expenditure impact
on pollutant emissions performance. They introduce a TEA-IS model for assessing road
transportation sustainability performance in 29 Chinese provinces over a 14-year period,
employing a hybrid DEA-TOPSIS approach and machine learning techniques. Results
reveal high synergy in Chinese provinces, suggesting the need for favorable policies to
enhance innovation and attract foreign direct investment.

Zhang et al. [10] highlight the transportation network design problem (TNDP), in-
volving strategic criteria selection to enhance an existing transportation network amid
increasing traffic demand. The authors employ a hidden Markov model and equilibrium
optimizer (EO) for resolution, demonstrating the novel method’s superior effectiveness
through comparative analysis on a test network. Fotuhi et al. [21] present a robust mixed-
integer linear program (MILP) supporting railway operators in making informed decisions
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about the expansion of their intermodal networks. The model addresses uncertainties
related to demand and supply, incorporating budgetary constraints and capacity limita-
tions. A hybrid GA, utilizing column generation and multimodal shortest path label-setting
algorithms, tackles the complex MILP. Raayatpanah [11] proposes an innovative approach
to construct multicast trees incorporating multiple QoS parameters, utilizing data envel-
opment analysis techniques. The effectiveness of the proposed method is demonstrated
through numerical examples.

Unmanned aerial vehicles (UAVs) equipped with high-definition cameras play a cru-
cial role in efficiently collecting comprehensive road data from diverse angles. However,
their limited energy capacity poses challenges for sustained operation in such tasks. There-
fore, optimizing UAV path planning to minimize energy consumption is paramount. To
address this challenge, Kong et al. [22] proposed a novel approach called the multi-agent
deep deterministic policy gradient-based (MADDPG) algorithm for UAV path planning
(MAUP). Our method focuses on optimizing energy consumption and memory usage
through targeted optimizations.

In previous studies, the effectiveness of optimizing multimodal transportation net-
works has been highlighted by utilizing hidden Markov models (HMM) and data envel-
opment analysis (DEA) [7–11]. These approaches have proven successful in reducing
transportation costs and improving service levels. Researchers have explored challenges
and opportunities in multimodal freight transportation, with a specific focus on enhancing
efficiency, cost-effectiveness, and environmental sustainability. Mathematical models and
algorithms, related to DEA and HMM, have been developed to enhance overall perfor-
mance, sustainability, and logistics in the field [7–11]. Nevertheless, establishing an efficient
multicast tree requires consideration of various optimization objectives, including maxi-
mizing network throughput, minimizing latency, delay, jitter, cost, power consumption,
and error rates. This paper delves into the intricate domain of multicast routing within
multimodal transportation networks. It extensively explores the utilization of DEA for
evaluating the efficiency of network arcs. Furthermore, it integrates HMM to predict
transportation costs and CO2 emissions accurately. The core contribution lies in the con-
struction of a multicast tree, aligning with QoS constraints, achieved through formulating
the problem as a MILP problem. Additionally, the paper proposes an innovative approach
grounded in Markovian decision processes to optimize policies tailored for the complex
landscape of multimodal transportation.

3. System Methodology

The system methodology includes the multicast routing for multimodal transporta-
tion, DEA for arc efficiency evaluation, HMM for predicting transportation cost and CO2
emissions, construction of multicast tree with QoS constraints by formulating the problem
as an integer linear programming (ILP) problem, and Markovian decision processes-based
optimized policy for multimodal transportation.

3.1. Multicast Routing and QoS Constraints

Multicast routing involves the concurrent transmission of information from a single
source to multiple destinations in a network. In the context of multimodal transportation,
this concept extends beyond data to encompass the efficient routing of goods via various
transportation modes. The significance of multicast routing lies in its ability to streamline
the delivery process, reducing costs and improving overall system efficiency. In this section,
we delve into the key concepts of multicast routing, explore the challenges posed by the
Steiner tree problem, and emphasize the importance of addressing quality of service (QoS)
constraints. Mathematically, let G = (V, E) represent the transportation network graph,
where V is the set of cities and E is the set of arcs connecting these cities, as shown in
Figure 1. The multicast routing problem can be formalized as finding a tree that spans
a subset of V and minimizes the overall cost or distance. The business has access to
four modes of transportation in Iraq: truck, rail, ship, and air, which can be utilized for



Appl. Sci. 2024, 14, 2115 5 of 18

product transportation. Each arc (u, v) ∈ E in the transportation network may have
multiple transportation modes available for use, and for each mode m ∈ M on arc (u, v),
a number of possible departure times are listed by (u, v, m) as shown in Figure 1. The
transportation capacity of each arc is mode-dependent, and upload and download times at
switch points are taken into account to estimate transportation time. It is assumed that no
return transportation is considered in this study [18,23].
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railways and air transportation sources.

The received customer orders are represented by |K|, with varying demand due
dates, quantities, and priority levels. While maintaining the service quality for urgent
orders and VIP customers, the corporation may be willing to delay the delivery of some
non-urgent orders during periods of high demand. The goal is to reduce the overall trans-
portation, carbon emissions, and delay costs subject to the supply and demand constraints.
Historical data collected from the Ministry of Transportation, Iraq are used to calculate the
transportation costs and CO2 emissions for each arc and mode combination.

The Steiner tree problem is a fundamental challenge in multicast routing. It involves
finding the minimal tree that connects a subset of vertices, known as terminal nodes, in
a network. In the context of multimodal transportation, the Steiner tree problem corre-
sponds to determining the optimal routes that connect various cities while considering
QoS parameters. Introducing QoS constraints adds a layer of complexity to the Steiner tree
problem. QoS parameters may include constraints on delay, bandwidth, packet loss, and
other factors crucial for efficient transportation. Mathematically, the constrained Steiner
tree problem can be expressed as follows:

Min ∑
(i,j)∈A

cij·xij (1)

Subject to constraints such as ∑j xij = 1 and ∑(i,j)∈A qij·xij ≤ Q, where cij represents
the cost of traveling from city i to city j, qij denotes the QoS parameter associated with
the arc (i, j), and Q is the specified limit for the QoS parameter. Traditional multicast
algorithms often fall short in meeting the demands of modern multimodal transportation
networks. These algorithms may neglect QoS constraints or fail to consider the dynamic
nature of transportation systems. As a result, there is a pressing need for a more sophisti-
cated approach that integrates advanced techniques such as DEA and HMM to enhance
the accuracy and efficiency of multicast routing. In the following sections, we will explore
how DEA and HMM contribute to addressing these limitations, providing a robust frame-
work for optimizing the multimodal transportation network under various constraints
and uncertainties.

3.2. Efficiency Assessment of Transportation Arcs Using DEA

DEA emerges as a powerful non-parametric methodology for the comprehensive eval-
uation of DMUs in the intricate realm of multimodal transportation networks. Originating
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from the seminal work by Charnes et al. [24], DEA provides an effective means to gauge
the relative efficiency of peer units without requiring a predetermined functional form for
a production function. The production frontier, constructed as a convex and piecewise
function, is formulated by the linear combination of efficient units. Consider a scenario with
p DMUs to be evaluated, indexed by j ∈ {1, . . . , p}. Each DMU is presumed to consume
k input levels to produce s different outputs. The input and output vectors for DMUj
are denoted as xj =

(
x1j, . . . , xkj

)
and yj =

(
y1j, . . . , ysj

)
, respectively. All components of

vectors xj and yj are non-negative for all DMUs, with each DMU having at least one strictly
positive input and output. The relative efficiency score of DMUo is expressed as:

θo = maxu,v

(
∑s

r=1 uryro

∑k
i=1 vixio

)
(2)

where ur and vi are the non-negative weights associated with output r and input i, respec-
tively. It is essential to ensure that these weights, when applied to other DMUs, do not
result in an efficiency value exceeding one [25]. This requirement can be formally stated
through the following constraints:(

∑s
r=1 uryrj

∑k
i=1 vixij

)
≤ 1, j = 1, 2, . . . p (3)

Therefore, the relative efficiency score of DMUo is obtained by the following linear
fractional model,

θ∗o = Max

(
∑s

r=1 uryro

∑k
i=1 vixio

)
(4)

subject to the constraints, (
∑s

r=1 uryrj

∑k
i=1 vixij

)
≤ 1, j = 1, 2, . . . p (5)

vi ≥ ϵ i = 1, 2, . . . k (6)

ur ≥ ϵ r = 1, 2, . . . s (7)

In this context, the parameter ϵ > 0 serves as a non-Archimedean element ensuring
the existence of strongly efficient solutions [25]. It is important to highlight that 0 < θ*

o ≤ 1,
and a DMU becomes efficient when θ*

o = 1. Each DMU is assessed based on its optimal
weight. The outcomes of DEA models involve identifying the hyperplanes that delineate
an envelope surface or Pareto frontier. It is noteworthy that an efficient DMU will be
positioned on the Pareto frontier. The initial fractional model can be converted into the
subsequent linear program using the Charnes–Cooper transformation [26].

θ∗o = Max∑s
r=1 uryro (8)

subject to the constraints,

∑k
i=1 vixio = 1 (9)

∑s
r=1 uryrj − ∑k

i=1 vixij ≤ 0, j = 1, 2, . . . p (10)

vi ≥ ϵ i = 1, 2, . . . k (11)

ur ≥ ϵ r = 1, 2, . . . s (12)

Equation (8) represents the primary CCR model, introduced by Charnes, Cooper,
and Rhodes. Let u*

r(r = 1, 2, . . . s) and v*
i (i = 1, 2, . . . k) represent the optimal output and

input weights in the aforementioned model. The term θ*
o = ∑s

r=1 u*
ryro quantifies the
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best relative efficiency score of DMUo, referred to as the CCR-efficiency of DMUo. A
DMUo is considered CCR-efficient if θ*

o = 1; otherwise, it is classified as CCR-inefficient.

θjo =

(
∑s

r=1 u*
ryrj

∑k
i=1 v*

i xij

)
is referred to as the cross-efficiency value of DMUj, which reflects the

peer evaluation of DMUo to DMUj (j = 1, 2, . . . p; j ̸= o). As a result, we generate a pxp
matrix where the diagonal elements represent the CCR-efficiency scores of DMUs, and
the remaining entries provide the cross-efficiency scores. To facilitate cross-evaluation, the
average cross-efficiency score is computed in each column, offering a distinctive ranking
of DMUs and mitigating impractical weight configurations [27]. However, adjustments
to the matrix of cross efficiency may be necessary to address (2) due to the presence of
alternative input and output weights. The non-uniqueness of optimal weights poses a
challenge to cross-efficiency evaluation. To address this, Sexton et al. [28] and Doyle and
Green introduced a secondary objective. Doyle and Green [29] introduced aggressive and
benevolent models, with the aggressive model formulated as follows:(

∑p
j=1,j ̸=o yrj

)
(13)

subject to the constraints,

∑k
i=1 vi

(
∑p

j=1,j ̸=o xij

)
= 1, (14)

∑s
r=1 uryro − θ∗o ∑k

i=1 vixio = 0, (15)

∑s
r=1 uryrj − ∑k

i=1 vixij ≤ 0, j = 1, 2, . . . p; j ̸= o (16)

vi ≥ ϵ i = 1, 2, . . . k (17)

ur ≥ ϵ r = 1, 2, . . . s (18)

where θ∗o is the CCR-efficiency of DMUo derived from (8).

3.3. HMM for Predicting Transportation Costs and CO2 Emissions

HMMs are probabilistic models widely used in various fields, including predictive
modeling. HMMs are particularly effective in scenarios where underlying processes involve
hidden states that influence observed outcomes. In the context of multimodal transporta-
tion, HMMs can be employed to model the dynamic nature of transportation costs and
CO2 emissions. An HMM consists of a set of hidden states, observable symbols emitted
from these states, and transition probabilities between states. In the transportation domain,
hidden states may represent different operating conditions, and observable symbols could
correspond to cost and emission levels. Let us define the components of an HMM for
predicting transportation costs (TC) and CO2 emissions (CE).

• Hidden States: S = {S1, S2, . . . , SN}, representing different operating conditions
(e.g., normal operation, peak demand, maintenance).

• Observable Symbols: O = {o1, o2, . . . , oM}, indicating levels of transportation costs
and CO2 emissions.

• State Transition Probabilities: aij = P
(
qt = Sj | qt−1 = Si

)
, where qt represents the

hidden state at time t.
• Emission Probabilities: bj(k) = P

(
okatt | qt = Sj

)
, where bj(k) is the probability of

observing symbol ok when in state Sj.
• Initial State Probabilities: πi = P(q1 = Si), representing the probability of starting in

state Si.

Given a sequence of observed symbols = o1, o2, . . . , oT , the goal is to find the most
likely sequence of hidden states S = S1, S2, . . . , ST that generated the observed sequence.
This is achieved through the Viterbi algorithm,

δt(j) = maxi
[
δt−1(i)·aij

]
·bj(ot) (19)
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ψt(j) = argmaxi
[
δt−1(i)·aij

]
(20)

The most likely state sequence is then obtained by backtracking through the computed
values. Training the HMM involves estimating the model parameters (aij, bj(k), πi) based
on historical data. The expectation–maximization (EM) algorithm is commonly employed
for this purpose.

Let Q = {q1, q2, . . . , qT} represent the hidden state sequence corresponding to ob-
served symbols O. The EM algorithm iteratively maximizes the expected log-likelihood:

Q(λ | O) = ∑Q P(Q | O, λ)·logP(O, Q | λ) (21)

where λ represents the set of model parameters.
The update equations for the HMM parameters are as follows:

• Transition Probabilities: aij =
∑T

t=2 ξt(i,j)
∑T−1

t=1 γt(i)
;

• Emission Probabilities: bj(k) =
∑T

t=1 γt(j)·δ(ot−k)
∑T

t=1 γt(j)
;

• Initial State Probabilities: πi = γ1(i).

Here, ξt(i, j) is the probability of transitioning from state Si to Sj at time t, γt(i) is the
probability of being in state Si at time t, and δ(·) is the Kronecker delta function.

By utilizing historical data, the HMM is trained to capture the underlying patterns in
transportation costs and CO2 emissions, enabling accurate predictions in real-time scenarios.
This approach enhances the system’s ability to anticipate changes, optimize resource
allocation, and improve overall decision-making in the multimodal transportation network.

3.4. Construction of Multicast Tree with QoS Constraints

The construction of a multicast tree with quality of service (QoS) constraints is crucial
for optimizing the multimodal transportation network. To achieve this, we formulate the
problem as an integer linear programming (ILP) problem. The decision variables and
parameters related to construction of multicast tree are as follows.

xij: Binary variable indicating whether arc (i, j) is included in the multicast tree (1 if
included, 0 otherwise).
yi: Binary variable indicating whether city i is selected as part of the multicast tree (1 if
selected, 0 otherwise).
cij: Transportation cost associated with arc (i, j).
ceij: Predicted CO2 emissions associated with arc (i, j).
qij: QoS parameter associated with arc (i, j).
Ci: Capacity constraint for city i.
Dj: Demand constraint for destination city j.
RT : Risk threshold for CO2 emissions.
DCij represents the delay cost associated with arc (i, j).
dij is a binary variable indicating whether a delay occurs on arc (i, j).

The overall objective is to minimize the total transportation cost, CO2 emissions, and
delay cost associated with arc (i, j) while meeting QoS, supply, and demand constraints.
The ILP formulation is as follows:

Min∑(i,j)∈A cij·xij + Min∑(i,j)∈A ceij·xij + Min∑(i,j)∈A DCij·dij (22)

3.5. Integration of DEA Efficiency Scores and HMM Predictions into ILP

The ILP formulation incorporates the efficiency scores obtained from DEA and the
predictions from the HMM. This integration allows for a comprehensive optimization
approach that considers both historical efficiency and dynamic predictions.

Maximize ρij (23)
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subject to ∑n
k=1 λk ·xkj

∑m
k=1 uk ·cekj

≤ ρij.

This constraint ensures that the inclusion of an arc in the multicast tree is influenced
by its historical efficiency (ρij) obtained from DEA.

Maximize δij (24)

subject to δij ≤ qij.
Here, δij represents the QoS parameter associated with the arc (i, j), and the constraint

ensures that the QoS parameter is satisfied.

3.6. Constraints in the ILP formulation

1. Supply and Demand Constraints

∑j Tmn
ij ≤ Cm

i (25)

∑j Tmn
ij ≥ Dn

j (26)

These constraints ensure that the total amount of goods transported from each origin
city does not exceed the capacity of the transportation mode and meets the demand for
each shipment.

2. Non-negativity Constraints

Tmn
ij , Xmn

ij , Yj, dij ≥ 0 (27)

These constraints ensure that decision variables representing quantities, selections,
and delays are non-negative.

3. Mode Selection Constraints

∑m Xmn
ij = 1 (28)

This constraint ensures that for each shipment from origin i to destination j, only one
transportation mode is selected.

4. DEA Efficiency Constraints

ρij =
∑n

k=1 λk·xkj

∑m
k=1 uk·cekj

(29)

This constraint ensures that the DEA efficiency scores are calculated based on the
historical efficiency and predicted CO2 emissions.

5. QoS Constraints for Multicast Routing

δij ≤ qij·xij (30)

These constraints ensure that the QoS parameters for each arc in multicast routing
meet specified parameters.

The incorporation of these constraints reflects a contemporary optimization model that
considers historical efficiency, predictive accuracy, and QoS parameters, enabling a robust
and adaptable decision-making framework. The inclusion of Markovian decision-making
using DEA and HMM enhances the model’s ability to capture dynamic changes in the
transportation network, ensuring optimal and reliable solutions in the context of the Iraq
Belt and Road Initiative project.

6. Risk Threshold Constraint
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∑ij δijxij ≤ RT (31)

This constraint controls the ratio of the product of the QoS parameter and risk value
to the demand for final goods.

3.7. Markovian Decision Processes-Based Optimized Policy for Multimodal Transportation

In the realm of multimodal transportation, the decision-making process involves
two crucial aspects: evaluating the efficiency of transportation modes and devising an
optimal policy for mode selection. This mathematical model seamlessly integrates data
envelopment analysis (DEA) for efficiency assessment and a Markov decision process
(MDP) for policy optimization. The decision variables used in this process are θr, which
is efficiency score for mode r, and weight assigned to each mode k denoted by λk. The
objective is to maximize θr with respect to following constraints.

Ensure that the weighted sum of infrastructure costs for all modes is less than or equal
to θr times the infrastructure cost of mode,

∑k λk ICk ≤ θr ICr (32)

Ensure that the weighted sum of passenger and freight capacities for all modes is
greater than or equal to the respective capacities of mode,

∑k λkPCk ≥ PCr (33)

∑k λkFCk ≥ FCr (34)

λk values are non-negative: λk ≥ 0 for all k.
The MDP is employed to formulate an optimal policy for mode selection over time,

considering rewards associated with efficiency, cost, and emissions.

Maximize∑∞
t=0 γt·R(st, π(st)) (35)

where R(s, a) is the reward function for state s and action a, P(s′ | s, a) is the transition
probability from state s to state s′ given action a, V(s) is the value function for state s, and
π(s) is the policy function indicating the recommended action for state s. The rewards
are computed based on DEA efficiency scores and associated costs and emissions. The
Bellman equation, which can also be considered as policy improvement, is mentioned in
(35) and (36).

V(S) = maxa∈A

(
R(s, a) + γ∑s′∈S P

(
s′ | S, a

)
·V
(
s′
))

(36)

π(S) = arg maxa∈A

(
R(s, a) + γ∑s′∈S P

(
s′ | S, a

)
·V
(
s′
))

(37)

We repeatedly evaluate and refine the policy until convergence. This model essentially
balances the short-term efficiency of transportation modes through DEA with the long-term
benefits derived from the MDP. It offers a comprehensive approach to decision-making
in multimodal transportation, aligning efficiency considerations with strategic, forward-
looking policy choices.

4. Performance Evaluation of Proposed Scheme
4.1. Simulation Environment

The dataset employed in this study is sourced from the Ministry of Transportation,
Iraq which is the General Company for (land, train, water, and air transport) [30]. The
temporal scope of the data spans from 2017 to 2022, offering a comprehensive insight into
the dynamics of the transportation sector over a six-year period. For the General Company
for Navy Transport, detailed emissions data were collected, encompassing two distinct fuel
types: ‘Diesel(oil)’ and ‘Gasoline’. This information includes the quantity of fuel consumed
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per liter, carbon dioxide emissions per ton (CO2), hydrocarbon emissions per ton (HC), and
nitrogen oxide emissions per ton (NO2). The dataset reveals a nuanced pattern of emissions,
shedding light on the environmental impact of the company’s operations, particularly in
terms of nitrogen oxides (Nox), sulfur dioxide (SO2), and methane (CH4). Furthermore, the
dataset encompasses the operational and environmental metrics of Iraqi Airways, covering
the years 2017 to 2021. Key parameters include the number of trips, and gas emissions
measured in international tons. The dataset indicates a significant growth in the number
of trips over the years, potentially indicative of the airline’s expansion. Simultaneously,
the gas emissions data suggest a considerable environmental impact associated with the
airline’s operations. Additionally, the dataset extends to the transportation sector beyond
air travel, incorporating data from trucks, railways, and airplanes. For trucks, the dataset
includes monthly quantities transported, distances covered, and associated costs. Railway
data involve monthly quantities transported, revenues, ton-kilometers, and total costs.
Similarly, airplane data incorporate loaded and unloaded weights, loaded and unloaded
costs, and total costs.

These data serve as the foundation for a sophisticated approach integrating DEA and
HMM in the context of multimodal transportation within the supply chain industry. To
tackle the intricacies of multimodal transportation optimization, the dataset undergoes
strategic segmentation into three distinct groups. This segmentation facilitates an iterative
refinement of our algorithm, a critical step in achieving an optimal solution. The incorpora-
tion of DEA, a non-parametric method, allows for the assessment of relative efficiencies
among DMUs consuming multiple inputs to produce multiple outputs. This evaluation is
pivotal for identifying optimal transportation modes within the supply chain. Concurrently,
HMM, a probabilistic model, captures the dynamic nature of the transportation network. By
modeling the underlying hidden states and observable emissions, HMM provides valuable
insights into the evolving conditions of the transportation system. The integration of DEA
and HMM enhances the model’s capabilities, allowing stakeholders to make informed
decisions based on a holistic evaluation of efficiency, cost-effectiveness, and the dynamic
nature of the transportation network. We have given some of the simulation parameters
which are specifically used in different transportation modes of supply chain networks in
Iraq in Table 1.

Table 1. Simulation parameters of different transportation modes [2,12–14].

Parameters
Transportation Mode and Values

Trucks Rail Ship Air

Activation cost of supplier per vehicle (IQD) [26,700–32,040] [30,260–32,040] [26,700–30,260] [20,000–26,700]
Variable transportation cost of shipment per km

per vehicle (IQD) [13.35–15.13] [6.23–13.35] [2.67–8.9] [0.445–1.335]

Carbon emissions per kilometer per weight for
transportation mode m [0.15–0.18] [0.07–0.17] [0.02–0.04] [0.005–0.02]

Total volume capacity of a vehicle/container in m3 [40–70] [40–70] [45–60] [15–40]
Total weight capacity of a vehicle/container in kg [18,000–20,000] [18,000–20,000] [20,000–22,000] [18,000–20,000]

Maximum iterations 100
Average customer demand [400–600]
Customer demand variance [100–200]

Supplier capacity for the final product 4~6
The production cost of the final product [0.5–5]
Carbon emissions for the final product [0.02–0.08]

Supplier risk [0.05–0.20]
Supplier/plant/customer locations Randomly distributed

Weight of the final product [10–25]

4.2. Simulation Results

We implemented a decision-making framework for multimodal transportation systems
by combining DEA and an MDP. The process begins by computing DEA efficiency scores
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for each DMU in the multimodal transportation network. The DEA efficiency scores capture
the performance of each DMU in terms of infrastructure cost, fuel consumption, number
of employee, passenger capacity, freight capacity, and CO2 emissions. Subsequently, we
formulated an MDP to optimize decision-making in the transportation network. The MDP
considers three actions, each corresponding to a specific strategy or transportation mode.
The rewards for these actions are influenced by the DEA efficiency scores, infrastructure
costs, and CO2 emissions. The objective is to find an optimal policy that balances efficiency
with the associated costs and emissions. The MDP is solved iteratively using policy
iteration, where the policy is evaluated and improved until convergence. Figure 2 depicts
the DEA efficiency score for 13 transportation modes, i.e., A: Truck, B: Rail, C: Ship, D: Air,
E: Truck + Rail, F: Truck + Ship, G: Truck + Air, H: Rail + Ship, I: Rail + Air, J: Ship + Air,
K: Truck + Rail + Ship, L: Truck + Rail + Air, M: Truck + Rail + Ship + Air. It is quite evident
from Figure 2 that transportation modes C, F, J, and K outperform all other modes keeping
in view the demographical landscape of Iraq. Depending on the type of shipment/cargo,
the combination of truck, rail, and sea is more suitable for Iraq, as indicated by DEA
efficiency score.
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In Figure 3, the MDP rewards for 13 distinct transportation modes are presented,
illustrating the nuanced evaluation of each mode’s performance within the multimodal
transportation system. Each transportation mode is represented by a stacked bar showing
the division of MDP rewards for three different actions. The rewards are derived from
the integration of DEA efficiency scores, signifying the overall effectiveness of each mode
based on predefined objectives. The normalization of rewards ensures a consistent and
comparable scale, allowing for a meaningful analysis of the relative performance of different
transportation modes. This figure provides a visual representation of how the multimodal
transportation system is assessed holistically, considering factors such as infrastructure
cost, fuel consumption, and employee-related metrics.
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Figure 4 offers valuable insights into the decision-making process by showcasing the
actions taken against the optimal transportation policy for each DMU. The optimal policy is
determined through the combination of DEA efficiency scores and MDP rewards, resulting
in a strategic approach to mode selection for each DMU. This figure provides a clear visual-
ization of how the proposed framework guides decision-makers in choosing transportation
modes that balance efficiency, cost-effectiveness, and environmental considerations. It
serves as a practical tool for stakeholders to understand the recommended actions based
on the integrated evaluation, facilitating informed and data-driven decision-making in the
complex landscape of multimodal transportation.
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The actions represented by 0, 1, and 2 in Figure 4 correspond to different strategies
regarding the selection of transportation modes for each DMU. Action 0: Maintain Status
Quo/No Change signifies that, according to optimal policy, the decision is to continue with
the existing transportation modes and strategies without making any significant alterations.
It suggests that the current combination of transportation modes for the DMU is considered
optimal based on the integrated evaluation of DEA efficiency scores and MDP rewards.
In view of the foregoing, Action 1: Explore New Transportation Modes reflects a more
radical decision by exploring new transportation scenarios. This action implies a will-
ingness to experiment with alternative modes of transportation, aiming to discover more
efficient, cost-effective, or sustainable options. It suggests a forward-looking and innovative
stance toward enhancing the overall transportation strategy. Moreover, Action 2: Adjust
Transportation Strategy represents a decision to modify the contemporary transportation
strategy for the DMU. This adjustment could involve changes in the mix of transportation
modes, possibly emphasizing more efficient, cost-effective, or environmentally friendly
modes based on dynamic evaluation. It indicates a proactive approach to optimize the
transportation strategy in response to evolving conditions.

Figure 5 presents a comparative analysis among the proposed methods, Multicast
Routing with Multiple QoS Parameters (MRMQoS), and the Minimum Cost Steiner Tree
Model (MCSTM) concerning cost, delay, profit, computational time, and CO2 emissions
needed for multicast tree construction. The MCSTM model establishes a minimum cost
Steiner tree without considering the total delay and profit associated with the resulting
tree. It is noteworthy that the proposed method exhibits a total cost approximately 29%
higher than that of MRMQoS, and the delay is nearly 26% less than that of MCSTM.
However, MRMQoS shows an 8.3% higher profit compared to our proposed method,
while our proposed scheme exhibits an 11.7% higher profit compared to MCSTM. In terms
of computational time, our method achieves an average CPU time, positioned between
MCSTM and MRMQoS. Specifically, the CPU time of MCSTM is about 1.6% better than
our proposed scheme, and our proposed scheme shows a 9.5% improved computational
time in comparison to MRMQoS (given that our approach is based on determining the
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relative efficiency of arcs before solving the integer model). It is pertinent to mention that
our proposed method generates reasonably cost-effective multicast trees while exhibiting
average delay and profit, thus contributing to an overall superior performance compared
to MRMQoS and MCSTM.
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In terms of CO2 emissions, the proposed model consistently outperforms the other
models. For instance, in a network of size 15, the proposed model demonstrated signifi-
cantly lower CO2 emissions (2173 units) compared to MRMQoS (3200 units) and MCSTM
(4200 units). This trend persisted across various network sizes, with the proposed model
consistently exhibiting reduced CO2 emissions in comparison to both MRMQoS and MC-
STM. The percentage decrease in CO2 emissions achieved by the proposed model is 7.26%
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and 31.25% when compared against MRMQoS and MCSTM for a network size of 25. These
percentages highlight the environmental benefits of the proposed model, showcasing its
capacity to contribute to a more sustainable and eco-friendly transportation system. Over-
all, the proposed model’s superior performance in minimizing CO2 emissions underscores
its efficacy and potential for promoting environmentally conscious decision-making in
multimodal transportation networks. The performance improvement gain of the proposed
model against MRMQoS and MCSTM is given in Table 2.

Table 2. Performance improvement gain of proposed model against MRMQoS and MCSTM.

Network
Size

MRMQoS MCSTM

Cost Delay Profit CPU
Time

CO2
Emissions Cost Delay Profit CPU

Time
CO2

Emissions

15 −23.53% −5.8% −10.5% 14.3% 32.1% 0.2% 0.3% 0.2% 0% 48.5%
25 −19.04% 0.1% −8.3% 9.5% 7.26% 0% 32.9% 11.7% −1.6% 31.25%
35 −29.03% −2.6% −8.2% 15.4% 4.66% 0% 13.2% 20.8% −1.3% 18.3%
45 −31.37% −5.9% −28.6% 11.1% 6.15% 0.1% 30.5% 11% −10% 13.9%

In certain instances, the imposition of QoS constraints on a chosen multicast tree
often results in its rejection. Consequently, in the subsequent experiments, we explored
an extension of our proposed approach wherein the overall weight of a multicast tree
must also conform to a budget constraint. This problem is commonly identified as a
constrained Steiner tree problem, well-known for its NP-hard nature [31]. A specific
manifestation of this model is widely acknowledged as a constrained shortest path problem,
a crucial challenge in optimization domains such as transportation, crew scheduling,
network routing, and communication networks [32]. The constrained shortest path problem
entails identifying the shortest path that adheres to specific constraints, such as delay
and cost. Our proposed method was initially employed to calculate the cost, delay, and
profit of the selected multicast tree. Subsequently, these metrics were compared with
the multicast tree resulting from the variation in MRMQoS using two distinct strategies,
with the aim of evaluating the solution quality of the proposed method. Figure 6 visually
illustrates the cost comparison of multicast trees obtained for the proposed method and the
variable MRMQoS, along with their two strategies. The results align with our expectations,
highlighting the proposed method’s capacity to discover optimal multicast trees within a
reasonable timeframe.
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In the initial approach, we evaluated the mean cost of the multicast tree resulting
from variations in MRMQoS, where the delay parameter D was held constant, while the
profit parameter P was adjusted within the range of PDEA − 10 to PDEA + 10. The solution
quality is notably influenced by the profit requirement P, and surpassing a specific thresh-
old renders the acquisition of the primal solution unfeasible. Subsequently, in the second
approach, we maintained the profit parameter P at the PDEA level and varied the delay
parameter D from DDEA − 10 to DDEA + 10. The proposed method consistently outperforms
both strategies employed in MRMQoS, specifically the multicast tree with fixed delay and
fixed profit, showcasing performance enhancements with reductions of up to 18% and 15%,
respectively. Crucially, MRMQoS encounters challenges in networks exceeding 25 nodes
due to prolonged running times, whereas our proposed method efficiently identifies op-
timal solutions within a reasonable timeframe, thus surpassing the performance of both
MRMQoS strategies. The performance improvement gain of the proposed model against
the avg. cost multicast tree fixed delay and fixed profit is given in Table 3.

Table 3. Performance improvement gain of proposed model against avg. cost multicast tree fixed
delay and fixed profit.

Network Size Avg. Cost Multicast Tree with Fixed Delay Avg. Cost Multicast Tree with Fixed Profit

10 37.8% 23.3%
15 16.4% 11.5%
20 21.9% 15.2%
25 24.2% 15.8%

5. Conclusions

Our research introduces a robust decision-making framework for multimodal trans-
portation, integrating DEA and MDP based on HMM. Utilizing raw data from the Ministry
of Transportation, Iraq, our iterative algorithm refines solutions in the intricate supply
chain landscape. The incorporation of DEA efficiency scores provides a holistic perfor-
mance assessment for DMUs, influencing mode selection based on infrastructure cost, fuel
consumption, employee metrics, and environmental impact. The DEA efficiency scores,
MDP rewards, and optimal policy decisions can facilitate stakeholders with actionable
intelligence for mode selection. Our comparative analysis showcases the superiority of our
proposed model against Multicast Routing with Multiple QoS Parameters (MRMQoS) and
the Minimum Cost Steiner Tree Model (MCSTM) across key metrics. While our approach
presents a total cost approximately 29% higher than MRMQoS, it boasts a nearly 26%
reduction in delay compared to MCSTM. However, MRMQoS shows an 8.3% higher profit
than our method, whereas our proposed scheme exhibits an 11.7% higher profit compared
to MCSTM. Regarding computational time, our method achieves an average CPU time po-
sitioned between MCSTM and MRMQoS, with MCSTM showing about a 1.6% better CPU
time than our approach, and our method displaying a 9.5% improvement in computational
time compared to MRMQoS. Additionally, in terms of CO2 emissions, the proposed model
consistently outperforms the other models across various network sizes. The proposed
model demonstrated significantly lower CO2 emissions (2173 units) compared to MRMQoS
(3200 units) and MCSTM (4200 units) in a network of size 25. The percentage decrease
in CO2 emissions achieved by the proposed model is 7.26% and 31.25% when compared
against MRMQoS and MCSTM for a network size of 25, respectively. Our proposed method
excels in addressing QoS constraints, demonstrating resilience and efficiency in multicast
tree construction, further underscoring its practicality and effectiveness.

6. Future Work

Looking ahead, future recommendations include both refining the proposed frame-
work and broadening its applicability. Beyond the immediate context of Iraq’s transporta-
tion network, the methodology integrating DEA efficiency scores and MDP holds promise
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for optimizing multimodal transportation systems in various geographic regions. Cus-
tomization of input parameters and constraints to match the characteristics of different
transportation networks enables the framework’s effective application to similar challenges
encountered in other countries or regions. This adaptability underscores the potential for
widespread implementation and impact, offering a versatile solution to enhance transporta-
tion efficiency, cost-effectiveness, and environmental sustainability globally.

Moreover, the insights gained from analyzing the performance of different trans-
portation modes and optimizing strategies in Iraq’s context have broader implications for
decision-making processes in diverse geographic contexts. Understanding the trade-offs
between transportation costs, delay costs, and environmental impacts provides valuable
guidance for policymakers and stakeholders worldwide. By extrapolating these insights,
transportation authorities can make informed decisions regarding infrastructure devel-
opment, mode selection, and resource allocation to address common challenges faced by
transportation networks globally.

To facilitate the adaptation and implementation of the optimization framework in
various regions, future research efforts should focus on refining the model and exploring
potential extensions to address additional factors or constraints relevant to transportation
optimization. Collaboration with local transportation authorities, research institutions,
and industry stakeholders in different geographic areas will be instrumental in tailoring
the framework to address specific transportation challenges and priorities. Additionally,
sharing methodologies, findings, and best practices through academic publications, confer-
ences, and collaborative research projects will contribute to global knowledge exchange
and capacity building in transportation optimization, fostering innovation and progress in
the field.
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