
Citation: Fernández-Zabalza, A.;

Veiga, F.; Suárez, A.; López, J.R.A.

The Use of Virtual Sensors for Bead

Size Measurements in Wire-Arc

Directed Energy Deposition. Appl.

Sci. 2024, 14, 1972. https://doi.org/

10.3390/app14051972

Academic Editors: Guijun Bi and

Manoj Gupta

Received: 2 January 2024

Revised: 7 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

The Use of Virtual Sensors for Bead Size Measurements in
Wire-Arc Directed Energy Deposition
Aitor Fernández-Zabalza 1, Fernando Veiga 1,* , Alfredo Suárez 2 and José Ramón Alfaro López 1

1 Department of Engineering, Public University of Navarre, Los Pinos Building, Campus Arrosadía,
31006 Pamplona, Spain; fernandez.90050@e.unavarra.es (A.F.-Z.); jr.alfaro@unavarra.es (J.R.A.L.)

2 TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa,
20009 Donostia-San Sebastián, Spain; alfredo.suarez@tecnalia.com

* Correspondence: fernando.veiga@unavarra.es

Abstract: Having garnered significant attention in the scientific community over the past decade,
wire-arc directed energy deposition (arc-DED) technology is at the heart of this investigation into
additive manufacturing parameters. Singularly focused on Invar as the selected material, the primary
objective revolves around devising a virtual sensor for the indirect size measurement of the bead.
This innovative methodology involves the seamless integration of internal signals and sensors,
enabling the derivation of crucial measurements sans the requirement for direct physical interaction
or conventional measurement methodologies. The internal signals recorded, the comprising voltage,
the current, the energy from the welding heat source generator, the wire feed speed from the feeding
system, the traverse speed from the machine axes, and the temperature from a pyrometer located in
the head were all captured through the control of the machine specially dedicated to the arc-DED
process during a phase of optimizing and modeling the bead geometry. Finally, a feedforward neural
network (FNN), also known as a multi-layer perceptron (MLP), is designed, with the internal signals
serving as the input and the height and width of the bead constituting the output. Remarkably cost-
effective, this solution circumvents the need for intricate measurements and significantly contributes
to the proper layer-by-layer growth process. Furthermore, a neural network model is implemented
with a test loss of 0.144 and a test accuracy of 1.0 in order to predict weld bead geometry based on
process parameters, thus offering a promising approach for real-time monitoring and defect detection.

Keywords: wire-arc additive manufacturing; Invar; wall geometry; additive manufacturing monitoring

1. Introduction

In recent decades, wire-arc directed energy deposition (arc-DED) technology has
gained significant traction within the scientific community, emerging as a focal point to
produce additive components. A notable advantage of arc-DED lies in its robust deposition
ratios, positioning it favorably among other additive methodologies [1,2]. This heightened
attention has catalyzed a surge in research, propelling the exploration of 3D-printed part
fabrication [3]. Notably, aerospace applications have taken a prominent role, showcasing
promising outcomes [4,5]. Of the arc-DED techniques, gas metal arc welding (GMAW)
stands out for its elevated deposition rates, surpassing other wire-based technologies, such
as plasma-based arc-DED and gas tungsten arc welding (GTAW) [6,7]. The utilization of
Invar, an alloy, within this realm adds an intriguing dimension, leveraging its distinctive
mechanical properties [8,9]. Comprising predominantly iron (64%) and nickel (36%) alloys,
Invar finds purpose across diverse fields [10,11]. Renowned for its superior dimensional
stability and mechanical prowess in cryogenic environments, Invar plays a pivotal role
in applications demanding precision and reliability, as seen in metrology and aerospace
components. The formidable challenge posed by its malleability and low heat conductivity
in machining scenarios drives the interest in additive manufacturing for Invar, offering
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preforms aligning closely with final part geometries [12–14]. Invar’s application through
PBF-LB/M has revealed optimal energy density ranges for mechanical properties [15],
along with characteristic microstructures [16].

To advance the implementation of arc-DED technology in complex geometries, the
fine-tuning of processes from initial passes has emerged as a key focus [17]. Understanding
the geometry of zero beads has been central, often centering on models that correlate wire
feed speed and travel speed (TS) with bead geometry characteristics [18–20]. While con-
ventional approaches maintain transverse bead geometry as a constant during deposition,
limited studies acknowledge longitudinal variations [21]. Pinto et al. [22] reported the
real-time determination of weld bead dimensions using passive vision systems and digital
image processing. The proper construction of initial beads fundamentally underpins the
accurate manufacturing of final walls. Xiong et al. [23] delve into layer-by-layer forming
characteristics analysis in GMAW-based arc-DED, while Donghong et al. [24] address
corner piece generation for intricate geometries. Amid the importance of final bead geom-
etry analysis, the challenge of online process control remains pronounced [25]. Infrared
pyrometry techniques for melt-pool measurement have found favor within integrated
process monitoring systems [26–28], some even hinting at symmetries in the generated
geometries [9], thus offering a realm of exploration for the research community.

Regarding arc-DED, as the technology continues to advance, it becomes imperative to
explore the testing methodologies to contribute to its optimization. Among the forefront
of the testing methods is the integration of artificial intelligence (AI) for defect detection
in arc-DED [29]. Researchers have developed sophisticated AI applications, tailored to
identifying flaws during the manufacturing process, thus enhancing quality control and
efficiency. Additionally, in situ ultrasonic testing (UT) emerges as a pivotal non-destructive
technique, utilized during arc-DED component construction. Operating at temperatures up
to 100 ◦C, UT plays a crucial role in defect detection, ensuring the integrity and reliability
of fabricated parts [30].

Furthermore, novel control strategies, such as reinforcement learning, have demon-
strated promising outcomes in addressing inherent challenges within arc-DED, such as
model non-linearity and process uncertainties. These adaptive strategies empower manu-
facturers with enhanced control over process parameters, facilitating greater precision and
consistency. Additionally, while arc-DED presents opportunities for producing medium-to-
large-scale metallic components, ongoing efforts in materials characterization and defect
mitigation remain essential in the optimization of product quality and performance [31].

Throughout history, humanity’s quest for improved materials and fabrication tech-
niques has driven innovation. Contemporary technological advancements have paved
the way for novel materials with unprecedented applications. Among these, Invar 36, or
FeNi36, has emerged as a versatile Fe-based alloy with exceptional properties. Its notably
low coefficient of thermal expansion (CTE) makes it a standout choice. Conventionally,
Invar 36 is machined, yet its poor machinability, which is due to its high ductility, low heat
conductivity, and substantial work hardening, has sparked exploration into alternative
manufacturing methods. Additive manufacturing (AM) stands out as a solution, offering
efficient material usage and design flexibility. While the previous literature Manoj Guptahas
predominantly explored laser-based powder bed fusion (PBF-LB/M) and power/laser
directed energy deposition techniques, the usage of wire materials and electric arcs in
AM is garnering renewed attention due to its potential to overcome the limitations of
powder-based methods.

Focusing on the wire-based approach, this article delves into the advantages of the
arc-DED process, emphasizing its applicability for large- or medium-sized components
due to its high deposition rates and cost-effectiveness. Beyond this, the study ventures
into the exploitation of modelling techniques to delineate the geometry, with the aim of
determining target control parameters. These identified parameters will subsequently
serve as the output for a neural network, into which welding and machine parameters are
the input. This novel approach not only contributes to improving the understanding and
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control of the additive manufacturing process with Invar material, but also aligns with the
broader goal of raising precision and efficiency in the manufacturing domain.

Taking advantage of arc-DED technology, which has been booming in the scientific
community for the last decade, this research focuses on developing a virtual sensor for
the indirect measurement of the bead size in Invar material. This innovative methodology
integrates internal signals and sensors to obtain crucial measurements without the need for
direct physical interaction or conventional measurement methods. The novelty of this paper
is encapsulated in the innovative utilization of symmetry analysis techniques to address piv-
otal inquiries. These encompass an exploration of the geometry of zero beads via symmetry
coefficient analysis in both longitudinal and transverse planes, an investigation into the
symmetry of the final wall through the use of scanning laser technology, and a pioneering
approach to melt-pool monitoring integrating infrared thermography techniques.

2. Materials and Methods
2.1. Experimental Setup and Material

In the experimental phase of this study, Invar, also known as FeNi36, a wire UNS
K93600 with a diameter of 1.2 mm, was selected as the foundational material. The baseplate
utilized in the study was composed of 8 mm thick sheets of Invar (UTP A 8036 S). The
mechanical properties of this material, particularly its coefficient of thermal expansion
(CTE), stand as notable characteristics, driven by its specific chemical composition. The
chemical properties of the wire, as provided by the supplier, are summarized in Table 1. It
is worth noting that the material employed in the tests originates from the same wire coil to
ensure consistent chemical and metallurgical attributes. Also, in Table 1, a comparison of
various thermal and mechanical properties of Invar obtained through different processes is
provided, enhancing the overall support for the use of Invar in the context of arc-DED.

Table 1. The chemical composition of the invar wire used during experimentation, and the thermal
and mechanical properties of Invar after arc-DED in the literature.

C Mn Cr Ni Nb Fe Ti

0.22% 0.43% 0.01% 35.66% 1.38% 61.6% 0.53%

Sample Average CTE 0–100 ◦C [10−6C−1] UTS (MPa) Elongation (%)

GMAW-WD [29] 1.94 505 ± 2 29 ± 1

GMAW-BD [29] 1.96

CMT-WD (Horizontal) [8] 1.54 533 ± 9 28 ± 2.5

CMT-BD (Vertical) [8] 1.32

Commercial laminated material
(ASTM B753-07:2018 [32]) 2.29 518 34

2.2. Experimental Equipment

The experimentation was conducted at the Addilan V0.1 manufacturing center, special-
izing in arc-DED technology. The setup includes an EWM brand generator (Mündersbach,
Germany), Titan XQ 400 AC puls DW, and an M drive 4 Rob5 XR RE wire feeder, as
depicted in Figure 1. Additionally, the setup is equipped with a laser profilometer (Laser
Scanner Q4 Series) and a compact Optris pyrometer, which is placed on the vicinity of
the nozzle. The chosen generator mode was the pulsed GMAW mode specified by the
manufacturer, enabling the introduction of a pulsed intensity signal into the supplied wire.
The MC500 Weld Camera (Redman) offered a visual window into the deposition process
from an external perspective. A shielding gas mixture of Ar (97.5%) and CO2 (2.5%) was
utilized, with a flow rate of 17 L/min. The nozzle diameter used was 20 mm, accompanied
by a 15 mm stick-out, and the wire diameter employed was 1.2 mm.



Appl. Sci. 2024, 14, 1972 4 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 18 
 

an external perspective. A shielding gas mixture of Ar (97.5%) and CO2 (2.5%) was uti-
lized, with a flow rate of 17 L/min. The nozzle diameter used was 20 mm, accompanied 
by a 15 mm stick-out, and the wire diameter employed was 1.2 mm. 

 
Figure 1. The experimental setup for Invar manufacturing based on GMAW. 

2.3. Experimental Procedure and Parameters 
The experimentation unfolded in two distinct phases. The initial phase focused on 

producing various zero beads to refine the optimal deposition parameters. In the subse-
quent phase, utilizing the optimized parameters, a larger wall was fabricated to assess the 
accuracy of the geometry achieved. During the wall-manufacturing process on a fixed ta-
ble, the substrate was secured and prepared by cleaning before welding. The software 
programmed with manufacturing parameters for the walls was loaded, specifying the 
start and end points of welding to determine the wall length (100 mm). The wall was then 
meticulously constructed, with layers of beads added in a layer-by-layer manner. The stip-
ulated growth per layer was set at 2.5 mm, and a geometric laser profilometer (Laser Scan-
ner Q4 Series) was used to correct and determine the welding point for the subsequent 
layer. Table 2 encapsulates the experimental design for process optimization. In consider-
ing bead geometry, the relationship between the wire feed speed and the traverse speed 
emerges as pivotal in determining weld bead geometry. This ratio dictates material dep-
osition per unit length, profoundly shaping the ultimate form of the weld bead. The pre-
cise adjustment of this ratio is paramount for controlling critical geometric parameters like 
bead width and height, thereby influencing the weld quality and mechanical properties. 
The ratio is calculated following Equation (1), and the energy per length (kJ/cm) is calcu-
lated following Equation (2). 𝑅𝑎𝑡𝑖𝑜 = 𝑊𝑖𝑟𝑒 𝐹𝑒𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑆𝑝𝑒𝑒𝑑  (1)

Figure 1. The experimental setup for Invar manufacturing based on GMAW.

2.3. Experimental Procedure and Parameters

The experimentation unfolded in two distinct phases. The initial phase focused
on producing various zero beads to refine the optimal deposition parameters. In the
subsequent phase, utilizing the optimized parameters, a larger wall was fabricated to assess
the accuracy of the geometry achieved. During the wall-manufacturing process on a fixed
table, the substrate was secured and prepared by cleaning before welding. The software
programmed with manufacturing parameters for the walls was loaded, specifying the start
and end points of welding to determine the wall length (100 mm). The wall was then
meticulously constructed, with layers of beads added in a layer-by-layer manner. The
stipulated growth per layer was set at 2.5 mm, and a geometric laser profilometer (Laser
Scanner Q4 Series) was used to correct and determine the welding point for the subsequent
layer. Table 2 encapsulates the experimental design for process optimization. In considering
bead geometry, the relationship between the wire feed speed and the traverse speed emerges
as pivotal in determining weld bead geometry. This ratio dictates material deposition per
unit length, profoundly shaping the ultimate form of the weld bead. The precise adjustment
of this ratio is paramount for controlling critical geometric parameters like bead width
and height, thereby influencing the weld quality and mechanical properties. The ratio is
calculated following Equation (1), and the energy per length (kJ/cm) is calculated following
Equation (2).

Ratio =
Wire Feed Speed
Traverse Speed

(1)

Energy per length (kJ/cm) =
V·I

Traverse Speed
(2)
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Table 2. The design of experiments for process optimization.

Test
Number

Wire Feed
Speed (m/min)

Deposition
Rate (kg/h)

Traverse Speed
(cm/min) Ratio Commanded

Current (A)
Commanded
Voltage (V)

Energy per
Length
(kJ/cm)

1 4 2.2 80 5 110 20 16.5
2 4 2.2 53 7.5 110 20 24.9
3 4 2.2 40 10 110 20 33.0
4 10 5.5 200 5 270 28 22.7
5 10 5.5 134 7.5 270 28 33.9
6 10 5.5 100 10 270 28 45.4
7 16 8.8 320 5 450 36 30.4
8 16 8.8 212 7.5 450 36 45.8
9 16 8.8 160 10 450 36 60.8

The profilometer is employed to assess the geometry of the beads, positioned perpen-
dicular to the substrate, with its movement analogous to that of the welding torch. This
integration within the same head ensures that the scanning trajectory of the profilometer
is equivalent to the torch’s path during bead deposition, aiming to create a virtual sensor
for indirectly measuring bead size. This utilizes internal signals and sensors, bypasses
conventional measurement techniques, and integrates a feed-forward neural network
(FNN) model for accurate real-time monitoring and defect detection. The time between
each of the tests was established to be sufficient for both the sheet and the beads to reach
room temperature.

3. Results

This section presents the experimental outcomes and the discussions related to the
arc-DED process applied to Invar. The chapter is structured into three interconnected
subsections, each focusing on distinct aspects of the study. The first segment focuses on
the measurement results pertaining to the bead profile, shedding light on the geometry
of the initial bead and its implications for process parameters. The subsequent segment
unveils the acquisition and analysis of current and voltage signals, offering insights into
the dynamic nature of the process. Notably, the final facet of this chapter is dedicated
to exploring the potential application of a virtual sensor for height measurement. This
application leverages the signals from the generator and wire tractor, aiming to ascertain
the height based on these instrumental inputs.

These activities help in the application of arc-DED technology to Invar to develop a
virtual sensor for the indirect measurement of the bead size, taking advantage of internal
signals and sensors without conventional measurement methods, and implementing a
feed-forward neural network (FNN) model for real-time monitoring and highly accurate
defect detection.

These interconnected components synergistically contribute to a holistic comprehen-
sion of the arc-DED process on Invar, as well as its implications for geometric precision and
manufacturing performance.

3.1. The Measurement and Modeling of Zero Bead Geometry

The zero bead (Figure 2), the first pass of material deposited during arc-DED, plays
a crucial role in determining the final geometry and properties of the deposited material.
Accurately measuring and modeling the zero bead geometry is essential for optimizing arc-
DED parameters and ensuring the consistent quality of the parts. The arc-DED process ex-
hibits a dynamic molten pool, contributing to a challenge in achieving consistent weld bead
geometry, particularly at the beginning (arc striking) and end (arc extinguishing) stages.
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The image shows a top view of a bead deposited using arc-DED technology. In the
setup, the beads are 100 mm long, although the distance between them is not constant.
The deposition process forms a molten pool, which contributes to a challenge in achieving
consistent weld bead geometry, particularly at the beginning (arc striking) and end (arc
extinguishing) stages.

In the arc-DED process, the material deposits into a non-constant molten pool along
its trajectory. The material tends to flow towards the hotter region, resulting in a tendency
to accumulate at the back of the trajectory, leaving a certain over-dimension at the rear
section. Consequently, the initial section may exhibit increased height and width, further
compounded by the arc striking effect [33]. In the middle section, a quasi-stable situation
is achieved, characterized by more continuous height and width. Here, the material
experiences a relatively balanced state amid the dynamic molten pool, contributing to a
more uniform bead geometry. However, as the process approaches its final section, the
bead becomes narrower and lower, influenced by both the arc extinction phenomenon and
the decreasing molten material flux. This final section reflects a distinctive geometry due to
the combined effects of the reduced material flow and the arc extinguishing process.

The bead has a more uniform width and a smoother surface finish in the central
section. It is important to note that the variations in the bead geometry seen in the image
are relatively small. The study encompasses the central 46 mm of the 100 mm bead, as
delineated by the blue dashed lines, incorporating the relevant values within this specified
region. However, understanding these variations is important for ensuring consistent part
quality and optimizing material properties. In the context of this image, the analysis will
focus on the middle section of the bead, where the bead geometry is most uniform and
consistent. By measuring and modelling the bead geometry, knowledge is gained that
provides crucial information for designing complete components and effectively controlling
the arc-DED process. This understanding of bead geometry is critical for the tailoring of the
manufacturing process, thus ensuring optimal results and improving the overall quality of
the manufactured parts.
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The presented method for measuring the geometry of the zero bead consists of scan-
ning the surface of the bead with a laser profilometer at 46 control points in the middle
section of the bead. The laser profilometer precisely measures the distance between the
laser beam and the bead surface at a series of discrete points, thus capturing a detailed
representation of the bead’s transversal profile. The center of mass of the function formed
by the measured profile points is calculated (Figure 3a). To do this in two dimensions,
it can be found by first dividing the domain of the function into a regular grid of points.
Then, the weighted average of the coordinates of these points can be calculated, where
the weights are the values of the function at these points. Equation (3) for xcm and zcm
represents the calculation of the center of mass in the x and z directions, as shown in
Figure 3a, respectively, where xi and zi are the point clouds of the profile, and mi represents
the mass associated with each distance component. Equation (3) shows the formula for the
center of mass (xcm, zcm).

xcm = ∑i xi ·mi
∑i mi

zcm = ∑i xi ·mi
∑i mi

(3)
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These equations give you the coordinates of the center of mass for a two-dimensional
object with either continuous or discrete mass distribution. Adjust the integrals or sums
based on the specific form of your mass distribution. The reference plane or dimension
0 is defined using the profilometer, where the initial and final sections of the bead are
detrended and adjusted to the zero reference of the plane. This adjustment ensures that
the zero reference of the plane aligns with the bead’s starting and ending points, therefore
providing a standardized reference point for the measurements. The data can then be
used to fit a parabolic equation, representing the idealized parabolic shape of the zero
bead (Figure 3b). The fitted parabola provides valuable insights into the bead’s geometry,
including its height and width. Across the 46 profiles extracted from the initial tested bead,
the R-squared values vary between 0.807 and 0.948, averaging at 0.887. On average, this
indicates that the model accounts for 88.7% of the data variability.

To further enhance the accuracy of the bead geometry representation, 3D modeling
techniques can be employed, as can be seen in Figure 4. In this representation, the fitted
parabola is obtained from the 46 measured profiles of the bead in the middle section
at a rate of 1 profile per mm in order to develop a full 3D model. By combining the
fitted parabola with the measured bead dimensions, a comprehensive 3D model can be
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developed. This model provides a holistic view of the bead’s shape, size, and distribution
of material. The comparison of the 3D model to the theoretical models of zero beads
provides valuable insights into the influence of arc-DED parameters on bead geometry. By
understanding the relationship between the process parameters and bead shapes, engineers
can optimize arc-DED settings, allowing them to achieve the desired bead geometry and
material properties.
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The measuring and modeling of the zero bead geometry with arc-DED is a critical step
in understanding and optimizing the process. The insights gained from these measurements
can be used to ensure the consistent quality of the parts, enhance material properties, and
optimize the design of arc-DED applications. Table 3 summarizes the results of the bead
height (h) and bead width (w) for the manufacturing conditions. Three measurements are
taken at locations along the trajectory of tests 1 to 9, denoted as w1, w2, and w3, and h1, h2,
and h3. These measurements correspond to the widths (w1, w2, w3) and heights (h1, h2,
h3) along the initial, middle, and final sections, respectively, of the 46 profiles extracted for
each bead.

Table 3. Height and width of the zero beads for the different test conditions.

Test N# w1 (mm) w2 (mm) w3 (mm) w (mm) h1 (mm) h2 (mm) h3 (mm) h (mm)

1 5.20 5.40 5.30 5.30 1.80 1.90 1.80 1.83
2 4.70 5.00 4.90 4.87 3.10 3.20 3.00 3.10
3 6.30 6.30 6.30 6.30 3.20 3.40 3.20 3.27
4 5.20 5.00 5.30 5.17 2.10 2.00 2.10 2.07
5 6.90 6.50 6.60 6.67 2.60 2.40 2.20 2.40
6 8.00 8.10 8.30 8.13 3.00 3.00 2.90 2.97
7 4.30 2.30 3.60 3.40 2.60 2.52 2.50 2.54
8 6.80 5.30 6.10 6.07 4.30 2.60 2.20 3.03
9 8.30 8.30 7.60 8.07 4.00 4.00 3.40 3.80

The data indicates that there is a significant relationship between the welding parame-
ters and the resulting bead dimensions. As the wire feed speed and deposition rate increase,
the average bead width (w) and height (h) also increase. Conversely, increasing the traverse
speed leads to a decrease in the average width and height of the beads.

This suggests that the wire feed speed and deposition rate primarily influence the
heat input, while the traverse speed primarily affects the melt pool shape. In Figure 5,
the correlation of the ratio and the wire feed speed with the width and height are shown.
Looking at the evolution of the bead height and width, it follows that a higher ratio leads
to a taller and wider bead, unlike the wire feed speed, which does not seem to have such a
direct relationship, and is more likely to have a quadratic effect.
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The implications of these findings for arc-DED Invar manufacturing are that the de-
sired bead dimensions can be controlled via the adjustment of the welding parameters. For
applications requiring wider and taller beads, higher wire feed speeds and deposition rates
can be employed. As for the effect of currents and voltages in zero bead scenarios, although
beyond the proposed test, it would have an impact on the melt behavior, solidification, and
ultimately the geometry of the resulting bead. It is envisaged that the higher heat input
will cause the melt pool to be wider, leading to a wider and lower bead. This analysis could
be used to refine the manufacturing process, ensure consistency, and produce high quality
weld beads in a variety of scenarios. For applications requiring narrower and shorter beads,
higher traverse speeds can be used.

3.2. The Geometry Analysis of Wall Fabrication with Optimized Parameters

Figure 6 shows the results of the parabola model fitted to the profilometer data at
each of the different arc-DED manufacturing conditions. The profilometer is located in the
nozzle, and allows the transverse profile to be measured. This process is carried out offline.
First, the formation of the bead is completed, allowing it to solidify, and then scanning
is carried out using the profilometer to measure the transverse profile. The figure shows
that the parabola model fits well to the profilometer data for all arc-DED manufacturing
conditions. This suggests that the shape of the bead in the first pass is well described by a
parabolic function.

The parabola model can be used to predict the geometry of the bead manufactured
using arc-DED. This information can optimize the manufacturing process and produce parts
in situ between passes. The implementation of the parabola model focuses on two main
objectives. Firstly, it aims to make the geometry of the bead as similar as possible to the
desired and preprogrammed parabolic shape. Secondly, the goal is to maintain a consistent
geometry to ensure a uniform layer during the layer-by-layer growth phase. Currently, this
process is not performed online; however, there is the potential to transform this into an
online solution via the implementation of a virtual sensor that deduces the key parameters
of the parabola and/or through measurements made using the profilometer linked to the
torch, albeit with a slight delay. Optimizing the bead shape involves adjusting the process
parameters, such as the wire feed speed, the traverse speed, and the current, to achieve the
predefined parabolic shape. These adjustments can be made individually or simultaneously,
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based on the specific design requirements. Integrating this optimization online during the
manufacturing process would allow for greater adaptability and precision, thus enhancing
the real-time consistency of the bead.
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The parabola model and its relationship to the monitored parameters can be used to
feed a neural network to serve as a virtual sensor of the bead geometry, thus replacing
the scan times of the profilometer. This information could be used to select the in situ
manufacturing conditions to reduce shape distortion effect sources during the build-up
process of parts.

3.3. The Data Monitoring of the DED Process on Invar

The data provided from the mold manufacturing process (Figure 7) proves to be
invaluable in enhancing the overall efficiency and quality of the manufacturing process.
The chosen geometry is a reference geometry for molds in the aeronautical sector, and has
been proposed by companies in the sector. The signals have been acquired at a rate of
one hertz, one data per second, as we are not looking for a dynamic reaction to the process,
but for a change in the quasi-static state. The signals acquired are the same as in all the tests
shown in this work. Through a meticulous analysis of this data, various trends and patterns
emerge, shedding light on areas that require attention and improvement. For example,
temperature data can identify the regions of the mold that experience higher temperatures,
or where the heat concentrates, allowing for corrective actions to be taken in subsequent
passes. Such insights may signify issues with the cooling system or point to inadequacies
in the mold part design. This design has been used in previous works [34].

The feed rate data become a crucial metric in determining whether the wire feeder
operates at the appropriate speed. This ensures the uniform solidification of the mold part,
contributing to higher quality outcomes. The energy data play a pivotal role in assessing the
wire feeder’s energy consumption. Optimizing energy usage not only reduces production
costs, but also enhances the overall process efficiency.

Mold manufacturing process monitoring, facilitated by comprehensive data analysis,
emerges as a powerful tool for refining efficiency, quality, and profitability. The insights
gained from these data pave the way for continuous improvement throughout the various
phases of the manufacturing process. In a three-dimensional context with Cartesian X,
Y and Z axes in millimeters, the visual representation in Figure 7 is a three-dimensional
graph showing the evolution of six key process parameters over time. Each of the collected
variables is represented in a subplot, and the color in the graph would represent the value
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of the property at each three-dimensional point. In Figure 7, the variables represented are as
follows: (a) the voltage which remains constant during most of the process; (b) the energy
per unit length, which is higher in the lower layers when encountering the colder substrate,
and then decreases in value; (c) the wire feed speed; (d) the transverse feed speed; (e) the
current; and (f) the temperature which is raised in the area where it is higher in the straight
section. Temperatures were measured using a pyrometer on the torch, capturing the surface
temperatures of the bead at a given distance from the molten pool. This temperature data
can be used to optimize the welding process in two key respects. First, it allows for the
precise control of bead geometry via correlating temperature variations with the desired
shape; at lower temperatures, a narrower and taller bead is estimated, while at higher
temperatures, a wider and shorter bead is estimated. Secondly, the data help to detect
defects by identifying cold areas, which indicated a lack of fusion, and high temperatures,
which indicate possible porosity due to gas accumulation. This early detection of defects
allows corrective action to be taken in time, thus ensuring the production of high-quality
beads. As this is not a direct melt pool measurement, the correlations and measurements
are not reliable, but are expected to be effective in combination with the other measured
parameters and through artificial intelligence modelling.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 
Figure 7. Data collected from the numerical control of the machine and sensor: (a) voltage, (b) en-
ergy, (c) wire feed speed, (d) traverse speed, (e) current, and (f) temperature. 

Utilizing the data to identify trends and patterns can help predict potential issues. 
For instance, an increase in mold temperature may signal a cooling system problem, thus 
prompting timely intervention. Also, adjusting process parameters could be addressed. 
The data aids in adjusting parameters to enhance efficiency and quality. If the feed rate 
data reveal uneven solidification, adjustments can be made to ensure uniformity. Also, 
this could lead to a reduction in costs via a detailed analysis of the energy data, which can 
potentially uncover opportunities to minimize production costs. Identifying excess energy 
usage can lead to strategies for energy conservation. Figure 8 shows the mold produced 
by arc-DED, which is the subject of this study. Material detachments can be observed in 
the corners, due to the change of direction in the deposition, which can allow for the de-
tection of which should be studied for later improvements of the manufacturing process. 

Figure 7. Data collected from the numerical control of the machine and sensor: (a) voltage, (b) energy,
(c) wire feed speed, (d) traverse speed, (e) current, and (f) temperature.



Appl. Sci. 2024, 14, 1972 12 of 17

Utilizing the data to identify trends and patterns can help predict potential issues.
For instance, an increase in mold temperature may signal a cooling system problem, thus
prompting timely intervention. Also, adjusting process parameters could be addressed.
The data aids in adjusting parameters to enhance efficiency and quality. If the feed rate
data reveal uneven solidification, adjustments can be made to ensure uniformity. Also,
this could lead to a reduction in costs via a detailed analysis of the energy data, which can
potentially uncover opportunities to minimize production costs. Identifying excess energy
usage can lead to strategies for energy conservation. Figure 8 shows the mold produced by
arc-DED, which is the subject of this study. Material detachments can be observed in the
corners, due to the change of direction in the deposition, which can allow for the detection
of which should be studied for later improvements of the manufacturing process.
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4. Neural Network Model

In this subsection, a virtual sensor emerges as a data-driven alternative to traditional
physical sensors, enabling the continuous monitoring and analysis of weld bead geometry
without requiring direct physical contact with the weld zone. This virtual sensor harnesses
the power of machine learning algorithms, particularly neural networks, to establish a
correlation between the process parameters and weld bead characteristics.

The sensor’s core ability is to extract meaningful insights from process monitoring
data, encompassing parameters like wire feed speed, voltage, current, travel speed, energy,
and pyrometer temperature, as can be seen in Figure 9a, following the same procedure as
for the mold data. There are forty-six control point in the nine tests performed, as described
in Table 2. These data form the input layer of the neural network model, which serves as
the sensor’s analytical engine.

The welding process is closely influenced by several key input parameters for the
neural networks model. Firstly, voltage plays a crucial role in controlling arc length and
heat input. Energy per unit length, another critical factor resulting from the current, voltage,
and traverse speed, directly influences the heat input to the weld, thus affecting the depth of
the penetration and the bead shape. In addition, the wire feed speed dictates the deposition
rate of the wire. Conversely, the transverse speed, which governs the movement of the
torch perpendicular to the welding direction, can alter the shape and width of the bead,
depending on the speed employed. Current levels regulate the heat generated in the arc.
Finally, the temperature, a product of the welding process, has a profound influence on the
material properties and geometry of the bead.
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The neural network model, trained on a comprehensive dataset of weld bead measure-
ments which were obtained using physical sensors and profilometers, learns to map the
intricate relationships between process parameters and weld bead geometry. This trained
model constitutes the virtual sensor’s intelligence, thus enabling it to predict weld bead
geometry for new process conditions without any physical interaction.

The neural network model at the heart of the virtual sensor employs a series of
interconnected nodes, mimicking the structure of the human brain. These nodes process
information, performing complex calculations and passing the processed information to
subsequent nodes in a hierarchical manner.

The input layer of the model receives the process monitoring data, represented as
vectors of numerical values. These vectors are transformed into features that capture the
essence of the process conditions. The transformed features are then fed into the hidden
layers of the neural network, where they undergo a series of mathematical operations.
The hidden layers, typically comprising multiple layers, introduce non-linearities into
the model, enabling it to capture the complex relationships between the features and the
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weld bead geometry. The output of the hidden layers is then passed through an output
layer, which generates the predicted weld bead geometry, represented as a parabola that
accurately represents the bead’s shape and dimensions.

The neural network model predicts the height and width of the weld beads based on
various input parameters, such as amperage, voltage, speed, gas, energy, wire, and tempera-
ture. The code follows the following methodology, using the libraries (sklearn.model_selection
and tensorflow). These libraries are used for data manipulation, data splitting, and model
training, respectively. The code employs experimental test data with different welding
conditions. The data collected are six input variables (wire feed speed, voltage, current,
travel speed, energy, and pyrometer temperature) for the forty-six control points of the
nine beads defined in Table 2, as discussed in the results Section 3.1. The data are split into
training and testing sets. The training set is used to train the model (80% of the data), while
the testing set (20% of the data) is used to evaluate the model’s performance on unseen
data. The model consists of an input layer, two hidden layers with 100 and 50 neurons,
respectively, and an output layer with two neurons corresponding to the height and width
of the weld beads. The model is compiled using the Adam optimizer, the mean squared
error (MSE) loss function, and a precision metric. This model has a test loss of 0.144 and
a perfect test accuracy of 1.0, demonstrating its remarkable ability to predict weld bead
geometry from process parameters alone. The model’s performance is evaluated on the test
set, 0.2 (percentage of the total data set) × 9 (beads with different welding conditions) × 46
(control points), as shown in Figure 9b. The fact that the points on the validation graph
are clustered around the line of perfect prediction indicates that the model is predicting
real values with a fair degree of accuracy. However, it would be important to conduct
further tests in order to confirm these results. This could be performed via increasing the
size of the test dataset or using a different test dataset altogether. It would also be crucial
to analyze the model’s errors to identify any trends or patterns that may indicate an issue
with the model.

Figure 10 shows the fabricated welding bead from the ninth test, with the direct
deposition arc welding (DED) process. The cross-section, considered to be the weld profile
shown in the image, is typical of a DED weld. The weld has a parabolic shape, almost
perfectly matching the raw data from the profilometer with its regression model, with a
wide melt region at the bottom, and a narrow bead region at the top. The virtual sensor
correctly defines the shape by fitting closely to both the regressed parabola and the raw
points. For its conception, the error is associated with the fact that the center of the parabola
is not the physical center, as it has a certain flattening to the right in positive values of the
abscissa axis.
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The virtual sensor’s ability to predict weld bead geometry in real-time opens up a
plethora of applications: (i) Real-time monitoring and defect detection—the virtual sensor
can continuously monitor weld bead geometry, alerting operators to potential defects such
as undercut, a lack of fusion, or excessive bead height; (ii) Automated process control—the
predicted weld bead geometry can guide the automation of the welding process, optimizing
parameters like wire feed speed and travel speed in order to achieve the desired weld
characteristics; and (iii) Quality assurance—the virtual sensor can evaluate the quality of
weld beads by comparing the predicted geometry to the actual geometry measured using a
physical sensor. This comparison can identify defects and ensure consistent weld quality.

The virtual sensor, powered by a neural network model, represents a transformative
advancement in weld bead monitoring and control, thus paving the way for enhanced
weld quality, improved process efficiency, and reduced production costs.

5. Conclusions

This paper introduces the additive manufacturing of an Invar mold using three-dimensional
printing with arc-DED technology. However, its success is not solely based on this; it
relies on the development of online inspection and monitoring techniques. Some of the
conclusions that can be drawn are as follows:

• A range of manufacturing conditions has been studied, considering the feed rate and
wire speed in the deposition of Invar.

• The geometry of the weld bead has been systematically characterized for various
welding parameters. It has been observed that profiles obtained through the direct
measurement of the bead using a laser profilometer consistently align with a parabolic
regression. The quantitative assessment reveals that R-squared values for the regres-
sion, derived from the 46 profiles taken from the initial tested bead, range from 0.807
to 0.948, with a mean value of 0.887. This statistical analysis indicates that, on average,
the model explains approximately 88.7% of the variability in the data, affirming the
robustness of the parabolic regression fit to the observed bead profiles.

• Monitoring data have been extracted throughout the fabrication process of an Invar
mold using arc-DED technology. The data collection spanned a duration of 1 h and
34 min, employing a strategy that adapted the conditions.

• A virtual sensor methodology has been established, enabling the indirect measurement
of bead geometry through a neural network model, fed with process monitoring
data. This innovative approach employs a feedforward neural network (FNN), where
the internal signals act as input, and the resulting height and width of the bead
constitute the output. Moreover, this neural network model has demonstrated a robust
performance, with a test loss of 0.144 and a test accuracy reaching 1.0, underscoring its
efficacy in predicting weld bead geometry based on process parameters.

• Measurements made with the profilometer, and the virtual sensor have been compared,
showing a high level of precision.

Future lines of research aim to extend the model to beads above the zero bead, as well
as to explore other materials and additive manufacturing technologies.
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