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Abstract: Natural language processing (NLP) has significantly transformed in the last decade, es-
pecially in the field of language modeling. Large language models (LLMs) have achieved SOTA
performances on natural language understanding (NLU) and natural language generation (NLG)
tasks by learning language representation in self-supervised ways. This paper provides a comprehen-
sive survey to capture the progression of advances in language models. In this paper, we examine
the different aspects of language models, which started with a few million parameters but have
reached the size of a trillion in a very short time. We also look at how these LLMs transitioned
from task-specific to task-independent to task-and-language-independent architectures. This paper
extensively discusses different pretraining objectives, benchmarks, and transfer learning methods
used in LLMs. It also examines different finetuning and in-context learning techniques used in down-
stream tasks. Moreover, it explores how LLMs can perform well across many domains and datasets if
sufficiently trained on a large and diverse dataset. Next, it discusses how, over time, the availability
of cheap computational power and large datasets have improved LLM’s capabilities and raised new
challenges. As part of our study, we also inspect LLMs from the perspective of scalability to see
how their performance is affected by the model’s depth, width, and data size. Lastly, we provide an
empirical comparison of existing trends and techniques and a comprehensive analysis of where the
field of LLM currently stands.

Keywords: language models; PLMs; large language model; LLMs; natural language processing; NLP;
literature review; survey; review

1. Introduction
1.1. Background

Most feature-engineering methods before generative pretrained transformer (GPT)
relied on manually curated labeled data and were time-consuming and expensive. Addi-
tionally, not all applications had annotated or labeled datasets. To address these issues,
statistical methods such as one-hot encoding [1], bag of words, N-grams [2], term fre-
quency [3], and inverse document frequency [4,5] were proposed. In these approaches,
word- or phrase-level statistics were computed and used as features in supervised models.
However, such discrete space representations lacked contextual information and resulted
in dimensionality curse, making them computationally inefficient. Although techniques
such as dimensionality reduction technique [6] and independent component analysis [7]
were applied, these techniques failed to capture a deeper understanding of concepts such
as polysemy or identifying analogies, synonyms, antonyms, etc.

An alternative to using unlabeled data in a self-supervised manner to extract and leverage
linguistic information emerged as a more effective and valuable approach. For making
predictions, language models started incorporating contexts of increasingly larger scope. The
self-supervised approach started with individual words, followed by surrounding words,
sentences, and paragraphs [8]. Word embeddings like Word2Vec [9,10], Glove [11], and
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FastText [12] were generated from the unlabeled corpora using the self-supervised approach.
They improved performance across a variety of NLP tasks.

1.2. Static Embeddings

Due to the accurate representation of words as real-valued numeric vectors, continuous
vector space representation soon became a viable alternative to discrete space- and density-
based [13,14] representations. In a continuous vector space, shallow feed-forward networks
were used to generate the word embeddings or word vectors. As neural networks are
differentiable, gradient computation with respect to model parameters became possible.
They were further optimized using techniques such as stochastic gradient descent. This
approach used objectives such as continuous bag of words (CBOW) [10] and skip-gram [10]
during training. Unlike statistical approaches, in this approach, the network automatically
discovers the embeddings. The task of explicit feature engineering was therefore alleviated
as the features were automatically deduced in neural network models.

1.3. Dynamic Embeddings

The word vector embeddings derived from shallow networks, and, although they
captured the semantics of the words, they were static and context-insensitive. Their mean-
ing did not change as per the change in context. Subsequently, deep neural network
(DNN) models were implemented to derive dynamic embeddings. The dynamic embed-
dings, such as C2V [15], CoVe [16], ELMo [17], ULMFiT [18], UNILM [19], etc., being
context-sensitive, were able to address the polysemy aspect of words. However, capturing
long-term dependencies between words was still a challenge.

1.4. Task-Dependent Architectures

Recurrent neural networks (RNNs) or their variants were used to capture the long-term
dependencies between words. In an RNN-based network, the encoder generated one single
vector of fixed dimension for the entire input sequence. For example, in [20], the decoder
received one single encoded hidden state from the encoder, representing the numerical
summary of the input sequence. The information of the entire sequence is compressed into
a single vector, making it difficult for the decoder to decode information, especially for
longer sequences. Additionally, although RNNs could capture long-term dependencies,
they had vanishing and exploding gradient issues. RNN variants, such as long short-
term memory (LSTM) and gated recurrent unit (GRU), could overcome the vanishing and
exploding gradient problem encountered in RNNs for sequence modeling. For instance,
Ref. [21] used LSTM and achieved state-of-the-art (SOTA) performance on translation tasks.
However, for neural machine translation (NMT) tasks requiring a sequence-to-sequence
(seq2seq) model, the performance of LSTMs and GRUs decreased as the input sequence size
increased. Self-attention-based transformer models addressed these issues of long-range
dependencies encountered in RNN and its variant models.

1.5. Task-Agnostic Architecture

In the last decade, neural networks have been extensively used in language modeling
tasks, starting from shallow feed-forward networks, RNNs, LSTMs, and deep neural
networks to self-attention-based transformer networks. The shallow feed-forward networks
deduced single-layer representation called ‘word vectors’, which were learned and then
transferred to task-specific architectures. Then, RNNs with deep or multiple layers (DNNs)
were used to generate context-sensitive and more robust (deep) representations that were
transferred or applied to task-specific architectures. To overcome task-specific architectures,
transformer-based pretrained language models (PLMs) came into play. Recent work using
transformers has focused on a task-independent approach, where transfer and finetuning
of the self-attention block are sufficient. These transformer-based language models are
flexible and task-agnostic. They can be finetuned on different downstream tasks without
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requiring architecture modifications. They have also led to significant improvement boosts,
especially in capturing long-range dependencies.

As shown in Figure 1, the phases in these transformer-based LLMs can broadly be
classified into pretraining, transfer learning, and/or in-context learning. In the sections to
come, we explore in detail different attention mechanism masks, architectures, objectives
used during pretraining, transfer and in-context learning techniques, scalability factors,
and challenges regarding LLMs.

Figure 1. Large language model phases.

The outline of this survey paper is as follows. In Section 2, we look at the language model
definition and the attention layer mechanism in detail. In Section 3, we describe the types of
architectures and attention masks used in transformers. Section 4 elaborates on the pretraining
objectives and different learning strategies used by the LLMs. Section 5 discusses transfer
learning strategies, followed by in-context learning in Section 6. Section 7 describes different
scale factors, such as model width, depth, datasets, architecture, and how they affect the
performance of LLMs. Section 8 enumerates the challenges encountered by LLMs, followed
by future directions and development trends in Section 9. Section 10 concludes the paper.

2. Language Models and Attention Mechanism
2.1. Language Models

Language models primarily have two main steps: pretraining and transfer learning. In
the pretraining phase, some objective function is used to learn the network’s initial parame-
ters (language representation). Pretraining is then followed by the transfer learning phase,
where the initial learned parameters are adapted or finetuned on a target downstream task.
The pretraining is conducted in a self-supervised manner on the unlabeled corpus. Transfer
learning, on the other hand, follows a supervised approach, where each of the downstream
tasks, although having separate finetuned models, are initialized with the same pretrained
parameters. This approach helps in learning a universal representation of language, which
requires little adaptation when transferred to downstream tasks. Therefore, the target tasks
do not need to be from the same domain as the unlabeled corpus. Unlike task-specific tech-
niques, no architectural modifications are required for PLMs when applied to downstream
tasks. However, the PLMs depend on a large corpus of unlabeled data to be effective across
various tasks.
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As stated in Bloom [22], language modeling refers to the task of modeling the proba-
bility of a sequence of tokens in a text, where a token can be a unit of text, such as a word,
subword, character, byte, etc. Normally, in the pretraining phase of language models, a
next-word prediction objective is used, which is conditioned on the previous tokens as
context. So, for a given input or source sequence S = (s1, s2, . . . , sn), the model predicts the
joint probability of the output or target sequence T = (t1, t2, . . . , tn), shown in Equation (1).

P(t) =
n

∏
i=1

p(ti|s1, s2, . . . , si−1) (1)

This approach, where the probability of the next token is iteratively predicted, is
referred to as autoregressive language modeling and is represented using Equation (2).

p(x) = p(x1, x2, . . . , xT)

=
T

∏
t=1

p(xt|x1, x2, . . . , xt−1)
(2)

Here, to deal with different downstream tasks (question answering, translation, sum-
marizing, etc.), each task is casted or converted into a text-to-text framework. In this way,
the language model can be applied or used to handle different downstream tasks. The
pretrained model with parameters θ is then adapted during finetuning of dataset D to
minimize the loss over the target tokens conditioned on the source tokens and previously
seen target tokens. Equation (3) highlights this loss function ‘L’.

L(D; θ) = −∑
i

∑
j

log pθ(tij | si, ti,<j) (3)

LLMs follow a similar mechanism of pretraining and finetuning to language models,
except the parameter size of LLMs is in billions and/or trillions.

2.2. Attention Layer

To be able to align the input and output words correctly, the attention layer helps the
decoder understand which inputs are more important. This enables the decoder to focus on
the right place or context during the prediction of each output token. The inputs and targets
are first converted to embeddings or initial representations of the words. The attention
mechanism then uses these encoded representations. Query vectors (Q) represent the
decoder hidden states, and the key (K) and value (V) vector pairs come from the encoder
hidden states. To compute the similarity score between queries and keys, the dot products
between the query and key vectors are computed. If the key (K) and query (Q) are similarly
aligned, then their dot product will yield a higher score. Therefore, higher scores of a
particular key indicate that it is relatively more important to query than others with lower
scores. To obtain the probabilities of the match between keys and queries, the scores are run
through softmax to fit a distribution between 0 and 1. These probabilities act as an indexing
mechanism regarding the value (V) vector. So, these probabilities are further multiplied
with the value vectors (V), which results in alignment vectors. Equation (4) represents this
computation from the attention layer.

Z = attention(Q, K, V) = WAV

= so f tmax

(
QKT√
(dk)

)
V

(4)

To help speed up the pretraining process, the teacher forcing technique is used, which
leads to faster convergence and higher accuracy. In teacher forcing, instead of the model’s
output from the previous timestep, the ground truth (correct answer) is fed as an input
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at each timestep. To enable this teacher forcing, the preattention decoder takes the target
tokens and shifts them one place to the right.

2.3. Multihead Attention

Instead of recurrent layers, transformers differ from sequence to sequence by using
multihead attention layers; hence, they do not suffer from vanishing gradients problems
that are related to the length of the sequences. Figure 2 highlights the multihead attention
mechanism in transformers. In the multihead attention mechanism, a set of parallel self-
attention layers are added, which are called heads.

Z = MultiHead(Q, K, V)

= Concat(z1, z2, . . . , zn) W0

zi = attention(Q(Wi)
Q, K(Wi)

K, V(Wi)
V)

(5)

Figure 2. Multihead attention mechanism.

As shown in Figure 2, the output of these heads is further concatenated to produce
a single output. This multihead attention mechanism emulates the recurrence sequence
effect but with attention. Each head uses different linear transformations to represent
words, and therefore different heads can learn different relationships between words.
The multihead attention mechanism executes the attention of the scaled dot product in
parallel. The multihead model is therefore able to jointly attend to information from
different representations at different positions over the projected versions of queries, keys,
and values. As shown in Equation (5), these output values are then concatenated and
weighted, where each head zi is the attention function of query, key, and value with
trainable parameters (Wi)

Q, (Wi)
K, (Wi)

V .

2.4. Attention-Based RNN Models

As stated in [23], using an RNN encoder–decoder architecture for NMT tasks, the
fixed-length encoded vector generated by the encoder became a performance bottleneck.
The performance of such an RNN-based encoder–decoder model deteriorated rapidly as
the length of an input sentence increased. It also assigned more importance to the later
tokens in the input sequence than the ones appearing earlier in the sequence. Such an archi-
tecture, also called global attention, failed to capture local context and longer dependencies
adequately. Additionally, as RNNs are sequential, they prohibited parallelization, resulting
in longer training time. To overcome this issue, Ref. [23] proposed attention mechanism in
the decoder, which automatically soft-searches relevant context from the input sentence
required to predict the target word. The vectors of these context words and the previously
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generated (target) words are used to predict the current target word. As a result, the
attention mechanism helped align and translate the input and output jointly.

Unlike the traditional encoder–decoder RNN model, the self-attention mechanism
does not encode the entire input sequence into a fixed single vector. The input sentence is
therefore not squashed into a single fixed-length vector, where the decoder has flexibility
to attend to more than one hidden state of the encoder. Additionally, in the attention
mechanism, only a subset of encoded vectors of the input sequence are chosen adaptively
during the decoding. The attention mechanism gives more weight or attention to the
part of the input sequence that is relevant to the target. As a result, it allows capturing
dependencies from the information spread throughout the sequence irrespective of the
distance between the tokens. Furthermore, as the decoder is empowered with the attention
mechanism, the encoder is relieved from the burden of encoding the input into a fixed-size
vector. Paper [23] shows how this joint learning of alignment and translation improves
performance over the basic encoder–decoder approach, especially over longer sentences.

2.5. Attention-Based Transformer Models

Although the attention mechanism from [23] improved significantly, it used bidirec-
tional RNN as an encoder. RNN, being sequential, prohibits parallelization, leading to
more computational time. Ref. [24] proposed transformer architecture that relied solely on
the attention mechanism, altogether eliminating RNN and CNN components. Transform-
ers handled long-term dependencies much better than RNNs, which resulted in robust
transfer performance across several diverse tasks. Unlike RNNs, the transformer architec-
ture reduced sequential computation and enabled parallelization, requiring less training
time and achieving new state-of-the-art results. Unlike RNNs, it enables every position in
the decoder to attend to all the positions in the input sequence. Being autoregressive, it
considers the previously generated token as an additional input to generate the next target
token. As shown in Figure 3, it uses stacked self-attention for both the encoder and decoder
and has a masking mechanism in the decoder to preserve its autoregressive property.

Figure 3. Transformer’s encoder–decoder-based model.

3. Transformer

After its inception, transformer soon became the de facto standard for natural language
tasks. Below, we discuss several variants of the original transformer-based model that were
proposed to deal with NLU and NLGU tasks.
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3.1. Encoder–Decoder-Based Model

An example of encoder–decoder architecture is the transformer model proposed in [24].
Its encoder and decoder blocks are stacked with multiple layers. As shown in Figure 3, the
transformer encoder layer consists of a self-attention layer and a position-wise feed-forward
layer. In addition to these two layers, decoder consists of a third cross-attention layer, which is
responsible for attending to encoder output.

Encoder–decoder models adopt bidirectional attention for the encoder, unidirectional
attention for the decoder, and a cross-attention mechanism between them. Cross-attention
in the decoder has access only to the fully processed encoder output and is responsible
for connecting input tokens to target tokens. The encoder–decoder-based models are
pretrained for seq2seq tasks. They can also be pretrained on conditional generation tasks,
where the output is generated in regard to the given input, for example in summarizing,
question answering, and translation tasks. T5 [25] uses encoder–decoder architecture.
As stated in T5, using encoder–decoder structure helped to achieve good performance
regarding classification as well as for generative tasks.

Although encoder–decoder models end up having twice as many parameters as their
decoder-only or encoder-only counterparts, they still have similar computational cost. Com-
pared to PrefixLM models where the parameters are shared, here, the input and target are
independently processed and use separate sets of parameters. Unlike decoder-only language
models that are trained to generate the input, encoder–decoder models output target tokens.

The original transformer consisted of encoder–decoder blocks and was initially used
for sequence-to-sequence tasks, such as NMT. However, it was discovered that, with the
change in how the input is fed to the model, the single-stack (decoder or encoder) could
also complete sequence–sequence model tasks. As a result, the subsequent models started
containing either an encoder or decoder architecture. Below, we discuss these architectural
variants of the original transformer model.

3.2. Encoder-Only-Based Model

Encoder-only models use bidirectional attention, where the target token can attend to
the previous and next tokens. Encoder-only-based models, for instance, BERT [26], produce
a single prediction for a given input sequence. As a result, they are more fit for classification
and understanding tasks rather than NLG tasks, such as translation and summarizing.

3.3. Decoder-Only (Causal)-Based Model

In decoder-only models, the goal is to predict the next token in the sequence; therefore,
such models are autoregressive. These models are trained solely for next-step prediction, so
decoder-only models are well-suited for NLG tasks. In decoder-only models, the input and
target tokens are concatenated before processing. As a result, the representations of inputs
and targets are simultaneously built layer by layer as they propagate concurrently through
the network. In the encoder–decoder model, the input and target tokens are processed
separately and rely on cross-attention components to connect them. GPT [27] was one of
the first models that relied solely on decoder-based architecture. However, as decoder-only
models use a unidirectional attention mechanism, their performance might be hindered for
tasks involving longer sequences, such as summarizing.

3.4. Prefix (Non-Causal) Language Model

Prefix language models are also decoder-only-based models but differ in the masking
mechanism. Instead of a causal mask, a fully visible mask is used for the prefix part of the
input sequence, and a causal mask is used for the target sequence.

For example, to translate an English sentence “I am doing well” to French, the model
would apply a fully visible mask to the prefix “translate English to French: I am doing well.
Target:”, followed by causal masking while predicting the target “je vais bien”. Also, unlike
causal language models where the targets-only paradigm is used, the prefix language
model uses the input-to-target paradigm. Both causal and prefix model architectures are
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autoregressive as the objective is to predict the next token. However, the causal model uses
a unidirectional attention mask, while the prefix model modifies the masking mechanism
to employ bidirectional attention over prefix tokens. Figure 4 demonstrates the mechanism
of the above architectures. The lines represent the attention visibility. Dark lines represent
the fully visible masking (bidirectional attention), and light gray lines represent causal
masking (unidirectional attention).

Figure 4. Different transformer architectures in LLMs.

As shown in Figure 4, in the encoder–decoder architecture, fully visible masking is
used in the encoder and causal masking is used in the decoder. In a decoder-only model,
the input and target are concatenated, and then a causal mask is used throughout. A
decoder-only model with a prefix allows fully visible masking over part of the input token
(prefix), followed by causal masking on the rest of the sequence. In general, autoencoding
models learn bidirectional contextualized representation suited for NLU tasks, whereas
autoregressive models learn to generate the next token and hence are suited for NLG tasks.
Table 1 details architectural information of prominent LLM models, such as their parameter
size, hardware used, number of encoder (E) and decoder (D) layers, attention heads, etc.

Table 1. Architecture details of LLMs.

Model Param Size Layers d-Model Attention
Heads Hardware

Transformer-base [24] - 6 E, 6 D 512 8 8 NVIDIA P100 GPUs
Transformer-big [24] - 12 E, 12 D 1024 16 8 NVIDIA P100 GPUs
BERT-base [26] 110 M 12 E 768 12 4 Cloud TPUs
BERT-large [26] 340 M 24 E 1024 16 16 Cloud TPUs (64 TPU chips)
GPT-1 [27] 117 M 12 D 768 12 -
GPT-2 [28] 117 M to 1.5 B 24 D to 48 D 1600 48 -
GPT-3 [29] 175 B 96 12,288 96 V 100 GPUs (285 K CPU cores, 10 K GPUs)
T5 [25] 220 M–11 B (12 E, 12 D) - - 1024 TPU v3
REALM [30] 330 M - - - 64 Google Cloud TPUs, 12 GB GPU
Jurassic-1 [31] 178 B 76 13,824 96
mT5 [32] 13 B - - - -
Pangu-Alpha [33] 207 B 64 16,384 128 2048 Ascend 910 AI processors
CPM-2 [34] 198 B 24 4096 64 -
Yuan 1.0 [35] 245 B - - - -
HyperClova [36] 82B 64 10,240 80 128 DGX servers with 1024 A100 GPUs
GLaM [37] 1.2 T (96.6) 64 MoE 8192 128 1024 Cloud TPU-V4 chips (Single System)
ERNIE 3.0 [38] 10 B 48, 12 4096, 768 64, 12 384 NVDIA v100 GPU cards

Gopher [39] 280 B 80 16,384 128 4 DCN-connected TPU v3 Pods (each
with 1024 TPU v3 chips)

Chinchilla [40] 70 B 80 8192 64 -
AlphaCode [41] 41.1 B 8 E, 56 D 6144 48, 16 -
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Table 1. Cont.

Model Param Size Layers d-Model Attention
Heads Hardware

CodeGEN [42] 16.1 B 34 256 24 -
CodeGeeX [43] 13 B 39 5120 40 1536 Ascend 910 AI Processors
FLAN [44] 137 B - - - TPUv3 with 128 cores
InstructGPT [45] 175 B 96 12,288 96 V 100 GPUs
LaMDA [46] 137 B 64 8192 128 1024 TPU-v3 chips
T0 [47] 11 B 12 - - -

GPT NeoX 20B [48] 20 B 44 6144 64 12 AS-4124GO-NART servers (each with 8
NVIDIA A100-SXM4-40GB GPUs)

OPT [49] 175B 96 12,288 96 992 80GB A100 GPUs
MINERVA [50] 540.35 B 118 18,432 48 -
AlexaTM 20B [51] 20 B (19.75 B) 46 E, 32 D 4096 32 128 A100 GPUs
GLM-130 B [52] 130 B 70 12,288 96 96 NVIDIA DGX-A100 (8×40 G)
XGLM [53] 7.5 B 32 4096
PaLM [54] 540.35 B 118 18,432 48 6144 TPU v4 chips (2 Pods)
Galactica [55] 120 B 96 10,240 80 128 NVIDIA A100 80 GB nodes
Pali [56] 16.9 ( 17) B - - - -
LLaMA [57] 65B 80 8192 64 2048 A100 GPU (80 GB RAM)
UL2 [58] 20 B 32 E, 32 D 4096 16 64 to 128 TPUv4 chips
Pythia [59] 12 B 36 5120 40 -
WeLM [60] 10 B 32 5120 40 128 A100-SXM4-40 GB GPUs

BLOOM [22] 176 B 70 14,336 112 48 nodes having 8 NVIDIA A100 80GB
GPUs (384 GPUs)

GLM [61] 515 M 30 1152 18 64 V100 GPUs
GPT-J 6 B 28 4096 16 TPU v3-256 pod
YaLM 100 B 800 A100
Alpaca 7 B 8 80 GB A100s
Falcon 40 B - - - -
(Xmer) XXXL [62] 30 B 28 1280 256 64 TPU-v3 chips
[63] 1.1 T 32 4096 512 (experts)
XLM-R [64] 550 M 24 1024 16

3.5. Mask Types

Self-attention is the variant of the attention mechanism proposed in [23]. It generates
an output sequence, which has the same length as the input sequence, where it replaces
each element with the rest of the sequence’s weighted average. Below, we look at different
masking techniques that are used to zero out certain weights. By zeroing out the weights,
the mask decides which entries can be attended to by the attention mechanism at a given
output timestep. As highlighted in Figure 5, by using fully visible mask, the attention
mechanism can attend to the entire input sequence when producing each entry of its output.

In causal mask, the attention mechanism can attend only to the previous tokens and is
prohibited from attending to the input tokens from the future. That is, while producing the
ith entry, causal masks prevent the attention mechanism from attending to all the entries
occurring after the ith entry so that the model cannot see into the future. Prefix–causal
mask is a combination of these two approaches, allowing the attention mechanism to use a
fully visible mask on a portion of the input sequence (called the prefix) and a causal mask
on the rest of the sequence.
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Figure 5. Different mask types in attention mechanism.

4. Pretraining—Strategies and Objectives

The pretraining process makes the model learn and capture language representation
and (general or domain) knowledge, which are then used in the downstream NLU and
NLG tasks. Such pretraining of the language model using neural networks has proven to be
more effective in improving the performance on various NLP tasks. The pretraining process
is usually unsupervised and based on some objective function that leverages the unlabeled
data to provide the model with language understanding and generation capabilities. Most
of the objectives can be formulated as input-to-target tasks, where the model is conditioned
on the context represented by the input and is expected to generate the target as the output.
The model is trained with the maximum likelihood to predict the target token. Once
pretrained, the model is further finetuned on downstream tasks in a supervised manner.
This pretrained approach leads to faster and better generalization than training the model
from scratch. Below, we explore several objectives that have been successfully used during
the pretraining process.

4.1. Objectives
4.1.1. Left-to-Right (LTR) Language Model Objective

In the LTR objective, the token can attend only to previous tokens, so this objective is
unsuitable for applications requiring information from both directions, such as question answering
and text summarizing. The LTR objective-based models do well on NLG tasks, but, because of the
unidirectional attention mechanism, the model cannot fully capture the dependencies between
the context words, which is required for good performance on NLU tasks.

4.1.2. Prefix Language Model Objective

In this prefix language model objective, the given text is split into input (prefix) and
target sequence. The input is fed to the encoder with a fully visible mask, and the target is
to be predicted by the decoder with a causal mask. In this objective, as the fully visible mask
is used on the prefix portion of the input sequence, they do better on both NLG and NLU
tasks. As causal masking is used in the decoder, to predict the target token ‘i’, the model
depends upon the tokens appearing before ‘i’. As the prefix is consumed bidirectionally,
prefix-based language models offer more modeling power than the unidirectional encoding
of inputs used in vanilla left-to-right-based language models.

4.1.3. Masked Language Model Objective

A masked language model (MLM) is a type of denoising objective that aims to predict
the missing or corrupted tokens from the input. In MLM, 15% of the tokens are randomly
masked/corrupted from the input, and the goal is to predict these masked words given the
left and right context. It is observed in [25] that, as the corruption rate increased to 50%, the
performance of the LLM on the benchmark tasks decreased. Out of the masked tokens, most
of them are replaced with a masked token, while the others are replaced with random tokens.
Regarding this objective, the encoder produces contextualized representations suited for
understanding tasks but then, for the same reason, does not perform well for generation tasks.

In [25], three corruption strategies, ‘Mass-style’, ‘Replace Corrupted Span’, and ‘Drop
Corrupted Tokens’, were investigated. ‘Mass-style’ works similar to MLM except it focuses
on replacing 15% of tokens with mask tokens and excludes the random token swapping
step. In ‘Replace Corrupted Span’, a unique or single mask token is used to replace the
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consecutive span of corrupted tokens. Lastly, in ‘Drop Corrupted Tokens’, the task is to
reconstruct the corrupted tokens that are dropped from the input sequence. REALM [30]
uses the salient span technique to focus on problems that require world knowledge.

4.1.4. General Language Mode Objective

Ref. [61] proposed the general language model objective based on autoregressive
blank infilling. This objective performs well for both NLU and NLG (conditional and
unconditional) tasks. Following the idea of autoencoding, GLM randomly blanks out spans
of continuous tokens from the input text and then, similar to autoregressive pretraining,
trains the model to reconstruct the spans sequentially, demonstrating how, by varying
the number and lengths of missing spans, the autotregressive blank filling objective can
prepare the language model for both conditional and unconditional generation.

To support language understanding and generation, Ref. [52] uses two mask tokens.
[MASK] was used to mask short blanks having lengths up to a certain portion or threshold of
the input. When [MASK] is used, GLM-130B behaves similarly to BERT and T5. Meanwhile,
[gMASK] was used for long blanks at the end of sentences having random lengths with prefix
contexts provided. When [gMASK] is used, GLM-130B behaves similarly to PrefixLM.

4.1.5. Span Corruption Objective

When multiple consecutive tokens are masked or corrupted, they are referred to as a
‘span’. A unique and single mask token is used to replace the entire span. In span corruption,
the model refers to the uncorrupted tokens from the past and future to predict the corrupted
target tokens (span). This objective was evaluated in T5 [25], where it was parameterized by
number of spans to be corrupted and the percentage of tokens to be corrupted.

4.1.6. Deshuffle Objective

In this objective, a sequence of tokens are shuffled and fed as input, and the original
(deshuffled) sequence is used as target.

4.1.7. Next-Sentence Prediction (NSP) Objective

Many language tasks, such as natural language inference (NLI) and question answer-
ing, require understanding of the relationship between sentences. The NSP objective is used
to capture such relationships, where, given an input sentence, the goal is to predict the fol-
lowing sentence. The NSP task takes two sequences (S1 and S2) as input to predict whether
S2 is the direct continuation of S1 or not. Table 2 details different objectives, datasets, and
tokens and/or corpus sizes used during the pretraining of prominent LLM models.

Table 2. Pretraining details of LLMs.

Model Architecture Objectives Pretraining Dataset Tokens, Corpus Size

Transformer-base [24] encoder–decoder
Transformer-big [24] encoder–decoder MLM, NSP WMT 2014 -
BERT-base [26] Encoder-only
BERT-large [26] Encoder-only MLM, NSP BooksCorpus, English Wikipedia 137 B, -
GPT-1 [27] Decoder-only Causal/LTR-LM BooksCorpus, 1B Word Benchmark -
GPT-2 [28] Decoder-only Causal/LTR-LM Reddit, WebText -, 40 GB

GPT-3 [29] Decoder-only Causal/LTR-LM Common Crawl, WebText,
English-Wikipedia, Books1, Books2 300 B, 570 GB

T5 [25] encoder–decoder MLM, Span
Correction C4 (1T tokens) 34 B, 750 GB

REALM [30] Retriever + Encoder Salient Span
Masking English Wikipedia (2018) -

Jurassic-1 [31] Decoder-only Causal/LTR-LM Wikipedia, OWT, Books, C4, PileCC 300 B

mT5 [32] encoder–decoder MLM, Span
Correction mC4 -
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Table 2. Cont.

Model Architecture Objectives Pretraining Dataset Tokens, Corpus Size

Pangu-Alpha [33] Decoder + Query Layer LM

Public datasets (e.g., BaiDuQA,
CAIL2018, Sogou-CA, etc.),
Common Crawl, encyclopedia, news
and e-books

1.1 TB (80 TB raw)

CPM-2 [34] encoder–decoder MLM
encyclopedia, novels, QA, scientific
literature, e-book, news, and
reviews.

-, 2.3 TB Chinese data and
300 GB English Data

Yuan 1.0 [35] Decoder-only LM, PLM Common Crawl, Public Datasets,
Encyclopedia, Books 5 TB

HyperClova [36] Decoder-only LM Blog, Cafe, News, Comments, KiN,
Modu, WikiEn, WikiJp, Others 561 B

GLaM [37] Sparse/MoE
Decoder-only LM Web Pages, Wikipedia, Forums,

Books, News, Conversations 1.6 T tokens,

ERNIE 3.0 [38] Transformer-XL
structure UKTP plain texts and a large-scale

knowledge graph 375 billion, 4 TB

Gopher [39] Decoder-only LM MassiveText (MassiveWeb, Books,
C4, News, GitHub, Wikipedia) 300 B

Chinchilla [40] - - MassiveText 1.4 T
AlphaCode [41] encoder–decoder MLM, LM Github, CodeContests 967 B

CodeGEN [42] decoder-only LM THEPILE, BIGQUERY, and
BIGPYTHON 505.5 B

CodeGeeX [43] decoder-only LM The Pile, CodeParrot Collected 850 B

FLAN [44] Decoder-only LM web documents, dialog data, and
Wikipedia 2.49 T tokens,

InstructGPT [45] Decoder-only LTR-LM
Common Crawl, WebText,
English-Wikipedia, Books1, Books2,
Prompt Dataset (SFT, RM, PPO)

300 B, 570 GB

LaMDA [46] Decoder-Only LM public dialog data and web text
168 B (2.97 B documents, 1.12 B
dialogs, and 13.39 B) 1.56T
words, -

T0 [47] encoder–decoder MLM + LM C4 1T tokens + 100 B
GPT NeoX 20 B [48] Decoder-only LM The Pile - 825 GB

OPT [49] Decoder-only - BookCorpus, Stories, the Pile, and
PushShift.io Reddit 180 B tokens

MINERVA [50] Decoder-only + Parallel
Layers LM

technical content dataset (containing
scientific and mathematical data),
questions from MIT’s
OpenCourseWare, in addition to
PaLM pretraining dataset

38.5 B tokens (math content),

AlexaTM 20 B [51] seq2seq
(encoder–decoder)

mix of denoising
and Causal
language
modeling (CLM)
tasks

Wikipedia and mC4 datasets 1 Trillion tokens, -

GLM-130 B [52]
bidirectional encoder
and unidirectional
decoder,

GLM, MIP
(Multitask
Instruction
pretraining)

400 billion tokens,

XGLM [53] decoder-only Causal LM CC100-XL

PaLM [54] Decoder-only + Parallel
Layers LM

Social media conversations, Filtered
webpages, Wikipedia (multilingual),
Books, Github, News (English)

780 B tokens,

Galactica [55] decoder-only -

papers, code, reference material,
knowledge bases, filtered
CommonCrawl, prompts, GSM8k,
OneSmallStep, Khan Problems,
Workout, Other

106 B

Pali [56] encoder–decoder and
Vision Transformers

mixture of 8
pretraining tasks

WebLI (10 B images and texts in over
100 languages), 29 billion
image-OCR pairs

-

LLaMA [57] transformer LM
CommonCrawl, C4, Github,
Wikipedia, Books, ArXiv,
StackExchange

1.4 T tokens,

UL2 [58] Enc–Dec, decoder-Only
Prefix-LM R, S, X denoising C4 32 B tokens,

Pythia [59] decoder-only LM the Pile 300 B tokens -
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Table 2. Cont.

Model Architecture Objectives Pretraining Dataset Tokens, Corpus Size

WeLM [60] - - Common Crawl, news, books,
forums, academic writings. -

BLOOM [22] Causal Decoder-only LM
ROOTS corpus (46 natural
languages and 13 programming
languages)

366 B, 1.61 TB

GLM [61]
bidirectional encoder
and unidirectional
decoder

GLM

GPT-J Mesh Transformer JAX LM PILE 402 B

YaLM online texts, The Pile, books, other
resources (in English, Russian) 1.7 TB

Alpaca
Falcon encoder-only LM RefinedWeb, Reddit 1T
(Xmer) XXXL [62] encoder–decoder MLM C4 1T tokens

[63] decoder-only (MoE) LM
BookCorpus, English Wikipedia,
CC-News, OpenWebText,
CC-Stories, CC100

300 B

XLM-R [64] encoder-only Multilingual MLM CommonCrawl (CC-100) 2.5 TB

4.2. Learning Strategies
4.2.1. Multitask Pretraining

In multitask learning (MTL), parameters are shared between multiple tasks during
pretraining. This leads to better generalization and performance improvement of related
tasks. MTL helps to improve performance on new domains by leveraging the knowledge
and representation learned from related tasks during pretraining. MTL uses a single model
to perform many downstream tasks simultaneously. However, unlike the adapter layers,
MTL requires simultaneous access to the tasks during pretraining. The networks’ lower
MTL layers (and their weights) are shared among the tasks, using specialized higher layers
based on the downstream tasks.

During ‘multitask learning’, datasets from different tasks are mixed and used. As
experimented in T5 [25], multitask learning involves pretraining the model on multiple
tasks simultaneously. Although multiple tasks were used during pretraining, the T5 model
was finetuned separately on supervised downstream tasks. One crucial factor to consider
in multitask learning is how much data the model should be trained on from each task.

There needs to be a proper balance where the model sees enough data to perform
well regarding the task while not exposing it to more data such that it starts memorizing
(overfitting) the dataset. Additionally, the proportion of data also depends upon factors
such as dataset sizes, difficulty of learning the task, regularization, and task interference
since performing better on one task might degrade the performance on another task.
In T5 [25], as the same training objective was used for every task, only a single set of
hyperparameters was required for effective finetuning on all downstream tasks.

In MTL, as the same model performs many different tasks, the language model
becomes conditioned on the input and the task to be performed. Such task conditioning
can be implemented at the architecture level. However, a recent technique from GPT-2 [28]
suggests a simplified mechanism where tasks, inputs, and outputs can all be specified as a
sequence of symbols. That is, to be architecture-independent, the input can be transformed
to incorporate task-aware information as a context (added as task-prefix) to the input
sequence. Also, as stated in T5, every text processing problem can be mapped to “text-to-
text” format, where the input and output are both text. For instance, to translate an English
sentence “I am good” to French, the prefix “translate English to French: I am good. Target:”
will be used, where the model will then be asked to generate the remainder “je vais bien”
of the sequence in an autoregressive manner. So, similar to a translation of a sequence of
(translate to French, English sentence, French sentence), a reading comprehension example
can likewise be written as a tuple consisting of (answer the question, document, question,
answer). Using this framework, the same encoding and decoding procedure is used across



Appl. Sci. 2024, 14, 2074 14 of 42

various tasks, without requiring any change to the model architecture. Therefore, the same
model can be effectively applied for transfer and inference purposes on many different
downstream tasks, allowing it to generalize and perform well on new and related domains.

As hypothesized in T0 [47], because of the implicit multitask learning, LLMs can attain
reasonable zero-shot generalization on diverse tasks. For instance, during pretraining,
some tasks would appear in explicit form with the task instructions, input, and output
pairs. For example, there are websites containing FAQs and their answers, which act as
supervised training data for the closed-book QA task. Such multitask supervision might
play a crucial role in zero-shot generalization during pretraining. To test the hypothesis,
T0 attempts to induce zero-shot generalization by explicit multitask learning, where it
uses the T5 [25] model and finetunes it in a supervised manner on a dataset with a wide
variety of tasks in natural language prompted format. Due to this approach, T0 was able to
better generalize on held-out tasks without requiring data at a massive scale and became
more robust to the prompt wording. WeLM [60] also reinforced generalization across tasks
through explicit multitask learning, where the trained model was then tested on a set of
held-out tasks.

4.2.2. Multilingual Pretraining

Researchers have investigated incorporating a multilingual corpus during pretraining
to make models perform in multiple languages. For example, XLM-R [64] is a multilingual
model pretrained on CommonCrawl100 corpus with text from around 100 languages. It
obtained SOTA performance on cross-lingual tasks such as question answering, classifica-
tion, and sequence labeling. XLM-R also demonstrated how pretraining the multilingual
model at scale helps to improve performance across various cross-lingual transfer tasks.
For low-resource languages, XLM models trained on CommonCrawl-100 performed better
than those trained using Wikipedia.

Another example is mT5 [32], which uses multilingual corpus mC4 to pretrain the model.
When dealing with multilingual models (especially in zero-shot settings), there is a chance of
‘accidental translation’, where the model might translate the prediction in the wrong language.
For example, suppose the model proceeds through English-only finetuning. In that case,
the probability of generating non-English tokens decreases, reaching a point where English
becomes the most likely language to answer any question. Here, the model outputs English
when provided a non-English test input because the model never observed a non-English
target during finetuning. To address ‘accidental translation’, mT5 [32] mixed the unlabeled
pretraining data during finetuning, dramatically alleviating this issue.

AlexaTM 20B [51] is the first seq2seq model trained using multilingual that can
perform in-context learning and provide SOTA performance on multilingual tasks. When
tested on the Flores-101 machine translation benchmark dataset, it outperformed existing
supervised models almost across all language pairs using only the one-shot method. It also
achieved a significant performance boost on machine translation tasks involving to-and-
from low-resource languages, such as Telugu, Marathi, and Tamil. AlexaTM20B achieved
SOTA performance on Paws-X, XWinograd, XNLI, and XCOPA multilingual tasks in a zero-
shot setting. It also performed better on SuperGLUE and SqUADv3 datasets than GPT-3
under zero-shot setting. In the one-shot summarizing task, AlexaTM20B performed better
than models that were much larger in scale than its size, such as 540B PaLM decoder model.

4.2.3. Mixture of Experts (MoE)-Based Pretraining

Pretraining LLMs requires significant computing power and resources. To address
this issue, sparse experts were proposed, incurring substantially decreased training costs
compared to dense models. The same parameters are reused and applied to all the inputs
in a traditional static neural network. Instead, a mixture of experts (MoE)-based network
enables dynamic selection of parameters for each incoming input and improves model
capacity without incurring additional computation costs. In MoE, although a large number
of weights are used during training, only relevant experts are needed to compute a small
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subset of the computational graph at inference time. Additionally, in static networks, as the
entire model becomes activated for every example, the training cost is increased (roughly
quadratically) with the increase in model size and training examples [65]. Meanwhile,
ST-MoE [66] demonstrated how a 269B sparse parameter model has comparable or similar
computational cost to an encoder–decoder transformer model with only 32B parameters
and still achieves SOTA performance across a variety of NLP tasks. However, in MoE,
when the model size is scaled by increasing the number of sparsely gated experts, it can
significantly enlarge the parameter size, requiring more storage memory (it can reach the
order of hundreds of GBs).

In MoE, a trainable gating network determines which combination of sparse experts
needs to be selected to process the given input. Ref. [65] introduced MoE and demonstrated
how conditional computation using sparsely gated experts improved model capacity by
1000 times, with a minor loss in computational efficiency. This is helpful, especially for
language modeling and machine translation tasks, where the model capacity is essential to
assimilate or absorb large amounts of information from the corpora. Using MoE, Ref. [65]
performed better on language modeling and machine translation tasks than prior studies.

Similarly, with MoE, GShard [67] was able to efficiently perform training and inference
using conditional computation, where only a subnetwork is activated on a per-input basis.
Additionally, the translation quality of GShard increased with model size, but, due to MoE,
the wall time of training increased only sublinearly. GShard, pretrained on multilingual,
when translating text from 100 languges to English, was able to achieve better translation
quality compared to prior cases. Additionally, an annotation technique was used by GShard
to annotate the tensors either for distribution or replication across a cluster of devices.

MoE-based models incur additional storage space. This might create difficulty in
the model training and inference phase if GPUs capacity is exceeded. To address this
issue, CPM2 [34] proposed the INFMOE framework. This framework uses a dynamically
scheduled offloading strategy and enables MoE model inference on a single GPU. The
parameters of experts from MoE layers are offloaded to CPU memory to enable the inference
of the model on a single GPU.

As demonstrated in [63], for model training and inference, MoEs yield competitive
zero- and few-shot performance (except full-shot finetuning) at a fraction of the compu-
tation. MoEs can match the dense model performance with four times less computing.
Furthermore, the performance gap between MoE and dense models varies greatly across
domains and tasks, indicating that MoE and dense models might generalize differently.
GLaM [37] also used sparsely activated MoE architecture to achieve competitive few-shot
task results compared to SOTA-dense models while being more computationally efficient.
Although GLaM (1.2 T parameters) is seven times larger than GPT-3 in parameters, it
activates a subnetwork of 96.6B (8% of 1.2 T) parameters, consumes only one-third of the
energy used to train GPT-3, requires only half of the computation flops for inference, and
achieves better overall zero-, one-, and few-shot performances across 29 NLP tasks.

Spare expert models have resulted in a pretraining speedup of 4–7 times while keeping
the computational cost (FLOPs per token) constant. Although sparse expert models have
many parameters, they reduce the carbon footprint by an order of magnitude. For example,
they achieve the same level of one-shot performance as GPT-3 but use only one-third of the
energy training cost. Although MoE requires additional storage space for parameters, the
sparse language model is one of the promising alternatives to save energy costs.

The experts in the MoE layers are shared across many devices since the sheer size
makes it infeasible to replicate them across all devices. Also, MoE sparse models do
suffer from training instabilities worse than those encountered in traditional static densely
activated models. Switch-transformer [68] addressed some of the issues observed in
MoE models, such as complexity, communication costs, and training instability. Switch-
transformer simplified the MoE routing algorithm and proposed an architecture that
mitigates the instabilities in computational efficiency and with reduced communication.
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4.2.4. Knowledge-Enhanced Pretraining

Commonly, plain text is used during pretraining, which lacks explicit linguistic and
world knowledge representation. The plain text also lacks structured representation and
does not have the explicit grounding to entities from the real world. Such representations
fail to capture the entities and the facts among those entities. ERNIE [69] incorporated struc-
tured knowledge facts during pretraining using knowledge graphs to address this issue.
Using knowledge graphs, ERNIE could exploit syntactic, knowledge, and lexical informa-
tion, which helped it perform better on several knowledge-driven tasks. In KnowBert [70],
multiple knowledge bases were used during pretraining to enhance the representations
further. In relationship extraction, entity typing, and word sense disambiguation down-
stream tasks, KnowBert demonstrated improved perplexity and better ability to recall facts
after it was integrated with WordNet and a subset of Wikipedia knowledge bases.

To learn commonsense knowledge, CALM [71] proposed generative and contrastive
objectives and incrementally pretrained the model. As its parameters can capture concept-
centric commonsense understanding and reasoning, it does not have to rely on external
knowledge graphs. The results demonstrate how, despite being trained on a minimal
dataset, CALM outperformed the T5-base model on all commonsense-related datasets. To
accelerate the pretraining process, CPM2 [34] proposed a knowledge inheritance technique
where it uses knowledge from existing pretrained models instead of training the models
from scratch. Instead of self-supervised, WKLM [72] proposed a weakly supervised pre-
training objective that helped it incorporate knowledge of real-world entities, where it
achieved significant improvements in fact completion and two entity-related tasks.

KEPLER [73] jointly optimized the language modeling and knowledge embedding
(KEs) objective. As a result, language representation and factual knowledge were better
aligned to produce more effective text-enhanced KEs. Similarly, CoLAKE [74] used ex-
tended MLM objectives to learn contextualized representation for language and knowledge
jointly. Instead of just using entity embeddings, CoLAKE also considers the knowledge
context of those entities derived from large-scale knowledge bases. Using these knowledge
contexts along with the language context information, a word–knowledge graph was con-
structed to deal with the heterogeneity of language and knowledge context. Experimental
results demonstrated the effectiveness of CoLAKE on knowledge-required tasks after it
was pretrained on the large-scale word–knowledge graph.

When injecting knowledge information, previous methods mainly updated the original
parameters of the pretrained models. This works fine if only one knowledge base is to be
injected. If multiple knowledge bases are injected, the history of previously injected knowledge
gets erased. K-ADAPTER [75] overcame this issue by using a neural adapter for each kind of
infused knowledge, where there is no information flow between adapters. Hence, they can
be trained in a distributed way. K-ADAPTER used this framework that keeps the pretrained
model’s original parameters fixed, so the parameters that learned from the old knowledge
base are not affected after injecting the new knowledge base. K-ADAPTER supports continual
knowledge infusion development, and, as adapters are smaller, the model scales much more
favorably. As a case study, after injecting K-ADAPTER with two kinds of knowledge, results
on three knowledge-driven tasks brought further improvements.

Ref. [46] demonstrated how finetuning with annotated data and consulting external
knowledge sources led to significant improvements, especially in the model’s safety and
factual grounding aspects. These responses, grounded on external knowledge, were first
filtered (for safety) before ranking them regarding quality score. LaMDA demonstrated
how this quality was improved as the model was scaled. However, to improve the safety
and groundness of the model, LaMDA has to rely on an external retrieval system through
API calls. ERNIE 3.0 [38] is trained on plain texts and large-scale knowledge graphs. It
integrated autoencoder and autoregressive networks into a single unified framework. So, it
was able to deal with NLG as well as NLU tasks in finetuning and zero/few-shot learning
settings. Additionally, ERNIE 3.0 used prompt-tuning during finetuning to better exploit
knowledge from the pretrained model.
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4.2.5. Mixture of Denoisers (MoD)-Based Pretraining

Typically, the objectives used during pretraining differ in the context in which the
model is conditioned. For example, span correction objectives use bidirectional context and
are helpful for language understanding and fact completion tasks. In contrast, prefix-LM
objectives use unidirectional context (previous tokens) and are helpful for more open-ended
and generative tasks. To enable strong performance across all the different tasks, UL2 [58]
proposed mixture of denoisers (MoD) objectives that uniformly combine several paradigms
to achieve hybrid self-supervised objectives. UL2 distinguishes between these different
denoiser modes during pretraining and adaptively switches modes while finetuning the
downstream tasks using discrete prompting. This is achieved by introducing an additional
paradigm token ([R], [S], or [X]) during pretraining so that the model can select a mode
that is more appropriate for the task at hand. This helps bind or associate the downstream
finetuning behavior with the specific mode used during pretraining. MoD consists of the
following denoising objectives:

Extreme Denoising

It considers extreme span lengths to have a corruption rate of up to 50%. Therefore,
given a small or moderate part of the input, the model is supposed to recover or predict a
large chunk of the sequence. The pretraining objective is considered to be highly denoising
if it has a long span (for example, equal to or greater than 12) or has a large corruption rate
(for example, more significant or more than 30%). So, it covers scenarios with long spans
and low corruption, long spans and high corruption, and short spans and high corruption,
where it generates long targets based on relatively limited information from memory.

Sequential Denoising

This objective strictly follows sequence order, i.e., the prefix language modeling. The
target tokens cannot attend to the future context tokens, but the prefix context does use
bidirectional architecture.

Regular Denoising

This denoising approach has short spans, a range of two to five tokens, and a low
corruption rate that masks up to 15% of the sequence. Because of the short span length,
they are not fit for generating text but are preferred for acquiring knowledge and under-
standing tasks.

With the MoD approach, UL2 outperformed GPT-3 on the SuperGLUE benchmark in
the zero-shot setting, and, in the one-shot setting, it tripled the performance of T5-XXL on
the summarizing task. In the zero-shot setting, UL2-20B also outperformed T0 and T5 on the
massive multitask language understanding (MMLU) benchmark and performed well with
chain-of-thought processes using prompting and reasoning steps. UL2-20B, when tested with
FLAN instruction tuning, achieved a competitive score compared to FLAN-PaLM 62B on
MMLU and Big-Bench benchmarks. After using the MoD objective, U-PaLM [76] achieved
the same performance as PaLM-540B but with only half of its computational budget.

4.2.6. Prompt Pretraining

Instead of using a generic dataset, Galactica [55] focused on using a highly curated
high-quality scientific dataset for pretraining. Galactica also differs from existing LLMs in
that it augments pretraining by including task prompts alongside the corpora, which helps it
outperform existing models on a range of scientific tasks. Galactica outperformed GPT-3 on
technical knowledge probe tasks, performed better than PaLM-540 B on MATH, and outper-
formed Chinchilla on the MMLU benchmark. Despite not having been trained on general
corpora, Galactica performed better than BLOOM and OPT-175B on the Big-Bench bench-
mark. It also achieved state-of-the-art results on PubMedQA and MedMCQA benchmarks.
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4.2.7. Information-Retrieval-Based Pretraining

Although LLMs implicitly store knowledge in the network parameters, it becomes
difficult to determine which knowledge is stored at which location. REALM [30] addressed
this issue by adding a discrete retrieval step called ‘textual knowledge retriever’ to the
pretraining algorithm. This retriever is rewarded for retrieving documents with relevant
information and penalized otherwise. REALM uses this retriever to retrieve the relevant
documents and attend to only those retrieved documents to make predictions.

Pangu-Alpha [33] uses a query layer, which helps to explicitly induce the expected
output. The query layer is stacked on top and resembles the transformer layer, except an
additional embedding is fed as an input. This additional input represents the next position
used as the query vector in the attention mechanism. Similarly, Falcon uses a multiquery
attention mechanism, sharing keys and values across all heads. This does not influence
pretraining significantly. However, it improves the scalability of inference.

5. Transfer Learning Strategies

Discriminatively trained models perform well if labeled data are available in abun-
dance, but they do not perform adequately for tasks with scarce datasets as this limits
their learning abilities. To address this issue, LLMs were first pretrained on large unla-
beled datasets using the self-supervised approach, where the learning was then transferred
discriminatively on specific tasks. As a result, transfer learning helps to leverage the ca-
pabilities of pretrained models and is advantageous, especially in data-scare settings. For
example, GPT [27] used the generative language model objective for pretraining, followed
by discriminative finetuning. Compared to pretraining, the transfer learning process is
inexpensive and converges faster than training the model from scratch. Additionally,
pretraining uses an unlabeled dataset and follows a self-supervised approach, whereas
transfer learning follows a supervised technique using a labeled dataset particular to the
downstream task. The pretraining dataset comes from a generic domain, whereas, during
transfer learning, data come from specific distributions (supervised datasets specific to the
desired task).

5.1. Finetuning

Transfer learning started with feature-based techniques, where pretrained embed-
dings such as Word2Vec were used on the custom downstream models. Once learned,
the embeddings are not refined to the downstream tasks, making them task-dependent.
In finetuning, after copying the weights of the pretrained network, they are finetuned to
adapt to the peculiarities of the target task. In finetuning, as the parameters learned during
pretraining are adjusted to a specific downstream task, it outperforms the feature-based
transfer technique. Such finetuning enables the model to learn task-specific features and
improve the downstream task performance. As a result, the finetuned embeddings adapt
not only to the context but also to the downstream task in consideration. So, unlike feature-
or representation-based transfer, finetuning does not require task-specific model architec-
ture. Although the finetuning strategy yields strong performance on many benchmarks,
it has some limitations, such as the need for a large amount of downstream task-specific
datasets, which can lead to poor generalization for data from out of distribution and the
possibility of spurious features. During finetuning, instead of including all the parameters,
adapter layers and gradual unfreezing techniques were proposed, which considered only a
subset of the parameters during finetuning.

5.2. Adapter Tuning

Feature and vanilla finetuning techniques could be more parameter-efficient since they
require new network weights for every downstream task. So, these techniques require an
entirely new model for every downstream task. To address this issue, Ref. [77] proposed
a transfer with the adapter module in which a module is added between the layers of
a pretrained network. In each block of the transformer, these adapter layers, which are
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dense-RELU-dense blocks, are added after the feed-forward networks. Since their output
dimensionality matches their input, no structural or parameter changes are required to
insert adapter layers. During finetuning, most of the original model is kept fixed, and only
the parameters from adapter layers get updated. In adapter tuning, task-specific layers
are inserted, with only a few trainable parameters added per task. Also, a high degree of
parameter sharing occurs as the original network is kept fixed.

Unlike the feature-based technique, which reads the inner layer parameters to form
the embeddings, adapters write to the inner layers instead, enabling them to reconfigure
network features. The main hyperparameter of this approach is the feed-forward network’s
inner dimensionality ‘d’ since it determines the number of new parameters that will be
added to the model. This approach is a promising technique in the experiments conducted
in [25]. Adapter tuning attains comparable performance with finetuning on NLU and
NLG benchmarks by using only 2–4% task-specific parameters. Experiments from [77]
demonstrated how BERT with adapters added only a few (3:6%) parameters per task to
attain near SOTA on the GLUE benchmark.

5.3. Gradual Unfreezing

In gradual unfreezing, more and more of the model’s parameters are finetuned over
time. In this approach, at the start of finetuning, only the parameters of the final layer are
updated first. Next, the parameters of the second-last layers are included in the finetuning.
This process continues until the parameters of all the network layers are finetuned (updated).
It is normally recommended to include an additional layer in finetuning, after each epoch
of training. This approach was used in [25], where gradual unfreezing resulted in minor
performance degradation across all the tasks.

5.4. Prefix Tuning

Finetuning, although it leverages the knowledge from pretrained models to perform
downstream tasks, requires a separate copy of the entire model for each task as it modifies
all the network parameters. To address this issue, prefix tuning [78] keeps the pretrained
parameters frozen and optimizes only the task-specific vectors. These continuous task-
specific vectors, called prefixes, are prepended to the input sequence so the subsequent
tokens can attend to these vectors. Prefix tuning uses a small trainable module to train
and optimize these small task-specific vectors associated with the prefix. The errors are
backpropagated to prefix activations prepended to each layer during tuning. In prefix
tuning for each task, only the prefix parameters are stored, making it a lightweight, modular,
and space-efficient alternative. Despite learning 1000× fewer parameters than finetuning,
prefix tuning [78] outperformed finetuning in low-data settings and maintained comparable
performance in full-data settings. It also extrapolated better to the examples with topics
that were unseen during training by learning only 0.1% of the parameters.

5.5. Prompt-Tuning

Although finetuning the pretrained language models has successfully improved the
results of downstream tasks, one of its shortcomings is that there can be a significant gap
between the objectives used in pretraining and those required by downstream tasks. For in-
stance, downstream tasks require objective forms such as labeling (parts of speech tagging)
or classification, whereas pretraining is usually formalized as a next-token prediction task.
One of the reasons behind the prompt-tuning approach was to bridge this gap between
pretraining and finetuning objectives and help in better adaption of knowledge from pre-
trained models to downstream tasks. In prompt-tuning, prompts are used to interact with
LLMs, where a prompt is a user-provided input to which the model responds. Prompting is
prepending extra information for the model to condition on during the generation of output.
This extra information typically includes questions, instructions, and a few examples as
tokens to the task input.
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5.5.1. Prompt Engineering

Prompt engineering involves the process of carefully designing optimal prompts
to obtain optimal results. Prompts need to be constructed to best elicit knowledge and
maximize the prediction performance of the language model. The prompt-based approach
is a promising alternative to finetuning since, as the scale of LLMs grows, learning via
prompts becomes efficient and cost-effective. Additionally, unlike finetuning, where a
separate model is required for each downstream task, a single model serves multiple
downstream tasks in prompt-tuning. They also help the model generalize better to held-out
tasks and cross-tasks by using multitask prompts.

As per [79], finetuning on downstream tasks for trillion-scale models results in poor
transferability. Also, these models need to be larger to memorize the samples in finetuning
quickly. To overcome these issues, the prompt-tuning or P-tuning approach [80] is used, which
is a parameter-efficient tuning technique. For example, GPT3 [29] (which was not designed
for finetuning), heavily relied on handcraft prompts to steer the model for downstream
applications. Prompt-tuning came into play to scale this (manual) prompt engineering
technique. Prompt-tuning can be categorized into discrete and continuous approaches.

Unlike finetuning, where a separate model is required for each downstream task, in
prompt-tuning, a single model serves multiple different downstream tasks. In discrete
prompt-tuning, as human efforts are involved in crafting the prompts, the process becomes
time-consuming and fallible as human efforts are involved in crafting the prompts. It
sometimes can be non-intuitive for many tasks (e.g., textual entailment). Additionally,
improper construction of contexts leads to low model performance. To overcome these
issues, a continuous or tunable prompt-tuning technique was proposed.

5.5.2. Continuous Prompt-Tuning

In continuous prompt-tuning, additional k tunable tokens are used per downstream
task, which are prepended to the input text. These prompts are learned through backprop-
agation and are tunable or adjustable to incorporate signals from any number of labeled
examples. Unlike finetuning, only the parameters of these inserted prompt tokens get
updated in prompt-tuning. Hence, they are also called soft prompts. Ref. [80] demon-
strated how their approach outperformed GPT-3’s few-shot learning based on discrete
text prompts by a large margin. They also demonstrated that prompt-tuning becomes
more competitive with scale, where it matches the performance of finetuned models. For
example, prompt-tuning of T5 matched the model’s finetuning quality as the size increased
while enabling the reuse of a single frozen model for all the tasks.

P-tuning uses a small trainable model that encodes the text prompt and generates
task-specific tokens. These tokens are then appended to the prompt and passed to the
LLM during finetuning. When the tuning process is complete, these tokens are stored in
a lookup table and used during inference, replacing the smaller model. In this approach,
the time required to tune a smaller model is much less. Ref. [79] utilized a P-tuning
technique to automatically search prompts in the continuous space, which enabled the
GPT-style model to perform better on NLU tasks. Unlike the discrete-prompt approach,
in continuous prompt, as there are trainable embedding tensors, the prompt encoder can
be optimized in a differentiable way. P-tuning helped to augment the pretrained model’s
NLU ability by automatically searching for better prompts in the continuous space. As
demonstrated in [79], the P-tuning method improves GPTs and BERTs in both few-shot and
fully supervised settings.

Additionally, as only the parameters of prompt tokens are stored, which are less
than 0.01% of the total model parameters, the prompt-tuning approach saves a significant
amount of storage space. For example, CPM-2 [34] used only 100 prompt tokens, where
only 409.6 K trainable parameters were to be updated compared to the 11B parameters
of finetuning. As demonstrated in CPM-2, except for the Sogou-Log task, CPM-2 with
prompt-tuning achieved comparable performance to the finetuning approach. In prompt-
tuning, as the number of parameters to be optimized is much smaller, the size required for
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tensors (gradient and optimizer state) significantly decreased. As a result, prompt-tuning
can save at most 50% GPU memory as compared to finetuning.

However, prompt engineering also has limitations, such as prompt-tuning taking
many more steps to converge and hence more time. Additionally, only a small number of
examples can be used, which limits the level of control. Also, as the examples are part of
the prompt, it affects the token budget.

5.6. Multilingual Finetuning

Most language models are monolingual, using data in the English language only
during pretraining. Such models, therefore, cannot be used to deal with tasks that are
non-English-language-related. To overcome this issue, multilingual models were proposed
to enable the processing of non-English languages. Such multilingual models can also
be used for cross-lingual tasks like translation. However, models such as GPT-3 were
potentially limited in dealing with cross-lingual tasks and generalization because most of
these models had English-dominated training datasets.

XGLM [53] focused on using a multilingual dataset (comprising a diverse set of lan-
guages) for finetuning. As a result, XGLM achieved cross-lingual solid transfer, demonstrating
SOTA few-shot learning performance on the FLORES-101 machine translation benchmark
between many language pairs. When BloomZ [81] was finetuned with xP3, a multilingual
task dataset of 46 languages, the model achieved better zero-shot task generalization (than the
P3-trained baseline) on English and non-English tasks. Furthermore, when xP3mt, a machine-
translated multilingual dataset of xP3, was used to finetune BloomZ on non-English prompts,
the performance of held-out tasks with non-English human-written prompts significantly
improved. In other words, as models generalize to tasks they had never intentionally seen,
they learn the higher-level capabilities that are both task- and language-agnostic.

Typically, a cross-lingual dataset is used to make the model language-agnostic, and, to
make it task-agnostic, a multitask dataset is required. Also, for large multilingual models,
zero-shot performance tends to be significantly lower than finetuned performance. So,
to improve the multilingual model’s zero-shot task generalization, BloomZ [81] focused
on cross-lingual and multitask finetuning. This enabled the model to be usable for low-
resource language tasks without further finetuning.

5.7. Reinforcement Learning from Human Feedback (RLHF) Finetuning

Although the LMs can be prompted to generate responses to a range of NLP tasks,
sometimes, these models might showcase unintended behavior by generating toxic re-
sponses or results that are not aligned with the user instructions. This happens because the
objectives used to pretrain LLMs focus on predicting the next token, which might differ
or misalign from human intention (user’s query or instruction objective). To address this
misalignment issue, Ref. [45] proposed reinforcement learning (RL) from human feedback
to finetune GPT-3. In the RL-based approach, human labels are used to train a model of
reward and then optimize that model. Using human feedback, it tries to align the model by
the user’s intention, which encompasses explicit and implicit (such as being truthful and
not being toxic, harmful, or biased) intentions.

RLHF aims to make the model honest, helpful, and harmless. The RLHF approach
uses human preferences as a reward signal to finetune the model. It was demonstrated
how, despite having 100× fewer parameters, the outputs from the InstructGPT model with
1.3 B parameters were preferred over GPT-3 with 175 B parameters.

Using the RLHF approach, InstructGPT demonstrated improvement in toxicity and
truthfulness over GPT-3 and generalized well to held-out instructions. Ref. [82] applied
reinforcement learning (RL) to complex tasks defined only by human judgment, where only
humans can tell whether a result is good or bad. In [82], the pretrained model was finetuned
using reinforcement learning rather than supervised learning, where it demonstrated its
results on summarizing and continuation tasks by applying reward learning to language
generation. Ref. [83] recursively used the RL approach to produce novel summaries and
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achieve SOTA results for book-length summarizing on the BookSum dataset. Similarly,
using the reinforcement learning technique, Ref. [84] trained a model to predict the human-
preferred summary and used it as a reward function to finetune the summarizing policy.
It could outperform larger models finetuned using a supervised approach and human
reference summaries and generalize well to new datasets.

5.8. Instruction Tuning

In instruction tuning, the model is finetuned on a collection of datasets where the NLP
tasks are described using natural language instructions. Natural language instructions are
added to the prompt to let the model know which task to perform for a given input. For
instance, to ask the model to perform a sentiment analysis task on a given input, instructions
such as ‘Classify this review either as negative, positive, or neutral’ can be provided in the
prompt. Various factors determine the effectiveness of instruction tuning on LLMs, such as the
prompt format used, objectives used during finetuning, diversity of tuning tasks, distribution
of datasets, etc. Additionally, the zero-shot task generalization of LLMs performs poorly
across tasks. To address this, multitask finetuning (MTF) has emerged and become one of the
promising techniques to improve the performance of LLMs in zero-shot settings.

Creating instruction datasets for many tasks from scratch is a resource-intensive
process. Instead, FLAN [44] expresses existing 62 NLP datasets in the instructional format.
This transformed dataset with instructions is then used to finetune the model. For each
dataset, 10 unique templates were created to describe the task in instructional format for
that dataset. Based on the task type, the datasets were grouped into clusters, and then,
to evaluate the performance on each task, the specific task cluster was held out while the
remaining clusters were used during instruction tuning.

FLAN demonstrated how instruction tuning substantially improved the zero-shot per-
formance on held-out tasks that were not part of the instruction tuning process and also
helped the model generalize well on unseen tasks. FLAN outperformed GPT-3 (zero- and
few-shot) on 20 of the 25 datasets used for evaluation. It was observed that the instruction
tuning approach is more effective for tasks such as QA, NLI, and translation that can easily be
verbalized as instructions. Instruction tuning is less effective for tasks where the instructions
are redundant since they can be formulated simply as language modeling tasks, such as
commonsense reasoning. FLAN also demonstrated how instruction tuning can hurt smaller
models since their capacity is mostly exhausted in learning different instruction tasks.

Alpaca uses Meta’s LLaMA model and finetunes it with 52 K instructions following
demonstrations in a supervised manner. These instructions were generated using GPT3.5
(text-davinci-003), where 175 human-written instruction–output pairs from the self-instruct
were used as a seed to generate more instructions. Tk-INSTRUCT [85] proposed a bench-
mark with instructions for 1616 nlp tasks, so such a benchmark dataset can be beneficial
in studying multitask learning and cross-task generalization. This dataset, called ‘SUPER-
NATURAL-INSTRUCTIONS (SUP-NATINST)’, is publicly available. It covers instructions
in 55 different languages, and the 1616 nlp tasks can be categorized under 76 broad task
types. For each task, it provides instructions comprising several examples with the desired
output along with the definition that maps input text to task output. When evaluated
on 119 unseen tasks (English and multilingual variants), TK-INSTRUCT outperformed
InstructGPT by 9.9 ROUGE-L points, and mTK-INSTRUCT outperformed InstructGPT by
13.3 points on 35 non-English tasks.

OPT-IML [86], instruction-tuned-on OPT, conducted experiments by scaling the model
size and benchmark datasets to see the effect of instruction tuning on performance. It
also proposed a benchmark called ‘OPT-IML Bench’, consisting of 2000 NLP tasks. This
benchmark can be used to measure three types of generalizations to tasks from held-out
categories, held-out tasks from seen categories, and held-out instances from seen tasks.
OPT-IML achieved all these generalization abilities at different scales and benchmarks
(PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG), having diverse tasks
and input formats. OPT-IML was also highly competitive with finetuned models on each
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specific benchmark. Furthermore, to improve the performance on reasoning tasks, it used
14 reasoning datasets during instruction tuning, where the output included a rationale
(chain-of-thought process) before the answer. Similarly, there was experimentation by
adding dialogues as auxiliary datasets to see if that could induce chatbot behavior in
the model.

Ref. [87] experimented with instruction tuning regarding model size, number of tasks,
and chain-of-thought datasets. It was observed that instruction finetuning scales well,
and the model performance substantially improved with the increased size of models
and number of finetuning tasks. Additionally, when nine CoT datasets were added to
the instruction tuning dataset mixture, the model could perform better on evaluation
reasoning tasks. This contradicts other work where instruction finetuning instead degraded
CoT task performance. So, Ref. [87] demonstrated how CoT data improves performance
reasoning tasks when jointly finetuned with an instruction dataset. After instruction tuning
model classes such as T5, PaLM, and U-PaLM, Ref. [87] observed a significant boost in
performance for different types of prompting setups (zero, few, and CoT) and benchmarks
as compared to the original models (without instruction finetuning).

In self-instruct [88], the bootstrap technique is used to improve the model’s instruction
following capabilities. Here, the existing collection of instructions is leveraged to generate
new and more broad-coverage instructions. Using a language model, self-instruct generates
instructions along with input–output samples, filters invalid, low-quality, or repeated
instructions, and uses the remaining valid ones to finetune the original model. Along with
the instructions, the framework also creates input–output instances, which can be used
to supervise the finetuning of instructions. When self-instruct was applied to GPT-3, it
achieved a 33% performance gain on SUPER-NATURALINSTRUCTIONS over the original
model, which was on par with the InstructGPT performance.

5.9. Code-Based Finetuning

Generating code is a translation task that maps a natural language problem statement
to a solution or code in programming language. Recent LLMs are capable of completing
programming tasks by generating code. Codex [89] uses the GPT model, which was fine-
tuned on publicly available code from GitHub. It studied Python code-writing capabilities,
focused on generating standalone Python functions from docstrings, and then evaluated
the correctness of the generated code samples. It was able to solve 28.8% of the HumanEval
dataset problems, while GPT-3 solved 0% and GPT-J solved 11.4%. It needs help with
docstrings describing long operations chains and binding operations to variables.

To enable the model to solve complex problems and provide deeper reasoning, the
AlphaCode [41] model was pretrained on a collection of open-source code from GitHub and
then finetuned on a curated set called CodeContests of competitive programming problems.
The pretraining dataset consisted of code from several popular programming languages. Al-
phaCode achieved a ranking of top 54.3% on average in simulated programming competitions
with more than 5000 participants that were hosted on the Codeforces platform.

Furthermore, CodeGEN [42] introduced a multistep approach where a user can progres-
sively communicate with the system to provide specifications. Such multiple-step specification
eases the understanding of a model, leading to enhanced program synthesis. CodeGeeX [43]
is a multilingual model trained on 23 programming languages. To evaluate multilingual
models, it proposed a HumanEval-X benchmark where the solutions in C++, Java, JavaScript,
and Go were hand-written. CodeGeeX was able to outperform multilingual code models of
similar scale for translation on HumanEval-X as well as code generation tasks.

6. In-Context Learning

Finetuning is task-agnostic, but it uses a supervised approach during transfer learning
and hence requires access to a large amount of labeled datasets for every downstream
task. Furthermore, having such a task-specific dataset leads to finetuning the model on
a very narrow distribution, which might potentially yield poor generalization on out-of-
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distribution datasets. It might also be overly specific to the distribution, exploiting spurious
correlations and features of the training data. The need for such labeled datasets limits the
applicability of language models.

To overcome these limitations, in-context learning (ICL) was proposed in GPT-3 [29],
where the language model uses in-context information for inference. The main benefits of
ICL are the minimal need for task-specific data and the fact that it does not go through any
parameter updates or architectural modifications. In ICL, a prompt feeds the model with
input–label pair examples, avoiding the need for large labeled datasets. Unlike finetuning,
ICL has no gradient updates, so the weights of the model parameters are not updated. In
ICL, the abilities that are developed by LLMs during pretraining are applied to adapt to or
recognize the task at inference time, enabling the model to easily switch between many tasks.

As experimented in GPT-3, the larger model with 175B parameters outperformed the
smaller models by efficiently using in-context information. Based on the experiments con-
ducted in GPT-3, ICL showed initial promise and improved out-of-domain generalization.
However, the results are far inferior to those of the finetuning technique. ICL helps to analyze
whether the model rapidly adapts to the tasks that are unlikely to be directly contained in
the training set. In ICL, the model is conditioned on task instruction and a couple of task
demonstrations as a context and is expected to complete the target instance of the task. As
transformer-based models are conditioned by a bounded-length context (e.g., 2048 tokens in
GPT-3), ICL cannot fully exploit data longer than the context window. Based on the number
of demonstrations provided for inference in the context window, ICAL can be categorized as
few-shot, one-shot, and zero-shot. We describe each of them below.

6.1. Few-Shot Learning

In few-shot learning, a few examples are provided in the prompt, which helps the
model understand how to solve the given task question. In a few-shot setting, the number
of demonstrations provided in the prompt typically ranges between 10 and 100, or it
includes as many examples that can fit into the model’s context window. Compared to the
finetuning approach, in a few-shot setting, the number of task-specific examples required
is drastically reduced, making it a viable alternative for tasks with smaller dataset sizes.
In case the task has many edge cases or is fuzzily defined, having more examples in the
prompt can help the model understand the task and predict the result more accurately.

It was shown in GPT-3 [29] how the model performance rapidly improved after a few
examples, which, along with a task description, were provided as the context through the win-
dow. Similarly, it was demonstrated in Jurassic-1 [31] how classification task accuracy improved
after adding more examples in the few-shot setting. Because of the type of tokenizer used in
Jurassic-1, it could fit in more examples in the prompt, leading to significant performance gain.

However, it was demonstrated in some of the papers, such as [90], that the examples
used in the few-shot setting, the sequence in which the examples were ordered, and the format
of the prompt directly affected the accuracy. Ref. [90] demonstrated how this instability in
few-shot learning stems from the language model’s bias toward predicting specific answers.
For example, the model can be biased towards answers placed towards the end of the prompt,
those appearing frequently, or those that are familiar in the pretrained dataset. To address
this instability, Ref. [90] first estimated the model’s bias towards each answer. It then used
calibration parameters that caused the prediction for the input to be uniform across answers.
This calibration procedure improved GPT-3 and GPT-2’s average accuracy by up to 30.0% on
a diverse set of tasks and also reduced variance across different prompt choices.

Instead of randomly sampling few-shot examples, Ref. [91] investigated to find effec-
tive strategies that could select the in-context learning examples judiciously, which would
help in better leveraging the model’s capabilities in a few-shot setting. It proposed “KATE”,
a non-parametric selection approach, which retrieved in-context examples that were se-
mantically similar to the test sample. This strategy helped to provide more relevant and
informative inputs to the model, such as GPT-3, and unleashed the model’s needed knowl-
edge to solve the problem. GPT-3’s performance using KATE was improved by a significant
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margin as compared to the random sampling on several NLU and NLG tasks. In [92], the
study compared how the model generalizes in few-shot finetuning and in-context learning
settings. During the comparison, the model size and number of examples and parameters
used in the experiment were controlled. The results demonstrated how the finetuned model
generalized similarly to the ICL model regarding out-of-domain conditions and improved
performance as the models became larger.

6.2. One-Shot Learning

This approach is similar to few-shot learning except only one example is provided
as context in addition to the task description. The pretrained-model can view only one
demonstration before making the prediction.

6.3. Zero-Shot Learning

In zero-shot learning, the model is prompted without any example. As there are no
demonstrations, only the task instruction is fed as input to the model. Zero-shot learning is
helpful when there is no or negligible task-specific dataset available. GPT [27] and GPT-2
GPT2 demonstrated how zero-shot acquires practical linguistic knowledge required for
downstream tasks. In GPT-3, the performance of zero-shot setting on tasks such as reading
comprehension, NLI, and QA was worse than that of few-shot performance. One of the
possible justifications is that, because of the lack of examples, the model finds it challenging
to predict correct results based on the prompts that were not similar to the format of
pretrained data. Ref. [93] compared different architectures and pretraining objectives and
their impact on zero-shot generalization. Experiments from [93] demonstrated that causal
decoder-only models trained on an autoregressive language modeling objective using
unsupervised pretraining exhibited the strongest zero-shot generalization.

6.4. Chain-of-Thought Learning

Despite the progress made by in-context learning, state-of-the-art models still struggle
when dealing with reasoning tasks such as arithmetic reasoning problems, commonsense
reasoning, and math word problems, which require solving intermediate steps in precise
sequence. The chain-of-thought (CoT) approach is used to address this issue, where
examples are provided with a series of intermediate reasoning steps to help the model
develop the reasoning required to deduce the answer. In other words, CoT comprises the
rationale required as part of the explanation that is used to solve and compute the answer
to a complex problem. In [94], it was demonstrated how a CoT-based prompting technique
helped to significantly improve LLM performance for complex reasoning tasks. When
LLMs are prompted using the CoT technique, they demonstrate the intermediate reasoning
steps involved in computing the final answer to unseen problems. CoT prompts indirectly
help the model to access relevant knowledge (acquired during pretraining), which helps to
improve the reasoning ability of the model.

Experiments have shown how CoT-based prompting improves reasoning-oriented
tasks, such as symbolic, commonsense, and arithmetic-based tasks. For example, when
PaLM-540B was prompted using eight CoT examples, it surpassed finetuned GPT-3 to
achieve SOTA performance on the GSM8K benchmark with math word problems. Sim-
ilarly, Minerva [50] used the PaLM model and further finetuned it on the technical and
mathematical dataset. When Minerva was prompted with CoT examples that included step-
by-step solutions, it generated a chain-of-thought answer and demarcated a final answer. Of
two hundred undergraduate college-level problems used for evaluation, Minerva answered
nearly a third of them from mathematics, science, and engineering domains requiring quan-
titative reasoning. PaLM [54] analyzed the effect of CoT prompting with model scaling and
demonstrated how CoT-based few-shot matched or outperformed state-of-the-art finetuned
models on various reasoning tasks.

In zero-shot chain of thought with no examples, CoT reasoning can explicitly be
activated by using some trigger phrases, such as “let’s think step-by-step” or “Let’s think
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about this logically”, to prompt the model to generate explanations. OPT-IML [86] used
15 reasoning datasets and studied the effects of different proportions of reasoning data on
different held-out task clusters. The default mechanism or approach used in CoT is greedy
decoding, where the most common way of reasoning is selected to solve the problem.
Ref. [95] proposed a self-consistency decoding alternative, where, instead of taking the
greedy path, it explores different ways of solving a complex reasoning problem that lead
to the unique correct answer. Ref. [95] demonstrated how adapting the self-consistency
approach in CoT prompts improved performance on benchmarks of commonsense and
arithmetic reasoning tasks across four large language models with varying scales. However,
this alternative does incur increased computational cost.

As addressed in Galactica [55], some limitations are associated with the CoT process.
The CoT process needs some few-shot examples to understand the step-by-step reasoning
process, which takes up the context space. Also, as internet data are used for pretraining, such
data may have only some of the necessary intermediate steps. Since some trivial, easy, and
practiced steps are internally computed and memorized by humans, they may only write
down some necessary details or steps as it would lead to long and tedious answers. As only
principal steps are involved, this leads to missing data where internally computed steps are
not written. As a result, more effort is required to review the datasets and explicitly inject
missing steps. Table 3 lists the finetuning methods used in the prominent LLM models along
with additional details, such as pretraining (PT) and finetuning (FT) batch sizes and epochs.

Table 3. Finetuning details of LLMs.

Model PT, FT Batch-Size Context Size PT, FT Epochs Activation, Optimizer Finetuning Methods

Transformer-base [24] - - 100,000
Transformer-big [24] - - 300,000 -, Adam Feature-based
BERT-base [26] 256, 32 128, 512 40, 4
BERT-large [26] 256, 32 128, 512 40, 4 GELU, Adam FT
GPT-1 [27] 64 512 100 GELU, Adam FT, zero-shot
GPT-2 [28] 512 1024 - GELU, Adam zero-shot
GPT-3 [29] 3.2M 2048 - - few-shot, one-shot, zero-shot
T5 [25] 128, 128 512 219, 218 steps RELU, AdaFactor FT

REALM [30] 512, 1 - 200 k steps, 2
epochs - -

Jurassic-1 [31] 3.2 M tokens 2048 - - few-shot, zero-shot
mT5 [32] - - - GeGLU, FT, zero-shot
Pangu-Alpha [33] - 1024 130 K 260 K GeLU few-shot, one-shot, zero-shot
CPM-2 [34] - - - - FT, PT
Yuan 1.0 [35] - - - - few-shot, zero-shot
HyperClova [36] 1024,- - - -, AdamW few-shot, zero-shot, PT
GLaM [37] - 1024 - -, Adafactor zero-, one-, and few-shot
ERNIE 3.0 [38] 6144 512 - GeLU, Adam FT, zero- and few-shot
Gopher [39] - 2048 - Adam FT, few-shot, zero-shot
Chinchilla [40] - - - AdamW FT, zero-shot
AlphaCode [41] 2048 - 205 K - finetuning
CodeGEN [42] 2 M 2048 - - zero-shot
CodeGeeX [43] 3072 - - FastGELU, Adam finetuning
FLAN [44] -, 8192 1024 30 K -, Adafactor Instruction Tuning, zero-shot
InstructGPT [45] 3.2 M 2048 - - RLHF
LaMDA [46] - - - gated-GELU, FT
T0 [47] - - - RELU, AdaFactor FT, zero-shot
GPT NeoX 20B [48] 3.15 M tokens 2048 150 K steps -, AdamW with ZeRO few-shot
OPT [49] 2 M tokens 2048 - ReLU, AdamW few-shot, zero-shot
MINERVA [50] - 1024 399 K SwiGLU, Adafactor few-shot, chain-of-thought context
AlexaTM 20 B [51] 2 million tokens - - Adam Finetuning, few-shot, one-shot, zero-shot
GLM-130 B [52] 4224 2048 - GeGLU, zero-shot, few (5) shots
XGLM [53]

PaLM [54] 512, 1024, 2048 (1, 2, 4 M
tokens), - 2048 1 (255 k steps) SwiGLU, Adafactor few-shot, chain-of-thought, finetuning

Galactica [55] 2 M 2048 4 epochs GeLU zero-shot
Pali [56] - - -
LLaMA [57] 4 M tokens - - SwiGLU, AdamW zero-shot, few-shot, Instruction Tuning

UL2 [58] 128 512 500 K steps SwiGLU, Adafactor in-context learning, zero-shot, one-shot,
finetuning, instruction tuning

Pythia [59] 1024 2048 1.5 Epochs Adam zero-shot
WeLM [60] 2048 2048 - - zero-shot, few-shot

BLOOM [22] 20,482,048 2048 - GELU, - zero-shot, few-shot, multitask-prompted
(fine)-tuning

GLM [61] 1024 200 K Steps FT
GPT-J 2048 383,500 steps - FT
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Table 3. Cont.

Model PT, FT Batch-Size Context Size PT, FT Epochs Activation, Optimizer Finetuning Methods

YaLM
Alpaca - - FT, IT (instruction Tuning)
Falcon - 2048 - - -
(Xmer) XXXL [62] 219 FT
[63] 2048 FT, zero-shot, few-shot

7. Scalability

In recent years, transformer-based language models’ capacity has increased rapidly,
from a few million parameters to a trillion parameters. Each increase has improved the
model’s language learning abilities and downstream task performance. Recent research
has demonstrated how the loss decreases as the model size increases and follows a smooth
trend of improvement with scale. Recent work has demonstrated how scaling up the LLMs
improves their abilities across various tasks. LLMs have demonstrated that scaling up
language models significantly improves task-agnostic few-shot performance. Recent work
has shown that scaling up produces better performance than more carefully engineered
methods. If the LLMs are sufficiently pretrained on a large corpus, it can lead to significant
performance improvements on diverse tasks. Over time, it has become evident through
experiments that the performance of LLMs can steadily be improved by scaling the model
size and training data and training the model longer (increasing the training steps).

As stated in [96], emergent abilities are not present in small models but start mani-
festing or resurfacing in larger models due to scaling. When the parameter size exceeds
100 billion, such emergent zero-shot and few-shot abilities of the model start resurfac-
ing [96]. As stated in [48], such abilities manifest above a certain threshold, and such
properties therefore cannot be examined or found in smaller models.

For instance, GPT-3 with 175B parameters performed better with fewer shots (32 la-
beled examples) than the fully supervised BERT-Large model on various benchmarks.
Additionally, with the increase in size, the GPT model has been effective even in zero-
and few-shot settings, sometimes matching the finetuning performance. The experiments
in [29] demonstrated that, with an increase in model size, model performance improved
steadily for zero-shot and rapidly for few-shot models. As their size increases, models
tend to be more proficient and efficient at in-context learning. As demonstrated in [33],
perplexity decreases with the increase in model capacity, training data, and computational
resources. Below, we look at different ways to scale up the model and how it affects the
model performance.

7.1. Model Width (Parameter Size)

Kaplan et al. [97] analyzed the effect of model size, computing power, and training
data on the performance of language models. The key finding from [97] was that LM
performance improves smoothly and predictably as model size, data, and computation
are scaled up appropriately. Additionally, large models were more sample-efficient than
smaller models as they reached the same level of performance with fewer data points and
optimization steps. As per [97], most of the increase in computation should go towards
increasing the model size. Also, a relatively small increase in data is needed to avoid
reuse, where larger batch sizes can help to boost and increase parallelism. Additionally,
larger batches and training for more steps become possible as more computing becomes
available. T5 [25] conducted experiments that started with the baseline model having
220 M parameters and then scaled it up to a model with 11 B parameters. The experiments
conducted in T5 showed how performance degraded as the data size shrank and improved
with the increase in model size and training time.

7.2. Training Tokens and Data Size

Although Kaplan et al. [97] showed a power law relationship between the number
of model parameters and its performance, they did not consider pretraining tokens or



Appl. Sci. 2024, 14, 2074 28 of 42

corpus data size. Hoffmann et al. [40] also reached the same conclusion but recommended
that large models should be trained for many more training tokens. Specifically, given
a 10× increase in computational budget, Kaplan et al. [97] suggest that the model size
should increase 5.5× while the number of training tokens should only increase 1.8×.
Instead, Chinchilla [40] finds that, as the computation budget increases, model size and
the number of training tokens (training data) should be scaled in approximately equal
proportions. Although large models achieved better performances, Chinchilla on the
other hand demonstrated how, for a given computation budget, the best performance is
achieved by smaller models trained on larger or more data as compared to large models.
For instance, although LLaMA had 13 B parameters, it outperformed GPT-3 with 175 B
on most benchmarks despite being ten times smaller. Chinchilla helps to answer how,
given a fixed computational budget, one should balance model size and the number of
training tokens.

With one-fourth fewer parameters and four times more data than Gopher, Chinchilla
could significantly outperform Gopher on a large range of downstream evaluation tasks.
Not only does Chinchilla outperform its much larger counterpart, Gopher, but, because of
its smaller model size, it uses less computing for finetuning and inference, which reduces
finetuning and inference costs considerably and greatly facilitates downstream usage on
smaller hardware. Although [40] it determines how to scale the model size and dataset
for a given computation budget, it disregards the inference budget, which is crucial since
the preferred model is the one that is fastest at inference and not at training. As per [57],
a smaller model trained longer is cheaper at inference. For example, Falcon-40B requires
70 GB of GPU memory to make inferences, whereas Falcon-7B needs only 15 GB, making
inference and finetuning accessible even on consumer hardware.

Additionally, although [40] recommended training a 10 B model on 200 B tokens, [57]
demonstrated how the performance of a model with 7 B parameters continued to improve
even after it was trained on 1 T tokens. Furthermore, unlike Chinchilla, PaLM, or GPT-3,
LLaMA demonstrated how it can train models and achieve SOTA performance using publicly
available datasets without relying on proprietary and inaccessible datasets. WeLM [60], a
Chinese LM, demonstrated how, by carefully cleaning, balancing, and scaling up the training
data size, WeLM outperformed models with similar or larger sizes. For instance, on zero-shot
evaluations, it matched the performance of ERNIE 3.0 Titan, which is 25× larger.

7.3. Model Depth (Network Layers)

In LLMs, network width is captured by the parameter size (hidden representation
dimension), whereas network depth is the number of self-attention layers. Previous studies
have indicated that increasing the network depth is the same as increasing the network
representation. However, recent studies, such as [98], confirm the contrary. For instance,
deepening is not favorable over widening for smaller network sizes. That is, when the
width of the deeper network is not large enough, it cannot use its excess layers efficiently.
Meanwhile, the transition into depth efficiency is clearly demonstrated when the network
width is increased. It was shown in [98] that the transition between depth-efficiency
and depth-inefficiency regimes exponentially depended on the network’s depth. From a
certain network width onwards, increasing the network depth does help improve efficiency.
However, if the depth is increased with the network width, then it leads to efficiency. So,
first, the width of the network must be chosen appropriately to leverage the full extent of
the power brought by the depth of the network. For a given parameter budget, there is an
optimal depth. So, for the same parameter budget, the deeper network performs better.

As per the proposed theory in [98], the optimal depth for GPT3’s 175 B parameters
should have been 80 layers instead of 96. As per [98], Jurassic-1 [31] used 76 layers for the
178 B parameter model and found a significant gain in runtime performance. Using the
same hardware configuration compared to GPT3, Jurassic-1 had 1.5% speedup per iteration
and 7% and 23% gain in batch inference and text generation. Also, by shifting computation



Appl. Sci. 2024, 14, 2074 29 of 42

resources from depth to width, more operations can be performed in parallel (width) rather
than sequentially (depth).

Additionally, Ref. [97] mainly focused on the upstream (pretraining) loss, whereas [62]
found that scaling laws differ in upstream and downstream environments. For instance, in
addition to model size, model shape matters for downstream tasks, and it is recommended
to increase the model’s depth (DeepNarrow strategy) before uniform scaling of any other
dimensions. This demonstrates that such redesigned models were able to achieve a similar
performance to the T5-base model but with 50% fewer parameters and 40% faster training.

7.4. Architecture—Parallelism

Large models often require a great deal of storage space to store the parameters. For
instance, storing 178 B parameters requires more than 350 GB of memory with half-precision.
As stated in [33], as the model size grows beyond 10 B parameters, it becomes difficult
to train the model. To store [33] model of 200 B parameters, 750 GB space is required.
Additionally, as gradients and optimizer states are required for updating the parameters,
the model demands more memory during its training.

As large GPUs available today have a memory of around 80 GB, additional space is
required to store the optimizer’s state and intermediate calculations used during backprop-
agation. As a result, training must be distributed across hundreds of nodes, each with
multiple GPUs, which might result in a communication bottleneck. In order to use the
nodes efficiently, different parallelization strategies highlighted in Figure 6 (such as data,
model, and pipeline) are used to achieve higher end-to-end throughput. Below, we discuss
each of these approaches.

Figure 6. 3D parallelism.

7.4.1. Data Parallelism

In this data parallelism approach, the training batches are partitioned across the de-
vices, followed by the synchronization of gradients from different devices before executing
the optimizer step.

7.4.2. Tensor Parallelism (Op-Level Model Parallelism)

Each layer is partitioned across devices within a node. This approach reduces memory
consumption by slicing the parameters and activating memory. However, to keep the
distributed tensor layouts consistent, it does incur additional communication overheads.
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7.4.3. Pipeline Parallelism

Pipeline parallelism splits the model layers among multiple nodes. Each node is one
stage in the pipeline, which receives input from the previous stage and sends results to the
next stage. Here, the layers are partitioned into stages. These states are placed on different
devices. As each device holds only a subset of the total layers of the model, this approach is
beneficial from a memory perspective since communications happen only at the boundaries
of stages.

8. LLM Challenges

Language models can generate biased outputs of misinformation and be used mali-
ciously. Large language models reproduce and might amplify existing biases in the training
data, generating toxic or offensive content. During training, as the language models absorb
biases and toxicity expressed in the text, they are prone to replicating them. This growing
field aims to build benchmarks to concretely evaluate these harms, particularly around
stereotypes, social bias, and toxicity. Making progress on these issues is challenging since
well-intended intervention might have side effects on LM behavior. Below, we discuss the
prominent benchmarks that are proposed to overcome these LLM challenges.

8.1. Toxic Content

Language models are capable of generating toxic language—including insults, hate
speech, profanities, and threats. A model can generate a very large range of toxic content,
making a thorough evaluation challenging. Language models are trained to reproduce their
input distribution (and not to engage in conversation), so the trend is that toxicity increases
with the model scale. Several recent works have considered the RealToxicityPrompts
benchmark [99] as an indicator of how toxic their model is.

To measure toxicity, Ref. [99] proposed the RealToxicityPrompts benchmark. RealToxi-
cityPromptsdataset is used to evaluate the tendency of LLM models to respond with toxic
language. In LLaMA, toxicity increased with the size of the model. RealToxicityPrompts is
quite a straightforward stress test: the user utters a toxic statement to see how the system
responds. Some LLMs, for example, OPT, even when provided with a relatively innocuous
prompt, have a high propensity to generate toxic language.

SaferDialogues [100] and Safety Bench [101] are two benchmarks that are used to test
dialogue safety evaluations. SaferDialogues measures the ability of the model to recover
from explicit safety failures, usually in the form of apologizing or recognizing its mistake.
In contrast, Safety Bench Unit Tests measure how unsafe a model’s response is and classify
them as Safe, Realistic, Unsafe, and Adversarial.

8.2. Hallucination

LLMs are said to hallucinate when they generate information that is fake or incorrect.
The hallucination can either be intrinsic or extrinsic. In intrinsic hallucination, the model
generates information that contradicts the content of the source text. In contrast, the
generated content cannot be contradicted or supported by the source text in extrinsic
hallucination. There are various reasons why a model can hallucinate or generate fake
information during inference. For instance, if the model misunderstands the information
or facts provided in the source text, it can lead the model to hallucinate. So, to be truthful,
the model should have reasoning ability to correctly understand the information from
the source text. The other reason why LLMs can generate false information is when the
provided contextual information conflicts with the parametric knowledge acquired during
pretraining. Additionally, it is observed that models have parametric knowledge bias,
where the model assigns more importance to the knowledge acquired during pretraining
over the provided contextual information.

Also, teacher forcing is used during pretraining, where the decoder is conditioned
on the ground truth prefix sequences to predict the next token. However, such a teacher
forcing technique is missing during the inference, and such a discrepancy can also make
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a model hallucinate. Several techniques have been proposed to detect hallucinations in
LLMs, such as

1. sample not one but multiple outputs and check the information consistency between
them to check which statements are factual and which are hallucinated;

2. validate the correctness of the model output by relying on and using external knowl-
edge source;

3. check if the generated named entities or <subject, relation, object> tuples appear in
the ground truth knowledge source or not, etc.

Benchmarks such as TruthfulQA [102] have been developed to measure the truthful-
ness of language models. This benchmark can evaluate the risks of a model to generate
misinformation or false claims that mimic popular misconceptions and false beliefs. It
was observed in [102] that, generally, the largest models were the least truthful, so scal-
ing up the model size increased performance but was less promising in improving the
model’s truthfulness.

8.3. Biases

Gopher [39] studies gender and occupation bias via two different evaluations. First,
it measures the probability of gendered words following different occupation contexts.
Second, it evaluates the Winogender coreference resolution dataset [103], where similar
coreference accuracy across different pronouns indicates less gender bias. To measure “Gen-
der Word Probability” or how probable different gender words are in different occupation
contexts, Gopher inputs an occupation prompt like “The occupation was a” into the model
and computes a gender bias metric by comparing the probabilities of the prompt being
followed by either male or female gendered terms.

CrowSPairs [104] is another crowdsourced benchmark dataset that allows measuring
biases in nine categories: gender, religion, sexual orientation, socioeconomic status, race/color,
disability, age, nationality, and physical appearance. Additionally, the StereoSet [105] dataset is
used to measure stereotypical bias across four categories: profession, gender, religion, and race.

8.4. Cost and Carbon Footprints

As stated in CPM-2 [34], the cost of using pretrained language models increases with
the growth of model sizes. The cost consists mainly of three parts.

1. Computational cost for pretraining: large language models require thousands of GPUs
with several weeks of pretraining.

2. Storage cost for finetuned models: a large language model usually takes hundreds of
gigabytes (GBs) to store, and as many model copies as the number of downstream
tasks need to be stored.

3. Equipment cost for inference: it is expected to use multiple GPUs to infer a large
language model.

So, as the model size increases, they become hard to use with limited computational
resources and unaffordable for most researchers and institutions.

Furthermore, the pretraining phase of large language models consumes massive
energy responsible for carbon dioxide emissions. The formulas used in LLaMA to estimate
the Watt hour (Wh) and carbon emissions are listed in Equations (6) and (7), where 0.385 in
Equation (7) is the US national average carbon intensity factor (0.385 kg CO2eq/KWh) and
PUE represents power usage effectiveness.

Wh = (GPU − h)× (GPU power consumption)× (PUE) (6)

tCO2eq = MWh × 0.385 (7)

As stated in LLaMA [57], carbon emission also depends on the data center’s location
used during pretraining of the network. For instance, BLOOM uses a grid that emits
0.057 kg CO2eq/KWh, leading to 27tCO2eq, and OPT uses a grid that emits 0.231 kg
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CO2eq/KWh, leading to 82tCO2eq. As stated in [106], a couple of factors are involved
in computing the electricity required to run an NLP model, such as algorithm, program,
number of processors running the program, speed and power of those processors, a data
center’s efficiency in delivering power and cooling the processors, and the energy supply
mix (renewable, gas, or coal). Cloud data centers can also be 1.4 − 2X more energy-efficient
than typical data centers. A more detailed and granular formula stated in Equation (8) was
presented in [106] that captures the carbon footprint of an NLP model:

Footprint = (electrical energy train+

= + queries × electrical energy in f erence)

× CO2e datacenter/KWh

(8)

To decrease the footprint of training, an ML researcher should pick the DNN model,
the processor, and the data center carefully. The above Equations (6) and (7) can be restated
in terms of energy consumption and CO2 emissions as Equations (9) and (10) below.

KWh = Hours to train × Number o f Processors×
Average Power per Processor × PUE ÷ 1000

(9)

tCO2e = KWh × kg CO2e per KWh ÷ 1000 (10)

To address the cost and carbon footprint problems, there is a need to improve the
energy efficiency of algorithms, data centers, software, and hardware involved in imple-
menting NLP models. Emphasis should be placed on reducing carbon footprint by building
more efficient LLMs. For example, OPT [49] is comparable to GPT-3 and requires only
1/7th of the carbon footprint to develop.

Ref. [106] also recommends three suggestions that could eventually help to reduce the
CO2e footprint:

1. report energy consumed and CO2e explicitly;
2. reward improvements in efficiency as well as traditional metrics at ML conferences;
3. to help everyone understand its cost, include the time and number of processors used

during training.

As highlighted in [106], large but sparsely activated DNNs can consume <1/10th the
energy of large, dense DNNs without sacrificing accuracy despite using as many or even
more parameters.

8.5. Open-Source and Low-Resource Aspects

The costs of training LLMs are only affordable for well-resourced organizations. Fur-
thermore, until recently, most LLMs were private and not publicly released. As a result,
most of the research community is yet to be included in developing LLMs. Language-
specific language models other than English are limited in availability. Very few non-English
LMs, such as [33,36], are available in the market. So, there are many untapped non-English
resources available on the internet that need to be explored. More work is required to
accommodate low-resource and non-English languages regarding LLMs. Furthermore, the
impact of increasing the proportion of multilingual data on multilingual and cross-lingual
tasks needs to be explored.

9. Future Directions and Development Trends

LLMs have set the stage for a paradigm shift in developing future software appli-
cations. Also, LLMs have the potential to disrupt many well-established businesses. To
address LLMs’ full potential, in this section, we attempt to describe their future direc-
tions, possible development trends, and their unrealized utility. Although we enumerate
these directions and trends under different facets to facilitate elucidation, there is a strong
interconnectedness among the facets.
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9.1. Interpretability and Explainability

An LLM’s ability to explain its decisions and predictions is crucial to promote trust,
accountability, and widespread acceptance. The current research targets methods that can
explain the model’s decisionmaking process and inner workings in a format understandable
to humans. The approaches we discuss below originated in the machine learning domain.
They need to evolve to serve the LLMs context.

Some architectures are inherently interpretable. For example, decision trees, rule-based
models, or sparse models facilitate understanding a model’s decision in a transparent and
human-understandable format. More research in this area is critical for advancing LLM
applications. Using the LLM’s attention mechanism, we can highlight important parts of
the input data that contributed to the model’s predictions. Attention weights indicate the
model’s focus and thus serve as a means for interpretability.

Another approach involves extracting human-readable rules or generating post hoc
explanations that explain model predictions in natural language or other more straight-
forward representations. Creating simpler proxy or surrogate models that approximate
the behavior of complex original models is another approach to improving interpretability.
LIME (local interpretable model-agnostic explanations) or SHAP (SHapley Additive exPla-
nations) are approaches for developing feature importance and attribution. This helps to
attribute the model’s predictions to specific input features. Salience maps and heatmaps
(i.e., gradient-based visualization) also help to highlight essential regions in the input data
that influence predictions. Another approach involves extracting human-readable rules or
generating post hoc explanations. Investigating methods to provide certified or verified
explanations guarantees the reliability of explanations.

Developing interactive tools that enable users to interact with the model at various
levels of granularity can be used to provide user-centric explanations. This is akin to the
drill-down and roll-up features of online analytical processing (OLAP) in data warehousing
applications. Disclosing a model’s capabilities, biases, and potential errors to users is a re-
quired step toward emphasizing the importance of ethical considerations and transparency.
Lastly, educating users about model capabilities and limitations and providing guidance
on interpreting model outputs is mandatory for advancing LLMs.

9.2. Fairness

Bias and fairness, if not adequately addressed, pose serious societal implications in the
form of biased language generation and its impact on some segments of society. Basis can
creep into LLMs from several sources discussed below. The first source of bias, dataset bias,
stems from the datasets that were used to train the LLMs. If the datasets contain biases related
to race, gender, religion, or socioeconomic status, the models inherit and amplify them.

Underrepresentation or misrepresentation of certain groups in the training data can
lead to representation bias and biased language generation. The LLM developers should
have checks and balances to ensure that all perspectives are adequately represented in the
datasets. Otherwise, the model will produce inaccurate or skewed output for underrepre-
sented groups. If the training data contain stereotypes, models amplify stereotyping and
perpetuate prejudices. Fairness across demographics is a complex challenge but essential
for advancing LLMs.

Centextual bias stems from the context in which the language models are used. This
poses severe and negative implications in applications such as recommender systems,
employee hiring and promotions, clustering, and sentiment analysis. The model evaluation
metrics and benchmarks used in traditional machine learning are inadequate to capture
bias in LLMs. Comprehensive evaluation methods are needed to consider various aspects
of bias in LLMs. A multifaceted approach is required to address bias and fairness issues
in LLMs. Approaches to data curation, model development, evaluation strategies, and
ethical issues need to be reexamined for their suitability for LLMs. Mitigating biases in the
datasets using debiasing approaches such as modifying loss functions, altering training
data distributions, and adversarial training requires LLM-contextualized research.
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9.3. Robustness and Adversarial Attacks

LLMs are susceptible to adversarial attacks. Small but carefully crafted perturbations
can cause model misinterpretation. Addressing these issues is critical for ensuring the relia-
bility and trustworthiness of LLMs. Ensuring consistent performance under perturbations
requires eliminating susceptibility to adversarial manipulation. Mitigation approaches
include input preprocessing and transformation, adversarial training, robust optimization
techniques, adversarial example detection, defensive distillation, model ensembling, adap-
tive adversarial training and transferability analysis, adversarial attack-aware training data
augmentation, certified robustness, explainable robustness mechanisms, and benchmarking
and evaluation metrics.

In the input preprocessing and transformation approach, certain transformations
are applied to the datasets to make the models robust to perturbations. For example,
input denoising or transformation-based defenses modify inputs to remove adversarial
perturbations. In adversarial training, the datasets are augmented with adversarial samples.
This enhances a model’s resilience to adversarial attacks. Robust optimization techniques,
such as adversarial regularizations, modify the training objective functions to make the
models more robust against adversarial perturbations.

Adversarial example detection involves methods to detect and flag adversarial ex-
amples during model inference. Techniques for this task include input reconstruction,
uncertainty estimation, and anomaly detection. Defensive distillation and model ensem-
bles combine predictions from multiple models to mitigate the impact of adversarial attacks.
Also, ensembling diverse models reduces vulnerability to specific attack strategies. The
adaptive adversarial training and transferability analysis approach employs adaptive ad-
versarial training. Adversarial examples are dynamically generated during training to
enhance a model’s robustness. Analyzing the transferability of attacks across models
provides insights into developing more universally robust defenses.

In adversarial attack-aware training data augmentation, the training data are enhanced
with adversarial attack-aware data. Certified robustness methods provide formal guaran-
tees on the model’s robustness against certain kinds of adversarial attacks. This emerging
research area offers provable bounds on the model’s performance under attack. If the
model design incorporates explainable robustness mechanisms, then examining how the
model handles adversarial attacks is feasible. Lastly, the availability of benchmarks and
evaluation metrics contextualized to adversarial attacks helps to compare the effectiveness
of different models and techniques. The techniques mentioned above originally came from
the traditional machine learning domain. Research is needed to adapt these to the LLMs
context. Moreover, research is needed to develop new approaches to adversarial attacks
given the unique characteristics of LLMs.

9.4. Multimodal LLMs

LLMs currently primarily deal with large amounts of text data. Research is underway
to enhance LLMs with image data. However, integrating diverse data modalities, including
text, images, graphics, audio, and videos seamlessly, is required to realize the full potential
of LLMs. With the ubiquity of camera-equipped mobile devices, more and more images
and videos are produced every day. Some estimate that about 3.7 million new videos
are uploaded to YouTube daily. For LLMs to comprehensively understand the content
in diverse media, generating content that includes all the relevant elements from diverse
media is essential. This is a challenging task and requires groundbreaking research. The
current research in this direction includes multimodal preprocessing and feature extrac-
tion, fine-grained multimodal representations, spatiotemporal understanding in videos,
semantics and contextual understanding, multimodal fusion architectures, cross-modal
pretraining and transfer learning, alignment and cross-modal correspondence, real-time
multimodal inference, and multimodal pretraining datasets and benchmarks.

The greatest challenge for realizing multimodal LLMs is in developing effective prepro-
cessing techniques and feature extraction methods specific to each modality. The next step
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is to integrate the different modalities within the model architecture. Creating fine-grained
multimodal representations involves capturing the complex relationships between diverse
modalities. One approach to this is to learn joint/multimodal contextual embeddings. Spa-
tiotemporal understanding in videos involves extracting temporal relationships, detecting
motion patterns, and synthesizing spatial information. An LLM’s ability to understand
semantics and context across diverse modalities is essential for generating contextually
relevant multimodal outputs.

New architectures for LLMs are required to integrate information from multiple modal-
ities. These multimodal fusion architectures require integrating cross-modal embeddings
with attention mechanisms. Advances in cross-modal pretraining are required for learning
shared representations across modalities. Also, transfer learning from pretrained models
is required for better performance on downstream multimodal tasks. Approaches for
aligning information across modalities require new research investigations. For example,
cross-modal alignment through attention or similarity measures is required to establish the
correspondences between elements in different modalities. Some downstream applications
require efficient processing of multimodal inputs. For this scenario, real-time multimodal
inference is required. Lastly, the availability of curated large-scale multimodal datasets
and associated benchmarks for evaluating multimodal models is essential to advance
multimodal LLMs.

9.5. Energy Efficiency and Environmental Impact

Training LLMs requires tremendous computing power. Minimizing environmental
impact through energy efficiency is a paramount concern in advancing LLMs. There
are several facets to achieving energy efficiency, as detailed below. Developing energy-
efficient algorithms for training LLMs is a coveted goal. Such algorithms will require faster
convergence or fewer computational resources through adaptive learning rate schedules,
low-precision training, and gradient checkpointing.

Another promising area of research is designing specialized hardware accelerators op-
timized for LLM training and inference. Such hardware optimization and accelerators will
significantly contribute to efficient computation and thus reduce energy consumption. Related
to optimized hardware accelerators is model architecture optimization. Topics to be researched
in this direction include model structure optimization, reducing redundant parameters, and
developing sparse models. Pruning and sparsity induction through identifying and eliminat-
ing redundant or less significant parameters contribute to creating leaner models. Transfer
learning and few-shot learning methods reduce the need for extensive training of LLMs on
new tasks or domains. Advances in this area can significantly reduce energy requirements via
better model generalization with less training. Energy consumption can also be optimized by
employing energy-aware training and inference strategies, which include adaptive precision
tuning, dynamic pruning, and model scaling.

Quantization of model weights and compression schemes contributes to the reduced
computational overhead of LLMs. For example, knowledge distillation is a technique
that helps to decrease the model’s memory and computational requirements. Research
is needed in lifecycle assessment and environmental impact to inform researchers and
provide guidelines and best practices for developing and using LLMs. Such research will
document the environmental impact of LLMs by quantifying the carbon footprint and
suggestions for footprint reduction. Data center efficiency is pivotal in developing LLMs
and deploying downstream applications. Supporting data center efficiency initiatives,
including renewable energy sources, is critical. Lastly, collaboration between academia,
industry, and policymakers is needed to share best practices, application frameworks, and
tools for energy-aware LLMs.

9.6. Different Languages and Domains

The current LLM research and development are primarily confined to the English
language. According to Ethnologue, there are 7168 living languages in the world. A



Appl. Sci. 2024, 14, 2074 36 of 42

language becomes endangered when its users begin to teach and speak a more dominant
language to their children than their native language. Over 3045 languages are endangered
today. LLMs can play a pivotal role in preserving and promoting all world languages.
Low-resource languages need more curated and annotated datasets in machine-readable
format to train LLMs. Also, some languages are spoken only without written counterparts.
For such cases, speech-to-text transcription is required. To ensure linguistic inclusivity,
researchers are investigating the following strategies.

Data augmentation and synthesis techniques are investigated to create synthetic data
to enlarge the training datasets. Some techniques include back-translation, paraphrasing,
and data generation through linguistic rules. Another approach to deal with low linguistic
resources is to leverage transfer learning. This involves pretraining models on high-
resource languages (e.g., English) and transferring knowledge to low-resource languages.
As multilingual LLMs share model parameters across languages, this helps in improving
performance for low-resource languages. Also, developing models capable of zero-shot
or few-shot learning using high-resource languages enables them to perform tasks in low-
resource languages with minimal or no annotated data. For example, methods such as
meta-learning and cross-lingual transfer target this goal. However, the effectiveness of such
methods remains to be seen.

Semi-supervised and self-supervised learning approaches can be leveraged for labeled
and unlabeled data for model training in low-resource contexts. Unlabeled data can be effec-
tively utilized using techniques such as self-training or pseudo-labeling. Another approach
to help low-resource situations is to design language-specific architectures and models that
are tailored to the linguistic characteristics of low-resource languages. Adapting LLMs to
specific linguistic features and morphological structures improves their effectiveness. Com-
munity involvement in building datasets for low-resource languages through collaboration
and crowdsourcing is vital. Resource sharing and knowledge transfer between linguistic
communities in the form of datasets, linguistic tools, and methodologies will immensely
help low-resource languages.

Once LLMs are developed for low-resource languages, they can aid in preserving and
promoting them. For example, LLMs can help in documentation, translation, education,
and cultural preservation. LLMs can be leveraged to document low-resource and endan-
gered languages by analyzing written texts and transcribing spoken language. LLMs will
also enable the creation of digital archives, cataloging historical texts, and documenting
stories and folklore in native languages. More importantly, LLMs can be used to support
indigenous communities by providing tools that assist in preserving their languages and
traditions. These activities help to preserve linguistic heritage that might otherwise be lost.

LLMs can translate between high-resource and low-resource languages, making the
information more accessible and fostering communication across linguistic barriers. Also,
LLMs can be used to support language revitalization efforts by providing language learning
resources and generating teaching materials. Furthermore, LLMs will aid in developing
language-learning applications for low-resource and endangered languages. LLMs will
provide language researchers with advanced tools and resources for linguistic analysis,
corpus creation, and comparative studies on a scale that was infeasible before. Furthermore,
LLMs will foster collaborative language preservation by facilitating collective work and
communication across language barriers. LLMs will facilitate technology democratization
by developing inclusive technologies to communicate with users in their native languages
and cultural contexts.

9.7. Privacy-Preserving Models

The challenge for privacy-preserving models is ensuring user data privacy while
guaranteeing model performance and utility. This requires a multipronged approach,
as outlined below. Privacy-preserving techniques such as anonymization during data
preprocessing help to protect sensitive information before using it for model training.
Another approach is to perform computations directly on user devices to minimize data
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transfer and centralization. This reduces the privacy risks associated with data transmission.
Using trusted execution environments (TEEs) such as Intel SGX or ARM TrustZone secures
computations within isolated environments, which protects user data from unauthorized
access. Another way to preserve user privacy is by designing privacy-preserving metrics
and evaluation methodologies.

Federated model training involves training models across decentralized devices or
servers without exchanging raw data. Privacy is preserved by aggregating model updates
while keeping the user data local. Differential privacy is an approach to privacy preservation
where a noise or perturbation is added to the data before the training process. This prevents
the extraction of sensitive information from individual data samples as the model does not
memorize specific data points. Techniques such as homomorphic encryption allow computation
on encrypted data without decrypting them. This approach preserves data privacy throughout
the computation process. Protocols such as secure multiparty computation (MPC) enable
multiple parties to compute a function while keeping their inputs private. This paves the way
for collaborative model training without sharing raw data.

The model aggregation and ensemble approach aggregates predictions from mul-
tiple models without sharing individual user data. This approach enables leveraging
the collective knowledge of models while preserving user privacy. The development of
privacy-preserving metrics and evaluation methodologies guarantees that model evalua-
tion processes do not compromise user privacy. Lastly, compliance with legal and ethical
frameworks like GDPR protects users’ privacy rights.

9.8. Continual Learning and Adaptability

For LLMs to have excellent utility, they must continually learn from new data, adapt to
changing contexts, and retain previously learned knowledge. Approaches to accomplishing
these goals require research investigations along multiple directions. First, the development
of algorithms and methodologies for incremental learning is needed to enable models to learn
new information without forgetting already learned information. Replay-based methods,
regularization, and parameter isolation are some techniques that need further investigation.

LLMs with external memory components like attentional interfaces help to retain pre-
viously learned information. These are referred to as memory-augmented architectures.
LLMs need a mechanism to prioritize new information while preserving old knowledge to
realize continual learning. Using adaptive learning rate schedules, a model can dynamically
adjust learning rates for different parts of the model or specific examples. Task-agnostic
representations help LLMs learn more generalized features that transfer across different
tasks. Learning task-agnostic representations helps in continual learning as models can
adapt to new tasks without drastic retraining.

Regularization methods encourage model parameters to remain stable and selectively
update them for new information, which aids in continual learning. For example, elastic
weight consolidation (EWC) and synaptic intelligence help models to retain learned infor-
mation. As noted earlier, meta-learning and few-shot learning approaches enable models to
adapt quickly to new tasks or domains with minimal data. Finetuning the models on new
data while leveraging pretrained representations helps in adaptation. Another approach
to adaptation is through ensemble models, which combine learning paradigms such as
episodic memory systems and continual learning techniques.

9.9. Ethical Use and Societal Impact

Several key strategies are required to address issues regarding the ethical use of
LLMs. Ethical guidelines and frameworks are needed to guide LLMs’ development, de-
ployment, and operation. Language researchers, technologists, application developers,
and policymakers need to come together to develop ethical guidelines and frameworks.
More importantly, researchers and organizations should embrace the guidelines to ensure
responsible development and deployment of LLM applications.
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Responsible AII practices should integrate the principles of fairness, explainability,
transparency, accountability, and privacy preservation into the development lifecycle of
language models and downstream applications. LLMs have exacerbated the detection
and mitigation of misinformation, harmful content, and hate speech. Content moderation
strategies should be integral to operating LLMs and downstream applications. LLMs should
be enhanced and continually monitored to avoid generating harmful content. Regular
audits and impact assessments of LLMs should be conducted to identify biases, ensure
ethical and regulatory compliance, and assess societal impacts.

9.10. Real-World Applications and Human–LLM Collaboration

Compared to developing and deploying traditional software applications, LLM down-
stream applications require additional considerations. Accurate identification and docu-
mentation of real-world use cases are critical since LLM models must be tailored through
finetuning to address the use cases effectively. This requires a precise understanding of the
goals, challenges, and specific requirements of application domains. The design of intuitive
and user-friendly interfaces takes center stage to ensure seamless interaction between hu-
mans and LLM applications. User-centric design principles guarantee accessibility and ease
of use for diverse users. Human-in-the-loop methodologies play a central role in designing
LLM applications. The methodologies require human feedback to improve model perfor-
mance and refine its outputs continually. Also, accessibility and inclusivity mechanisms
via language support, assistive technologies, and diverse interaction modalities are critical
to meeting diverse user needs.

10. Conclusions

This paper comprehensively studied different types of architecture, masking tech-
niques, and phases that go into building language models. It explained in detail how the
language models have transitioned from task-and-language-specific to task-and-language-
agnostic. It also looked at LLMs through the lens of scalability and compared them based
on parameters such as network depth, width, hardware, objectives, datasets, and corpus
size used during pretraining. It elucidated different in-context, pretraining, and transfer
learning strategies and their advantageous and disadvantageous applications or scenarios
where they performed better. It also comprehensively analyzed different ways to scale and
incorporate parallelism into the model to increase computational efficiency.

Furthermore, the article also sheds light on challenges encountered in LLMs, such
as biases, toxic content, hallucination, privacy, cost and energy efficiency, adversarial
attacks, and the social and environmental impact (in terms of carbon footprint). The article
also lists possible future directions and development trends in the field of LLMs, which
include interpretability, explainability, continual learning, adaptability, ethical use, fairness,
robustness, and multimodal, multilingual, and multidomain aspects of LLMs. In future
work, we plan to investigate the role that retrieval-augmented generation has to play in
mitigating hallucination. Overall, the article empirically compared the existing trends and
techniques and comprehensively analyzed where the field of LLMs currently stands.
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