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Abstract: An increasing number of methods are being used to extract rock discontinuities from 3D
point cloud data of rock surfaces. In this paper, a new method for automatic extraction of rock discon-
tinuity based on an improved Naive Bayes classifier is proposed. The method first uses principal
component analysis to find the normal vectors of the points, and then generates a certain number of
random point sets around the selected training points for training the classifier. The trained, improved
Naive Bayes classifier is based on point normal vectors and is able to automatically remove noise
points due to various reasons in conjunction with the knee point algorithm, realizing high-precision
extraction of the discontinuity sets. Subsequently, the individual discontinuities are segmented
using a hierarchical density-based spatial clustering method with noise application. Finally, the PCA
algorithm is used to complete the orientation by plane fitting the individual discontinuities. The
method was applied in two cases, Kingston and Colorado, and the reliability and advantages of
the new method were verified by comparing the results with those of previous research, and the
discussion and analysis determined the optimal values of the relevant parameters in the algorithm.

Keywords: rock mass; point cloud; discontinuity; automatic extraction; machine learning; Naive
Bayes classifier

1. Introduction

The presence of rock mass discontinuities, such as bedding planes, joints, faults, and
other planes, plays a crucial role in the field of rock mechanics [1], altering the mechanical
properties of rock masses, and consequently influencing the stability of rocky slopes [2,3].
The International Society for Rock Mechanics [4] proposed a set of quantitative parameters
for characterizing rock discontinuities, including orientation, spacing, persistence, rough-
ness, aperture, filling, wall strength, seepage, number of sets, and block size. Among these
parameters, orientation, as a critical factor influencing the deformation of rock masses,
holds extraordinary significance in the analysis of rock mass stability [5–9]. The traditional
approach necessitates manual measurements of discontinuity orientation using a compass
and inclinometer in accessible regions [10]. This technique is characterized by notable
labor intensity and time consumption. Meanwhile, its application in regions featuring
substantial topographical variations not only jeopardizes the safety of surveyors but also
lacks assurance in ensuring the precision of data [11].

With the advancement of remote sensing technology, non-contact measurement meth-
ods such as photogrammetry [12] and LiDAR [13] have been introduced, facilitating rapid
scanning of the rock surfaces within the study area. This generates high-precision point
clouds composed of numerous three-dimensional coordinates, overcoming the limitations
associated with traditional methods [14,15]. Currently, a growing number of scholars are
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actively involved in extracting discontinuities from point clouds to gather comprehensive
parameter information. The extraction process essentially involves segmenting points
belonging to distinct discontinuities within the point cloud. The predominant methods for
extracting discontinuities from point clouds can be classified into two distinct perspectives.
Considering that rock mass discontinuities often exhibit a planar feature, one method
involves linear or nonlinear fitting through geometric analysis and mathematical models
to achieve plane extraction. Some researchers have employed plane detection algorithms,
such as Random Sample Consensus (RANSAC) [16–19], 3D Hough Transform [20,21], and
Principal Component Analysis (PCA) [22,23], to extract points belonging to the same plane
within a point cloud, treating them as individual discontinuities. The Region Growing
algorithm [24–26] relies on normal vectors and curvature to identify the nearest neighbors
that share the same plane with the seed point, treating them as growth points, and carries
out plane expansion to achieve the extraction of discontinuities. However, the method is
very time-consuming. In the modified Region Growing algorithm proposed by Ge et al. [25],
the homogeneity criterion is modified to increase the probability of potential growth points
to become growth points, which improves the computational efficiency. By applying the
Region Growing algorithm to the voxelized point cloud, some scholars [27,28] have greatly
improved the efficiency of the extraction of the discontinuity. Aiming at the problems
caused by the threshold selection of the traditional Region Growing algorithm, Yi et al. [26]
improved on it and proposed a multi-rule Region Growing algorithm with higher accuracy.
Singh et al. [29] found that the vertical and horizontal angle variations of points belonging
to the same discontinuity set in a certain area appear as a sinusoidal signal, and proposed a
new method to realize discontinuity set extraction by using the amplitude and phase of
this signal. While such methods typically demonstrate effectiveness in simple scenarios,
their application becomes time-consuming and vulnerable to interference from factors like
noise when confronted with large and complex point clouds.

Given that points located in the same discontinuity in a point cloud often share similar
characteristics, mainly including 3D coordinates, normal vectors, curvature, and color,
another approach involves employing machine learning (ML) techniques for classification
based on extracted features. For point cloud feature extraction, 3D coordinates and colors
are directly available through laser scanning and photogrammetry [30]. For normal vec-
tors and curvature, some studies have utilized methods such as triangulation [15,18,31],
cube search [8], and other methods for extraction, but compared to the utilization of 3D
methods to extract from a point set composed of points and neighboring points [32,33],
the former methods may lose a certain amount of point cloud information. Some scholars
have utilized normal vectors as features and applied the K-means algorithm [18,34] to
cluster the point cloud, followed by the extraction of discontinuities from the clustered
result. The Fuzzy C-means (FCM) algorithm, an improvement of K-means, calculates the
probability that a sample point belongs to each cluster center, subsequently determining
the category of sample points to achieve the automatic identification of discontinuities,
and so exhibits reduced sensitivity to noise and superior performance in terms of clas-
sification results [35,36]. Nevertheless, both of the aforementioned methods necessitate
a pre-determination of the cluster count and exhibit sensitivity to the initial selection of
cluster centers. Variations in the choice of initial cluster centers frequently lead to discrep-
ancies in the classification results. At this point, some research has introduced parameters
such as Minimum Description Length (MDL) [37], and clustering validity indices [18,35],
to provide references for determining the number of clusters. Optimization algorithms,
including Particle Swarm Optimization (PSO) [38], Differential Evolution (DE) [39], and
the Firefly Algorithm (FA) [40], have been introduced to optimize the update of cluster
centers. Xu et al. [41] proposed a new fast fuzzy clustering (FFC) method by combining the
FCM algorithm with peak density clustering (CFSFDP), overcoming the respective defects
of the two algorithms. Riquelme et al. [32] integrated Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), an unsupervised machine learning clustering al-
gorithm based on density that is adept at handling irregular shapes, with Kernel Density
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Estimation (KDE) for the extraction of discontinuities from point clouds. Singh et al. [29]
proposed five features for describing the points after filtering the noisy points in the point
cloud using various methods, combined with K-Medoids and DBSCAN to complete the
extraction of the discontinuity, which demonstrated strong adaptability in complex scenes.
Chen et al. [42] proposed an adaptive DBSCAN (ADBSCAN) algorithm to address the
challenge of determining DBSCAN parameters, which further improves the automation
of discontinuity extraction. Distinct from unsupervised machine learning algorithms,
Ge et al. [43] employed a well-trained artificial neural network model, trained by the
manual selection of an ample training dataset, to classify point clouds, greatly enhancing
the efficiency of discontinuity extraction. However, achieving a well-trained network
involves repeated manual sample selection until the accuracy is satisfied, thereby imposing
significant constraints on the level of automation and computational efficiency. To address
the aforementioned issues, this paper proposes a semi-automated approach that efficiently
generates a training sample set in a simple manner.

The Naive Bayes classifier [44], a supervised machine learning algorithm, is frequently
utilized in document classification [45], medical diagnosis [46], slope stability prediction [47],
and various other fields. However, there has been limited exploration of this algorithm
in the field of rock mass discontinuity identification. This paper proposes a new method
for discontinuity recognition based on an improved Naive Bayes classifier and specifically
designed to address the needs of point cloud classification tasks. The structure of the article
is as follows: Section 2 introduces the steps and principles of the method proposed in this
paper through a case study in Colorado; in Section 3, the reliability of the method is validated
through its application to the case study B, and a discussion on the selection of relevant
parameters is presented; Section 4 compares the proposed method with previous approaches;
Section 5 provides the conclusion.

2. Methodology

The methodology proposed in this study encompasses the following key steps, as
delineated in Figure 1.

Step 1: Computation of point normal vector. The nearest neighbors of each point in
the point cloud are quickly found by building a KD-Tree, and the normal vectors of the
fitting plane for these points, obtained through Principal Component Analysis, will be used
as the normal vectors of the points.

Step 2: Classifier construction. Three components of the point normal vector are used as
features to construct an improved Naive Bayes classifier suitable for point cloud classification.

Step 3: Generation of training point sets. Based on the selection of one point per
discontinuity set, the method proposed in this study is employed to generate training
point sets.

Step 4: Extraction of discontinuity sets. The extraction of the discontinuity set is
achieved by classifying the entire point cloud based on its normal vector using a trained,
improved Naive Bayes classifier.

Step 5: Extraction and analysis of individual discontinuities. The Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm is utilized to
extract individual discontinuities from the discontinuity sets. Principal component analysis for
plane fitting is employed to calculate the dip direction and dip of individual discontinuities.
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Figure 1. Flow chart of method.

2.1. Case Study A for Validation

The proposed method in this paper is validated using data from a rock slope in Ouray,
CO, USA (Figure 2). The dataset, obtained by Dr. John Kemeny in 2004 using the Optech
ILRIS-3D laser scanner, consists of 1,024,521 points with a spacing of less than 2 cm. The
data are publicly accessible in the Rockbench database [48]. Many scholars have extensively
researched the use of this dataset for the identification of rock mass discontinuities from
point clouds [49], providing a convenient basis for comparisons to validate the methods
proposed in this study.
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2.2. Extraction of Point Normal Vector

In this section, a KD-Tree is constructed for the rapid retrieval of the k-nearest neigh-
bors for each point Pi within the three-dimensional point cloud, denoted as the point set Qi.
The normal vector of Pi is obtained through the PCA algorithm applied to the fitted plane
of Qi [50]. In the process of conducting Principal Component Analysis on Qi, it is essential
to initially calculate the covariance matrix. Subsequently, eigenvalue decomposition is
applied to acquire both the eigenvalues and eigenvectors. The eigenvector corresponding to
the smallest eigenvalue signifies the direction with the minimum variance and is commonly
selected as the normal vector for Pi (Figure 3).

Appl. Sci. 2024, 14, 2050 5 of 19 
 

2.2. Extraction of Point Normal Vector 
In this section, a KD-Tree is constructed for the rapid retrieval of the k-nearest neigh-

bors for each point Pi within the three-dimensional point cloud, denoted as the point set 
Qi. The normal vector of Pi is obtained through the PCA algorithm applied to the fitted 
plane of Qi [50]. In the process of conducting Principal Component Analysis on Qi, it is 
essential to initially calculate the covariance matrix. Subsequently, eigenvalue decompo-
sition is applied to acquire both the eigenvalues and eigenvectors. The eigenvector corre-
sponding to the smallest eigenvalue signifies the direction with the minimum variance 
and is commonly selected as the normal vector for Pi (Figure 3). 

 
Figure 3. Schematic of point normal vector computation. u1, u2, and u3 represent the three eigenvec-
tors of the covariance matrix of Qi, respectively. u3 is the eigenvector corresponding to the minimum 
eigenvalue. The red dots represent nearest neighbors, and the gray dots represent non-nearest 
neighbors. 

Figure 4 demonstrates that the rough and uneven nature of the rock mass surface  
(caused by vegetation, among other reasons) may lead to opposite directions of the com-
puted normal vectors for points belonging to the same discontinuity, potentially impact-
ing the accuracy of point cloud classification. To address this issue, Equation (1) is em-
ployed to adjust the normal vector direction for each point: 

×=
 


u vd
v

 (1) 

where, v  represents the selected direction, and d  is the projection of the normal vector 
u  onto v . The direction of the normal vector u  remains unchanged when ≥ 0d , while 

the direction of the normal vector u  is reversed when < 0d . 

 
Figure 4. Varying normal vectors for points on the same discontinuity. 

Figure 5 depicts the color mapping of the point normal vector in the RGB color sys-
tem applied to the point cloud. It can be seen that points on the same discontinuity set 
have similar colors. 

Figure 3. Schematic of point normal vector computation. u1, u2, and u3 represent the three eigenvectors of
the covariance matrix of Qi, respectively. u3 is the eigenvector corresponding to the minimum eigenvalue.
The red dots represent nearest neighbors, and the gray dots represent non-nearest neighbors.

Figure 4 demonstrates that the rough and uneven nature of the rock mass surface
(caused by vegetation, among other reasons) may lead to opposite directions of the com-
puted normal vectors for points belonging to the same discontinuity, potentially impacting
the accuracy of point cloud classification. To address this issue, Equation (1) is employed to
adjust the normal vector direction for each point:

d =

→
u ×→

v

|→v |
(1)

where
→
v represents the selected direction, and d is the projection of the normal vector

→
u

onto
→
v . The direction of the normal vector

→
u remains unchanged when d ≥ 0, while the

direction of the normal vector
→
u is reversed when d < 0.
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Figure 5 depicts the color mapping of the point normal vector in the RGB color system
applied to the point cloud. It can be seen that points on the same discontinuity set have
similar colors.
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2.3. Extraction of Discontinuity Sets
2.3.1. Construction of the Improved Naive Bayes Classifier

The Naive Bayes classifier, a widely employed supervised learning algorithm, is based
on the fundamental Bayes’ theorem, expressed as Equation (2) [51]:

P(A|B) = P(A)P(B|A)

P(B)
(2)

where P(A) and P(B) represent the probability of events A and B occurring independently,
respectively, with P(A) > 0 and P(B) > 0. P(B|A) signifies the probability of event B occurring
given the occurrence of event A, and P(A|B) denotes the probability of event A occurring
given the occurrence of event B.

For each sample with d features X = {x1, x2, . . ., xd} and all discontinuity set categories
y1, y2, . . ., ym, the Naive Bayes classifier is under the assumption that the d features are
mutually independent. First of all, the probability P(yj|X) (j = 1, . . ., m) that the point to be
classified belongs to category yj is calculated by Naive Bayes theorem:

P(yj|X) =
P(yj)P(X|yj)

P(X)
(3)

where P(yj) is the proportion of training samples belonging to category yj in the training
samples. The value of P(X) independent of the category is the evidence factor used for
normalization, which can be obtained by the calculation of Equation (4):

P(X) = ∑m
j=1 P(yj)P(X|yj) (4)

Due to the features of the sample X to be categorized being independent of each other,
P(X|yj) can be expressed as Equation (5):

P(X|yj) = ∏d
i=1 P(xi|yj) (5)

Then, substitute Equation (5) into Equation (3):

P(yj|X) =
P(yj)

P(X)∏d
i=1 P(xi|yj) (6)
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Considering that P(X) is independent of the category and its value will not affect the
classification result, this paper introduces Pj to denote the probability that the sample X
belongs to each category:

Pj = P(yj)∏d
i=1 P(xi|yj) (7)

After calculating the probability that the sample X belongs to each category using
Equation (7), the category with the highest probability is selected as the classification result:

hnb(X) = arg maxPj = arg maxP(yj)∏d
i=1 P(xi|yj) (8)

The calculation method of P(xi|yj) in Equation (8) depends on the distribution of
the features of the samples. In this paper, the components of the normal vectors of the
points to be classified in the direction of the x, y, z coordinate axes are used as the three
features used for classification. Due to its numerical changes being continuous and ap-
proximately normally distributed, P(xi|yj) in Equation (8) needs to be estimated using the
following equation:

P(xi|yj) =
1√

2πσyj ,xi

exp

(
−
(xi − µyj ,xi )

2

2σ2
yj ,xi

)
(9)

where µyj,xi, σyj,xi, and σ2
yj,xi is the mean, standard deviation, and variance of feature xi of

the samples belonging to the yj in the training sample, respectively.
The above Naive Bayes classifier takes the category with the highest probability of

belonging as the classification result. However, in the point cloud classification process,
there are usually some noise points with a very small probability of belonging to any
category that need to be removed. In this paper, the Naive Bayes classifier is improved on
the basis of the distribution curve of logarithmic probability (LPR), i.e., ln(Pj), arranged
from small to large (logarithmic transformation prevents the multiplication of numbers less
than 1 from trending toward zero, and the trend of the logarithmic probability distribution
curve is more obvious, and the logarithmic probability is not subject to the restriction
of 0–1 which can be an arbitrary positive or negative number). Then, the logarithmic
probability threshold value is selected according to the distribution trend. The points
with logarithmic probability less than this threshold are removed as noise points, which
improves the performance of the Naive Bayes classifier in point cloud classification.

2.3.2. Generation of Training Set

To train the Naive Bayes classifier, a substantial number of training points are needed.
Manual selection is not only time-consuming and labor-intensive but also has the potential
to introduce noise, affecting the accuracy of point cloud classification. In response, this paper
proposes a straightforward and efficient method for generating training point sets as follows:

Firstly, the number of discontinuity sets is determined according to the color of the
point cloud (Figure 5). Subsequently, one point from each discontinuity set is selected to
use its normal vector as the center, and N normal vectors are randomly generated as the
training set in the range where the angle with it is less than the maximum angle maxAGL.
Figure 6b shows the training set generated around the normal vectors of the points selected
in Figure 6a with maxAGL = 5◦ and N = 200.
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2.3.3. Extraction of Discontinuity Sets Based on the Improved Naive Bayes Classifier

The procedure for extracting discontinuity sets using the improved Naive Bayes
classifier is outlined as follows:

Step 1: The training set is selected using the method proposed in Section 2.3.2 and
the percentage P(yj) of training points belonging to each category within the training sets
is calculated.

Step 2: Based on the training sets, Equation (9) is utilized to calculate the conditional
probability P(xi|yj) that the ith feature of the point X takes the value of xi, provided that it
belongs to each discontinuity set yj.

Step 3: The probability Pj that the sample X belongs to each category is calculated
by substituting P(yj) and P(xi|yj) derived from Step 1 and Step 2 into Equation (7). The
distribution curve of logarithmic probability is plotted (Figure 7), from which it can be seen
that the logarithmic probability of the points after the curve inflection point is higher and
tends to be level. So, the logarithmic probability of the points at the curve inflection point is
selected as the minimum logarithmic probability (minLPR), and the points with logarithmic
probability less than minLPR are removed as noise points. Substituting the probability Pj of
the remaining points into Equation (8) yields hnb(X) to complete the classification of the
entire point cloud. At this point the procedure for extracting the discontinuity set using
the improved Naive Bayes classifier terminates, where the points with the same category
are those belonging to the same discontinuity set. So, the high accuracy extraction of the
discontinuity set was achieved using the improved Naive Bayes classifier.
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The extraction results of discontinuity sets are shown in Figure 8.
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2.4. Extraction of Individual Discontinuity Using the HDBSCAN Algorithm

In this section, the extraction of individual discontinuity within each discontinuity set
is accomplished through the utilization of clustering algorithms. Considering the inability
to determine the number of individual discontinuities within each discontinuity set and
the requirement of a predetermined number of clusters for K-means or FCM, it is deemed
inapplicable. Currently, DBSCAN, a prominent density clustering algorithm, is widely used
to extract individual discontinuities from discontinuity sets, necessitating input parameters:
search radius (ε) and minimum number of points (mpts) to establish a density threshold
for distinguishing discrete points. Additionally, variations in dataset density can affect
the stability of this algorithm. Campello et al. [52] proposed the HDBSCAN algorithm,
which combines hierarchical clustering with DBSCAN, providing enhanced stability and
better clustering results for data with uneven density. This algorithm relies on a single key
parameter, the minimum cluster size (minCluster), and its performance is not sensitive to
the specific value chosen for this parameter. The algorithm defines the mutual reachability
distance between two points as follows:

dmreach−k(xp, xq) = max
{

corek(xp), corek(xq), d(xp, xq)
}

(10)

where corek(xp) and corek(xq) denote the distances from points xp and xq to their nearest
k neighbors, while d(xp, xq) represents the distance between the points xp and xq. The
minimum spanning tree is generated based on the mutual reachability distance, and a
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hierarchical structure is constructed. Subsequently, the hierarchical structure is recursively
split, removing noise clusters with sizes smaller than minCluster. This process accomplishes
the compression of the hierarchical structure and the extraction of clusters.

In addition, the parameter minDis is used to eliminate extremely small clusters in
the extraction results as noise, thereby further enhancing the accuracy of discontinuity
extraction. For case A, after testing, parameters minCluster = 5 and minDis = 200 were
chosen to successfully extract individual discontinuities (Figure 9):
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2.5. Calculation of Rock Discontinuity Parameters

The PCA algorithm is employed for plane fitting on the extracted discontinuities to
determine their normal vector

→
u . The components ux, uy, and uz of
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In total, 19 discontinuities previously studied by Riquelme et al. [32] and Chen et al. [18],
as shown in Figure 8b–d, were selected for orientation calculation to validate the effective-
ness of the proposed approach in this paper. Table 1 presents the dip direction and dip
results of the 19 discontinuities extracted using the approach proposed in this study, along
with the methods introduced by Riquelme et al. [32] and Chen et al. [18]. It is observed
that 94.7% of the discontinuities exhibit orientation differences within 7◦, with an average
difference remaining within 2◦. The maximum deviation in the dip direction appears on
Discontinuity 12, which is attributed to surface undulations.

Table 1. Comparison of orientation results from different methods.

Discontinuity
ID

Riquelme et al.
[32] (◦) Chen et al. [18] (◦)

New
Method (◦)

Riquelme et al. [32] (◦) Chen et al. [18] (◦)
∆|DD| ∆|DA| ∆|DD| ∆|DA|

11 246.24/39.02 244.62/38.38 246.25/39.03 0.01 0.01 1.63 0.65
12 256.86/52.3 256.18/52.16 247.13/49.76 9.73 2.54 9.05 2.4
13 70.26/35.8 251.04/36.17 250.23/35.79 0.03 0.01 0.81 0.38
14 252.68/35.48 251.44/33.85 252.63/35.47 0.05 0.01 1.19 1.62
15 249.74/35.91 250.82/36.83 249.33/35.55 0.41 0.36 1.49 1.28
16 70.47/35.91 250.46/35.86 250.19/35.71 0.28 0.2 0.27 0.15
17 255.12/32.82 253.19/33.46 254.90/30.87 0.22 1.95 1.71 2.59
21 339.47/83.25 157.55/83.81 339.38/82.79 0.09 0.46 1.83 1.02
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Table 1. Cont.

Discontinuity
ID

Riquelme et al.
[32] (◦) Chen et al. [18] (◦)

New
Method (◦)

Riquelme et al. [32] (◦) Chen et al. [18] (◦)
∆|DD| ∆|DA| ∆|DD| ∆|DA|

22 166.33/76.58 166.31/78.73 166.64/77.31 0.31 0.73 0.33 1.42
23 160.2/89.86 157.52/86.88 159.43/89.14 0.77 0.72 1.91 2.26
24 173.55/76.85 353.07/77.82 173.77/77.83 0.22 0.98 0.7 0.01
31 136.59/82.58 314.73/80.04 135.33/81.71 1.26 0.87 0.6 1.67
32 131.23/82.67 136.52/89.85 137.43/87.91 6.2 5.24 0.91 1.94
33 143.91/89.7 145.62/89.85 323.94/89.89 0.03 0.19 1.68 0.04
41 97.55/63.22 285.98/59.84 99.33/62.05 1.78 1.17 6.65 2.21
42 91.07/50.19 272.57/47.64 272.75/48.46 1.68 1.73 0.18 0.82
43 96.64/47.97 277.31/49.31 96.72/47.79 0.08 0.18 0.59 1.52
51 123.42/76.15 305.04/77.62 122.67/75.92 0.75 0.23 2.37 1.7
52 105.75/69.94 109.29/76.61 106.65/69.93 0.9 0.01 2.64 6.68

Maximum deviation 9.73 5.24 9.05 6.68
Average deviation 1.31 0.93 1.92 1.60

Note: ∆|DD|—absolute value of dip direction difference; ∆|DA|—absolute value of dip difference.

3. Case Study B

In this section, the practicality of the proposed method is validated using a point cloud
case publicly available in the Rockbench repository [48] (Figure 10). The case is located
along Highway 15 near Kingston, ON, Canada, and was acquired using a Leica HDS6000
laser scanner. It contains 2,167,515 data points along with their color information.
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3.1. Extraction Results of the Case B

According to the study by Ge et al. [43], in this section, the number of nearest neighbors
is set to K = 40 to calculate the point cloud normal vectors using the PCA algorithm. The
colors assigned based on the normal vectors in Figure 11 mainly represent three sets of
discontinuities in the rock mass (the artificial plane in the upper-right corner). Selecting
three training points corresponding to three discontinuity sets shown in Figure 11 as centers,
respectively, and generating 200 random normal vectors with angle less than maxAGL = 5◦

from each center forms the training set (Figure 12) for training the improved Naive Bayes
classifier established in this study.

Figure 13 illustrates the outcomes of discontinuity set extraction utilizing the improved
Naive Bayes classifier trained with training sets applied to the entire point cloud, where
each color denotes a distinct discontinuity set. It is evident that three discontinuity sets have
been successfully extracted, and the majority of the artificial plane (the top-right corner of
the point cloud), which does not belong to any discontinuity sets, has been effectively ex-
cluded by establishing a minimum logarithmic probability threshold minLPR = −114.8513.
The results of extracting individual discontinuities using the HDBSCAN algorithm under
the minCluster = 10 and minDis = 200 are depicted in Figure 14. Herein, individual disconti-
nuities are effectively extracted, with the removal of some excessively small discontinuities
and noise points.
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After obtaining the normal vectors of each discontinuity using the PCA algorithm,
and substituting them into Equations (11) and (12), the mean dip direction and dip of
each discontinuity set are determined. By comparing these results with those obtained by
Lato et al. [13] (Table 2), it is evident that Set 1 demonstrates a high level of agreement,
with differences of 0◦ in dip direction and 3◦ in dip. Although Sets 2 and 3 exhibit slightly
lower consistency, with differences of 6◦ and 7◦ in dip direction, and 4◦ in dip, respec-
tively, all differences fall within an acceptable range, affirming the high reliability of the
proposed method.

Table 2. Comparison of orientation results for case B.

Discontinuity
Set

Number of
Points

Number of
Discontinuities Lato (◦) Proposed

Method (◦) Deviation (◦)

1 229,036 173 194/34 194/31 0/3
2 1,080,620 188 29/76 35/80 6/4
3 450,066 149 309/90 136/86 7/4

3.2. Maximum Angle maxAGL and Quantity N for Training Sets Generation

Firstly, when generating the training set, the maximum value of the maxAGL should be
less than half of the minimum angle between selected point normal vectors. This ensures
that each training set is independent and non-overlapping with others. In case B, the
minimum angle between selected point normal vectors is 88.5◦. Therefore, the training sets
should be generated within the range of angles less than 44.25◦.

The generated training sets must exhibit uniform distribution within the chosen range
to ensure ample stability and representativeness. To determine the optimal values for the
maxAGL and N, this study iteratively generated 100 distinct training sets for each different
combination of maxAGL and N around selected point normal vectors. The variance in angles
between the central vector of the training set and the selected point normal vector served
as a criterion for evaluating the stability of the generated training sets. Figure 15 illustrates
the variation in the stability of generated training sets with changes in the maxAGL and N
over 100 repetitions.
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In Figure 15a, the stability of the generated training sets increases with the rise of
quantity N, and the variation becomes relatively stable when N exceeds 200. However,
there are still differences in stability among different maxAGL. In Figure 15b, under vary-
ing N, an increase in maxAGL corresponds to a decrease in stability. Moreover, higher
values of quantity N result in less sensitivity of stability to maxAGL. Nevertheless, the
impact of quantity N on stability diminishes beyond 150, consistent with the trend shown
in Figure 15a.
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In summary, the study configures the parameters for generating the training sets
using the proposed method with a maxAGL set at 5◦ and an N set at 200, ensuring optimal
performance of the algorithm.

3.3. Minimum Logarithmic Probability minLPR

It is crucial to determine the minLPR for noise point removal when employing the
proposed method for point cloud classification. Figure 16 illustrates the logarithmic proba-
bility distribution curve of the point cloud classification results for case B, with the minLPR
set as −114.8513, determined through the knee point algorithm at the curve’s inflection
point. The inflection point is usually defined as the point of maximum curvature in the
curve. However, the logarithmic probability distribution curve in Figure 16 is composed
of many discrete points, and its inflection point is difficult to accurately obtain by simply
taking the second-order derivatives of the curve. This paper therefore uses the “knee point”
detection algorithm proposed by Satopaa et al. [53], which is suitable for discrete data.
The basic principle of the algorithm is shown in Figure 17, where the discrete data are
first normalized and plotted in an interval where the x and y coordinates are both 0–1
(this process preserves the morphology of the original data), and then the perpendicular
distance from each discrete data point to the line y = x is found as shown in Figure 17a. The
point with the largest perpendicular distance is taken as the knee point (Figure 17b). For
more comprehensive information on the algorithm, refer to prior studies [53].
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4. Discussion

The point cloud dataset is extensive, and points representing discontinuities lack dis-
tinct characteristics, so it is usually necessary to extract certain features for the point cloud
classification. Ge et al. [43] utilized four features—coordinates, normal vector, curvature,
and density of points—as the basis input of the Artificial Neural Network (ANN) model,
successfully achieving efficient point cloud classification. However, this method involves
the manual selection of a sufficient number of training points, a process prone to errors
that can adversely affect subsequent point cloud classification. To eliminate such effects
as much as possible, it is generally necessary to repeatedly select training sets until better
classification results are obtained, making it a time-consuming and labor-intensive process.
The proposed method classifies point clouds solely based on the normal vectors of points,
simplifying the extraction of point cloud features, and also demonstrating outstanding
performance in discontinuity sets extraction. Employing a method that revolves around
generating training sets around selected training points reduces the necessity for man-
ual point selection, and decreases the likelihood of choosing erroneous points, thereby
enhancing the efficiency and accuracy of acquiring training sets.

Within the three-dimensional point cloud acquired through scanning rock surfaces,
the presence of noise points not associated with discontinuity, induced by factors like
vegetation coverage, rock weathering, and human activities, adversely impacts subsequent
calculations of discontinuity parameters. In the realm of prevailing methodologies for point
cloud classification, mitigating the impact of noise points remains a formidable challenge.
This study addresses the challenge by enhancing the Naive Bayes classifier through the
incorporation of a logarithmic probability threshold selected by the knee point algorithm,
enabling more effective filtration of noise points. To gauge the denoising efficacy of the
improved Naive Bayes classifier, this paper compares it with the Fuzzy C-Means (FCM)
clustering algorithm applied to extract discontinuity sets from the point cloud of case B.
As shown in Figure 18, the results of extracting discontinuity sets using the two methods
are the same, but there are still slight differences. The FCM algorithm, in its indiscriminate
classification of all points, fails to discern and eliminate noise points effectively. Notably, in
the upper-right section of the point cloud, artificial rock discontinuities are inaccurately
assigned to discontinuity set 1. In contrast, the method proposed in this paper identifies
noise points by calculating the logarithmic probability of points on each discontinuity
set, as illustrated in Figure 18a where the artificial rock plane has been almost completely
removed. Furthermore, upon comparing Figure 18b, it becomes apparent that Figure 18a
exhibits some conspicuous blank “voids”, which result from the removal of noise points
situated in irregular locations, such as along the edges of the rock mass and in weathered
or fragmented areas.
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5. Conclusions

This paper introduces an innovative approach for the identification and extraction of
rock discontinuities, leveraging an enhanced Naive Bayes classifier. The key conclusions
can be summarized as follows:
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In response to the arduous and time-intensive process of manually selecting training
point sets, fraught with challenges such as randomness that could compromise classification
accuracy, this paper introduces an innovative approach to generating training sets around
the selected training points, streamlining the selection process and elevating the precision of
the training sets. Tailored to meet the demands of point cloud classification tasks, the Naive
Bayes classifier is enhanced to effectively filter out noise points during the point cloud clas-
sification process by incorporating a logarithmic probability threshold, thereby improving
the accuracy of discontinuity set extraction. The HDBSCAN algorithm is employed for
the swift extraction of individual discontinuities, while the PCA algorithm is employed to
compute the normal vectors of these discontinuities, facilitating accurate positioning.

The proposed novel methodology has been applied to two cases located near Colorado
and Kingston, respectively. Leveraging case A, the study explains the principles and
procedures of the new method, validating its reliability through comparative analysis with
previous research results. Case B is employed to discuss the optimal parameter selection,
showcasing the reliable results obtained by the new method through comparisons with
prior research outcomes and highlighting its advantages in the realm of noise reduction.

The innovative method proposed in this study for generating training point sets not
only minimizes the manual selection of samples but also reduces the likelihood of errors
in the training point set. In contrast to existing methods, the use of an improved Naive
Bayes classifier for extracting discontinuity sets ensures the removal of noise points while
preserving efficiency and reliability, leading to more trustworthy results.

Furthermore, the method proposed in this study operates under the assumption that
the features used for classification are independent of each other, but many of the features
may not be completely independent of each other, and thus subsequent research could
further improve the Naive Bayes classifier in this direction to give it a better performance
in terms of discontinuity extraction.
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