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Abstract: The Xiaojiang watershed in Luxi, Yunnan, is a typical rocky desertification area, in which
karst groundwater pollution is severe and water resources are scarce. This article takes the watershed
as an example and investigates the response mechanisms of surface karst spring water quality
to agricultural pollution in rocky desertification areas. Specifically, the study was conducted as
follows: (I) A total of 108 water samples from 54 sources were collected during the dry and wet
seasons for analysis. (i) Principal component and correlation analyses identified the main pollution
indicators in the soil surface karst zone of the area, including total bacterial count, total coliforms,
COD, pH, and redox potential. (ii) It was also discovered that surface soil, impacted by agricultural
activities, directly contributes to groundwater pollution in the soil surface karst zone. (II) Local soil
was used to prepare soil columns under various conditions for simulation. The findings indicate:
(i) Temperature significantly affects the surface karst springs, with higher temperatures leading to
more pronounced water quality responses, increased enrichment of pathogen-microbiota indicators,
and degraded water quality. (ii) Soil porosity substantially influences the water quality of surface karst
springs. Increased porosity results in looser soil, more oxidizing conditions in the storage matrix,
reduced pathogen-microbiota development, and consequently, less water pollution. This study
offers theoretical and technical references for evaluating, monitoring, and issuing early warnings for
pathogenic bacteria-microbiota pollution in groundwater in rocky desertification areas.

Keywords: rocky desertification; surface karst spring; groundwater pollution; pathogenic microbiota;
simulated in situ experiment

1. Introduction

Southwest China hosts the world’s largest exposed karst region, where karst water
resources, totaling 2039.67 × 104 m³/year, comprise 23.39% of the nation’s groundwater [1].
However, challenges such as high population density, uneven spatial and temporal distri-
bution of these resources, intricate storage and burial dynamics, and significant pollution
reduce per capita water availability [2,3]. Karst areas, characterized by rocky desertification,
present a complex and diverse range of underground water pollution. This leads to a
highly sensitive and vulnerable groundwater system, which is particularly susceptible to
pathogen-microbiota pollution [4,5]. Research indicates that pathogen-microbiota indica-
tors in groundwater are not merely detrimental to human health but also potentially harbor
or transmit other harmful microbes. These indicators serve as proxies for microbial viruses
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posing threats to human health [6–9]. Consequently, investigating the response changes of
pathogen-microbiota indicators in groundwater within rocky desertification areas holds
substantial theoretical and practical significance.

The soil–water matrix environment plays a pivotal role in exploring the response mech-
anisms of groundwater to pathogen-microbiota pollution. The sequence of interactions,
spanning from groundwater contamination through infiltration to microbial pollution,
culminates in the response of pathogen toxicology indicators. This sequence is intimately
linked with the evolutionary processes of microbes [4,5].

Soil, as a three-phase porous medium, exhibits substantial purification capabilities
attributed to its unique structure and the presence of mineral ions. Within this porous matrix
environment, the evolution and migration of groundwater microbes are influenced by the
soil’s self-purification capacities, which play a crucial role in retaining microbes, thereby
substantially diminishing the microbial content that enters the groundwater [10,11]. The
factors affecting microbial evolution in soil solid porous media can be classified into three
categories: microbial factors, soil medium factors, and soil environmental factors [12,13].

Microbial factors encompass the microbe type, strain size, surface charge, hydrophobic-
ity, and chemotactic nature of the community. The surface charge of microbes significantly
influences their adsorption within the soil–water matrix environment [14]. Moreover, their
migration and attenuation are associated with factors such as microbial type [8,15–17],
surface hydrophobicity [18], individual size [19], community chemotaxis [12,20], and popu-
lation heterogeneity [21,22].

Soil medium factors encompass soil particle size, pore structure, moisture content,
mineral composition, and overall content. The dynamics of solute movement in the
soil–water matrix environment adhere to mechanisms such as interception, leaching, and
physicochemical filtration, as delineated in previous studies [23,24]. The ionic content of
clay minerals demonstrates pronounced adsorption [25,26] and desorption [27,28] effects
on microbes. Microbial mobility is enhanced in larger pores [29,30]. An increase in moisture
content correlates with greater microbial retention [29,31], and smaller effective particle
sizes are associated with higher microbial retention [32–34].

Soil environmental factors encompass pH, temperature, flow rate, and ionic strength.
Within certain limits, elevated temperatures enhance the activity of microbial pathogens [35,36].
The migration capacity of microbes notably increases with the environmental pH [11,13].
Enhanced hydrodynamic conditions facilitate microbial migration capacity while diminish-
ing retention effects [32,36]. An increased ion concentration amplifies microbial migration
and penetration capabilities [37,38]. However, molecular diffusion effects are generally
inconsequential in most microbial transport processes [39,40].

In summary, both domestic and international experts and scholars have extensively
researched the response mechanisms, evolutionary processes, and patterns of pathogen-
microbiota in the soil–water matrix environment. However, the response evolution of
groundwater pathogen-microbiota indicators involves a complex interplay between the
matrix environment and the microbes themselves. The mechanisms of response under
varying conditions remain intricate, with many aspects still obscure, underscoring the
need for in-depth exploration. Therefore, a water quality analysis of surface karst springs
in a rocky desertification area was conducted through field sampling and laboratory
tests in this paper, which provided theoretical and technical references for exploring the
response mechanisms of pathogenic bacteria and microorganisms in groundwater in a
rocky desertification area, which is of great scientific significance.

2. Materials and Methods

The Xiaojiang Watershed, situated in southeastern Yunnan Province (Figure 1), fea-
tures a terrain that descends from the northeastern highlands to the southwestern lowlands,
extending northeasterly over an area of approximately 1009.28 km². It has a population of
200,400. This watershed exemplifies a typical independent karst water system, encompass-
ing comprehensive processes of recharge, flow, and discharge. The area is marked by thin
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surface soil, sparse vegetation, pronounced karst geological structures, extensive fractures,
and complex hydrogeological formations [1,2,5]. Given that surface karst springs are a vital
source of drinking water in the region, analyzing the response of pathogenic microbes to
the water quality of these springs within the typical rocky desertification context of the
Xiaojiang Watershed is of substantial practical importance.
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Figure 1. Hydrogeological zoning map: (1) hydrogeological zoning boundaries; (2) surrounding
rocks outside karst basins in mountainous areas (I1–1); (3) upstream karst basin, karst hilly plateau
trough valley area (I1–2); (4) karst peak cluster and depression areas around the basin bottom (I1–3);
(5) basin bottom covered karst discharge runoff area (I2); (6) Xiaojiang karst valley (II).
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The surface spring is located in Wanbankong Village, Santang Township, Luxi County.
The village now has a population of more than 900 people, who mainly farm. The upper
layer of the surface spring is a shallow surface karst aquifer of pure carbonate rock with a
high degree of rock fissures. The physical and biological weathering and the karst process
form a large number of karst voids, such as dissolved pores and network dissolved gaps.
The atmospheric precipitation seeps into the surface karst water through the solution holes
and gaps, and the karst runoff seeps into the surface to form the surface spring, where the
aquifer and the bottom water-barrier layer are exposed [1–3,5].

2.1. Field Sampling

Following comprehensive field surveys, a total of 108 water samples were collected
from 54 sources within the basin. This included 18 natural spring outlets, 13 rivers, 12 reser-
voirs, and 11 wells, during both the dry and wet seasons. The spatial distribution of these
sampling points is depicted in Figure 2. The field sampling adhered strictly to the technical
specifications presented in [41]. Subsequent analyses of these samples were carried out
by the Testing Center of the Institute of Hydrogeology and Environmental Geology at the
Chinese Academy of Geological Sciences, Ministry of Natural Resources. This analysis
followed the Standard Examination Methods [42].
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2.2. Soil Column Experiment

Undisturbed soil samples were collected from various depths within the soil surface
karst zone of the Xiaojiang Watershed. Indoor density was measured using the ring knife
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method, volume was measured using the wire method, moisture content was measured
using the weighing method, and specific gravity was measured using the heavy bottle
method to obtain the basic physical parameters of the undisturbed soil (Figure 3). To
replicate the natural conditions of the soil surface karst zone soil layers in the Xiaojiang
Watershed, taking local undisturbed soil, from the surface to the bedrock depth, we packed
the undisturbed soil per 10 cm layers. After returning to the laboratory, the 60 cm soil
column was filled according to the same physical parameters (density, porosity, moisture
content, etc.) of the in situ soil (every 10 cm depth corresponds to the same layer). Addi-
tionally, outlets were strategically installed at 10 cm intervals along the side of the column
to facilitate the study [43–45].
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2.3. Experimental Conditions

Informed by the annual temperature variation chart of the Xiaojiang Watershed and
the distribution range of physical and mechanical indicators of the soil surface karst zone
soil (Tables 1 and 2), temperature and porosity rate, as controllable conditions, were
chosen as variables. Experimental setups, representing different levels of these factors,
were established to conduct indoor simulated in situ soil water environment percolation
process experiments.

Table 1. The monthly average temperature in the research area over many years.

Month Jen Feb Mar Apr May Jun Jul Aug Sept Oct Nvo Dec

Tave(◦C) 9.5 11 15 18 22 24 26 29 29 23 15 12
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Table 2. The experimental condition table.

Experimental Numbers Temperature (◦C) Porosity

1 10 0.5
2 20 0.5
3 30 0.5
4 10 0.55
5 20 0.55
6 30 0.55
7 10 0.6
8 20 0.6
9 30 0.6

According to weather data from 1958 to 2023, the average annual temperature in the
Xiaojiang River Basin is 19.5 ◦C, with an annual temperature of ≥9.5 ◦C. The coldest month
is January, with an average monthly temperature of 9.5 ◦C, while the hottest month is July,
with an average monthly temperature of 29 ◦C. Therefore, the indoor test temperature
conditions are set at 10 ◦C, 20 ◦C, and 30 ◦C.

2.4. Sampling and Analyses

Water samples were systematically collected from various depths (10 cm, 20 cm, 30 cm,
40 cm) of the soil column outlets at predetermined intervals: 0, 1, 3, 6, 10, 15, 21, 28, 35,
42, 49, and 56 days. In the case of orthogonal experiments, wastewater samples were
specifically gathered at different depths on days 7 and 9. These samples were secured in
100 mL sterile glass bottles and subsequently stored at 4 ◦C. The water samples underwent
testing for pH, redox potential, COD, total bacterial count, total coliform count, and other
physical, chemical, and microbiological indicators of groundwater, in accordance with the
Standard Examination Methods [42].

2.5. Statistical Evaluation

The water quality of the field water samples was analyzed completely. Data analysis
was conducted using the Nemero index method (Equations (1) and (2)), and the water
quality comprehensive grade of each water source was calculated (Table 3).

Pi =
Ci
Si

(1)

where Pi is the single-factor pollution index, Ci is the single-factor pollution measured
value, and Si is the single-factor pollution evaluation standard value.

Ps =

√
P2

+ P2
imax

2
(2)

where Ps is the composite pollution index, P is the single-factor index average, and Pimax is
the maximum value of the single-factor index.

Table 3. Water quality comprehensive pollution grade classification standard.

Ps Ps
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of the data were calculated. A threshold of ≤0.05 was set for the consistency test to ensure
statistical significance.

3. Results
3.1. Determination of Pollution Indicators

Utilizing pre-human-engineering-activity baseline values from the basin, pollution
indicators for karst water quality at 54 water source locations were established based on test
results (Table S1). These results were derived from seven water sources in the study area,
which included seven population drinking water source areas (Baishuitang, Yanjinggou,
Wuzhe Shuiku, Zuyuandi, Aobushan, Wulang Haizi), as well as one karst spring water
source (Pijiazhai Daquan). The establishment of these baselines followed the guidelines of
the report presented in [43] in conjunction with the Standard Examination Methods [42].

The Nemero index method was used to calculate the degree of water pollution and
the water quality grade in the study area (Figure 4). The results are as follows:
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(i) The value of Pi was calculated, and the contribution degree of the water quality
grade was analyzed. The identified pollution indicators include total bacterial count,
total coliforms, total hardness (CaCO3), HCO3−, oxygen demand (COD), pH, Ca2+, Mg2+,
chroma, odor, visible objects, and turbidity, ordered by their individual factor contribution.
Collectively, the first eight factors account for 89.82% of the cumulative pollution affecting
the water quality in the area.

Notably, total hardness (CaCO3), HCO3−, oxygen demand (COD), pH, Ca2+, Mg2+,
chroma, odor, visible objects, and turbidity align with the chemical characteristics of car-
bonate rocks in rocky desertification karst areas [43]. In addition, ORP as a comprehensive
water quality indicator should also be considered. Consequently, the laboratory experi-
ments prioritized pathogen-microbes (total bacterial count, total coliforms), COD, and pH
as the target characteristic pollution indicators.

(ii) Under the influence of long-term agricultural activity, the thin surface soil layer not
only fails to purify surface water but also acts as a repository for pollution. Field surveys
revealed that the primary sources of karst groundwater pollution in the area are domestic
sewage, livestock breeding, and agricultural cultivation, which significantly pollute both
water resources and soil layers.

3.2. Temperature Variations and Karst Groundwater Quality Indicator Responses
3.2.1. Changes in pH of Groundwater at Various Depths under Different
Temperature Conditions

Indoor experiments at different temperatures measured the pH values of groundwater
at various depths, as shown in Table 4 and Figure 5.

Table 4. The pH values of groundwater under different temperature and depth conditions.

Depth/(m)
Temperature

10 ◦C 20 ◦C 30 ◦C

0.1 6.18 6.30 6.32 (max)
0.2 5.99 6.12 6.25
0.3 5.94 6.05 6.10
0.4 5.88 (min) 5.98 6.03
0.5 5.92 6.02 6.08

Average value E 5.98 6.09 6.16
Range R 0.3 0.32 0.29
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(i) As shown in the results, under varying temperature conditions, the pH value
of groundwater in the soil surface karst zone exhibited fluctuations within the range of
5.88–6.32, typically demonstrating acidic characteristics. The variation range was relatively
narrow at 0.44, indicating modest fluctuation levels.
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(ii) As demonstrated in Figure 5, across the entire soil surface karst zone, the overall
trend shows that the groundwater pH tends to decrease with increasing soil depth. How-
ever, this rate of change gradually diminishes, reaching an extreme value at a depth of
0.4 m. This is followed by a slight upward fluctuation between 0.4 m and 0.5 m, although
the extent of this increase is minimal.

(iii) The pH value of karst groundwater tends to increase with higher temperatures,
exhibiting smaller fluctuations and a tendency towards stability. Conversely, in winter,
with the lowest temperatures, groundwater pH reaches its minimum value.

3.2.2. Changes in ORP (Oxidation-Reduction Potential) of Groundwater at Various Depths
under Different Temperature Conditions

In the experiments conducted under varying temperature conditions, the oxidation-
reduction potential (ORP) values of groundwater were measured at different depths. The
results of these measurements are detailed in Table 5 and Figure 6.

Table 5. The ORP values of different depths of groundwater under different temperature conditions.

Depth/(m)
Temperature

10 ◦C 20 ◦C 30 ◦C

0.1 43.11 15.67 (min) 24.33
0.2 49.00 26.33 34.33
0.3 47.33 33.67 40.83
0.4 56.00 (max) 37.33 45.83
0.5 47.23 31.28 39.66

Average value E 48.53 28.86 37.00
Range R 12.89 21.67 22.67
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(i) As shown in the results, under varying temperature conditions, the ORP (oxidation-
reduction potential) values in the groundwater of the soil surface karst zone exhibited a
range of fluctuation between 15.67 and 56.00. This range suggests an overall low potential
and strong reduction characteristic, with a variation extent of 40.33, indicating considerable
and unstable fluctuations.

(ii) As demonstrated in Figure 6, the general trend in the ORP values of groundwater
across the entire soil surface karst zone is an increase with greater soil depth, signifying
a decrease in reduction and an increase in oxidation. Nevertheless, this rate of change
gradually decreases, peaking at a depth of 0.4 m. Beyond this point, a minor decreasing
fluctuation trend is observed between 0.4 and 0.5 m depth, though the extent of this decline
is minimal.

(iii) Under different temperature conditions, lower temperatures correlate with higher
karst groundwater ORP, displaying minimal fluctuations and a tendency towards stability.
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Conversely, with the highest temperatures, groundwater ORP shows the most significant
fluctuations and is least stable.

3.2.3. Changes in COD (Chemical Oxygen Demand) of Groundwater at Various Depths
under Different Temperature Conditions

Indoor experiments at different temperatures measured the chemical oxygen demand
(COD) values of groundwater at various depths, as shown in Table 6 and Figure 7.

Table 6. The COD values of different depths of groundwater under different temperature conditions.

Depth/(m)
Temperature

10 ◦C 20 ◦C 30 ◦C

0.1 7.87 10.64 14.05
0.2 7.74 (min) 9.84 16.47
0.3 10.21 12.20 17.21
0.4 12.34 14.58 21.32
0.5 14.39 19.86 25.15 (max)

Average value E 10.51 13.42 18.84
Range R 6.65 10.02 11.10

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 20 
 

stability. Conversely, with the highest temperatures, groundwater ORP shows the most 
significant fluctuations and is least stable. 

3.2.3. Changes in COD (Chemical Oxygen Demand) of Groundwater at Various Depths 
under Different Temperature Conditions 

Indoor experiments at different temperatures measured the chemical oxygen de-
mand (COD) values of groundwater at various depths, as shown in Table 6 and Figure 7. 

Table 6. The COD values of different depths of groundwater under different temperature condi-
tions,. 

Depth/(m) 
Temperature 

10 °C 20 °C 30 °C 
0.1 7.87 10.64 14.05 
0.2 7.74 (min) 9.84 16.47 
0.3 10.21 12.20 17.21 
0.4 12.34 14.58 21.32 
0.5 14.39 19.86 25.15 (max) 

Average value E 10.51 13.42 18.84 
Range R 6.65 10.02 11.10 

 

 
Depth/(m) 

Figure 7. The COD curve for different depths of groundwater under different temperature condi-
tions,. 

(i) As shown in the results, under various temperature conditions, the chemical oxy-
gen demand (COD) values of groundwater in the soil surface karst zone demonstrated 
fluctuations between 7.74 and 25.15, with a range of 17.41. This significant fluctuation in-
dicates that the groundwater in this karst surface zone generally exhibits high chemical 
oxygen demand and is substantially polluted. 

(ii) As demonstrated in Figure 7, the overall trend of COD values throughout the soil 
surface karst zone tends to increase with increasing soil depth, displaying a generally lin-
ear positive correlation. 

(iii) At consistent temperature conditions, with a temperature rise, the COD values in 
karst groundwater increase, exhibiting more significant fluctuations and instability. When 
temperatures reach their lowest, groundwater COD values are at their minimum, with the 
smallest fluctuations, indicating greater stability. 

  

Figure 7. The COD curve for different depths of groundwater under different temperature conditions.

(i) As shown in the results, under various temperature conditions, the chemical
oxygen demand (COD) values of groundwater in the soil surface karst zone demonstrated
fluctuations between 7.74 and 25.15, with a range of 17.41. This significant fluctuation
indicates that the groundwater in this karst surface zone generally exhibits high chemical
oxygen demand and is substantially polluted.

(ii) As demonstrated in Figure 7, the overall trend of COD values throughout the soil
surface karst zone tends to increase with increasing soil depth, displaying a generally linear
positive correlation.

(iii) At consistent temperature conditions, with a temperature rise, the COD values in
karst groundwater increase, exhibiting more significant fluctuations and instability. When
temperatures reach their lowest, groundwater COD values are at their minimum, with the
smallest fluctuations, indicating greater stability.

3.2.4. Changes in TBC (Oxidation-Reduction Potential) of Groundwater at Various Depths
under Different Temperature Conditions

Indoor experiments under different temperature conditions measured the total bac-
terial count (TBC) values of groundwater at various depths, as shown in the Table 7 and
Figure 8.
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Table 7. The TBC of different depths of groundwater under different temperature conditions.

Depth/(m)
Temperature

10 ◦C 20 ◦C 30 ◦C

0.1 38,102 41,825 290,667
0.2 46,483 51,089 293,333
0.3 38,900 47,019 340,000
0.4 42,792 45,521 278,667
0.5 26,900 (min) 28,900 386,667 (max)

Average value E 38,635 42,871 317,867
Range R 19,583 22,189 108,000
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(i) As shown in the results, under varying temperature conditions, the total bacterial
count (TBC) value range of groundwater in the soil surface karst zone was observed
to fluctuate between 26,900 and 386,667, with a substantial range of 359,767, indicating
significant fluctuations. This suggests that the groundwater in this karst surface zone is
subject to severe TBC exceedance, indicative of serious microbial pollution.

(ii) As demonstrated in Figure 9, across the entire soil surface karst zone soil layer, at
lower temperatures, there is a general trend of decreasing groundwater TBC values with
increasing soil depth, although the range of this change is quite minimal. Conversely, at
higher temperatures, the overall trend is for groundwater TBC values to disperse more
with increasing soil depth.

(iii) Under different temperature scenarios, with the summer temperature rise, karst
groundwater TBC values increase, displaying larger fluctuations and more instability.
When temperatures are at their lowest, groundwater TBC values reach their minimum and
exhibit the smallest fluctuations, indicating greater stability.

3.2.5. Changes in TEC (Total Escherichia coli) of Groundwater at Various Depths under
Different Temperature Conditions

Indoor experiments under different temperature conditions measured the total Es-
cherichia coli (TEC) values of groundwater at various depths, as indicated in Table 8 and
Figure 9.

(i) As shown from the results, under diverse temperature conditions, the total E. coli
count (TEC) values in the groundwater of the soil surface karst zone exhibited fluctuations
between 60 and 1600, with a range of 1540. This substantial fluctuation indicates that the
groundwater in this karst surface zone experiences severe TEC exceedance, signifying
serious microbial pollution.

(ii) As demonstrated in Figure 9, throughout the entire soil surface karst zone soil layer,
at lower temperatures, the general trend shows a decrease in groundwater TEC values
with increasing soil depth, although the range of this change is relatively minor. At higher
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temperatures, groundwater TEC values initially decrease and then tend to stabilize as soil
depth increases.

(iii) Under different temperature scenarios, with the summer temperature rise, karst
groundwater TEC values increase, demonstrating larger fluctuations and more instability.
When temperatures are at their lowest, groundwater TEC values reach their minimum,
with the least fluctuation, indicating greater stability.

Table 8. The TEC of different depths of groundwater under different temperature conditions.

Depth/(m)
Temperature

10 ◦C 20 ◦C 30 ◦C

0.1 222 470 1600 (max)
0.2 186 467 1178
0.3 196 432 1068
0.4 200 457 1137
0.5 60 (min) 139 1158

Average value E 173 393 1228
Range R 162 331 532
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3.3. Response of Karst Groundwater Quality Indicators to Changes in Porosity
3.3.1. Changes in pH of Groundwater at Various Depths under Different
Porosity Conditions

Indoor experiments under different porosity conditions of undisturbed soil tested the
pH values of groundwater at various depths, as indicated in Table 9 and Figure 10.

(i) As shown in the results, in the soil surface karst zone under various porosity
conditions, the pH value range of groundwater exhibited fluctuations between 5.91 and 6.29,
typically acidic, with a fluctuation range of 0.38, indicating relatively minor fluctuations.

(ii) Within the soil layer of the surface karst zone, with smaller porosity, karst ground-
water pH values tend to increase, exhibiting greater fluctuations and more instability.

(iii) As demonstrated in Figure 10, throughout the entire soil surface karst zone, the
general trend of groundwater pH values showed a tendency to decrease with increasing
soil depth. The change was approximately linear in the 0.1−0.3 m depth range, reaching
extreme values at a depth of 0.3 m under varying porosity rates. This was followed by a
slight upward fluctuation trend with increasing soil depth, although the magnitude of this
rise was quite minimal.
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Table 9. The pH of different depths of groundwater under different porosity conditions.

Depth/(m)
Porosity

0.60 0.55 0.50

0.1 6.16 6.28 6.29 (max)
0.2 6.02 6.10 6.15
0.3 5.91 6.02 6.03
0.4 5.91 (min) 5.95 5.96
0.5 5.93 5.97 6.01

Average value E 5.99 6.06 6.09
Range R 0.25 0.33 0.34
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3.3.2. Changes in ORP (Oxidation-Reduction Potential) of Groundwater at Various Depths
under Different Porosity Conditions

Indoor experiments under different soil porosity conditions tested the oxidation-
reduction potential (ORP) values of groundwater at various depths, as indicated in Table 10
and Figure 11.

(i) As shown from the results, in the soil surface karst zone with varying porosity
rates, the oxidation-reduction potential (ORP) values of groundwater fluctuated between
22.50 and 49.72, indicative of overall low potential and strong oxidizing conditions. The
variation range of 27.22 suggests substantial and unstable fluctuations.

(ii) Within the soil layer of the soil surface karst zone, the smaller the porosity results in
minimized groundwater ORP values and secondary stability, exhibiting greater fluctuations
and more instability.

(iii) As demonstrated in Figure 11, across the entire soil surface karst zone, the general
trend is for groundwater ORP values to increase with increasing soil depth, although the
rate of change gradually diminishes. An extreme value is observed at a depth of 0.4 m,
followed by a minor downward fluctuation trend between 0.4 and 0.5 m depth; however,
the extent of this downward fluctuation is minimal.

Table 10. The ORP values of different depths of groundwater under different porosity conditions.

Depth/(m)
Porosity

0.60 0.55 0.50

0.1 35.89 24.72 22.50 (min)
0.2 42.17 36.83 30.67
0.3 48.67 38.50 34.67
0.4 49.72 (max) 46.17 43.28
0.5 45.62 37.78 35.89

Average value E 44.41 36.80 33.40
Range R 13.83 21.44 20.78
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3.3.3. Changes in COD (Chemical Oxygen Demand) of Groundwater at Various Depths
under Different Porosity Conditions

Indoor experiments under different soil porosity conditions tested the chemical oxygen
demand (COD) values of groundwater at various depths, as indicated in Table 11 and
Figure 12.
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Figure 12. The COD curve for different depths of groundwater under different porosity conditions.

(i) As shown from the results, in the soil surface karst zone with different porosity
rates, the range of chemical oxygen demand (COD) values in groundwater fluctuated
between 7.19 and 28.78, with a variance of 21.59. This significant fluctuation suggests
that the groundwater in this karst surface zone generally has a high COD, indicative of
substantial pollution.
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(ii) In the soil surface karst zone soil layer, with smaller porosity, the fluctuations in
groundwater COD values are also reduced, indicating increased stability.

(iii) As demonstrated in Figure 12, throughout the entire soil surface karst zone, the
overall trend shows that groundwater COD values tend to increase with increasing soil
depth, exhibiting a non-linear positive correlation.

3.3.4. Changes in TBC (Total Bacterial Count) of Groundwater at Various Depths under
Different Porosity Conditions

Indoor experiments under different soil porosity conditions tested the total bacterial
count (TBC) of groundwater at various depths, as indicated in Table 12 and Figure 13.

Table 12. The TBC values of different depths of groundwater under different porosity conditions.

Depth/(m)
Porosity

0.60 0.55 0.50

0.1 109,275 (min) 118,925 152,060
0.2 114,750 124,133 162,689
0.3 113,667 127,973 184,280
0.4 116,592 121,809 178,578
0.5 114,633 131,467 186,367 (max)

Average value E 113,783 124,861 172,795
Range R 7317 12,542 23,677
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(i) As shown in the results, in the soil surface karst zone, under varying porosity
rates, the Total Bacterial Count (TBC) values of groundwater fluctuated between 109,275
and 186,367 CFU/mL, with a range of 77,092. These significant fluctuations suggest that
the groundwater in this karst surface zone generally experiences severe TBC exceedance,
indicative of serious microbial pollution.

(ii) Within the soil layer of the soil surface karst zone, with smaller porosity, the
groundwater TBC values increase, with the average being approximately 1.5 times higher
than in looser soil layers, and fluctuations are larger and more unstable.

(iii) As demonstrated in Figure 13, across the entire soil surface karst zone, as soil
becomes denser or the soil particle size decreases, the general trend is for groundwater
TBC values to increase with increasing soil depth, typically exhibiting non-linear changes.
In contrast, when the soil layer is looser or the soil particle size is larger, changes in
groundwater TBC values with increasing depth are relatively smaller.

3.3.5. Changes in TEC (Total Escherichia coli) of Groundwater at Various Depths under
Different Porosity Conditions

Indoor experiments under different soil porosity conditions tested the total Escherichia
coli (TEC) values of groundwater at various depths, as indicated in Table 13 and Figure 14.
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Table 13. The TEC values of different depths of groundwater under different porosity conditions.

Depth/(m)
Porosity

0.60 0.55 0.50

0.1 480 540 839
0.2 418 445 968
0.3 357 (min) 415 998
0.4 432 451 1020
0.5 366 386 1100 (max)

Average value E 411 447 985
Range R 123 154 261
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(i) As shown in the results, in the soil surface karst zone, under varying porosity
rates, the total E. coli count (TEC) values in groundwater fluctuated between 357 and
1100 MPN/100 mL, with a variance of 743. This significant fluctuation suggests that
the groundwater in this karst surface zone typically experiences severe TEC exceedance,
indicative of serious microbial pollution.

(ii) As demonstrated in Figure 14, throughout the entire soil surface karst zone, as soil
becomes denser or the particle size decreases, the general trend is for groundwater TEC
values to increase with increasing soil depth, displaying predominantly non-linear changes.
Conversely, in conditions where the soil layer is looser or the soil particle size is larger, the
changes in groundwater TEC values with increasing depth are relatively smaller, and the
fluctuations are less pronounced.

(iii) Within the soil layer of the soil surface karst zone, with smaller porosity, the
groundwater TEC values increase, with the average being approximately 2.4 times higher
than in looser soil layers, and fluctuations are larger and more unstable.

4. Discussion and Conclusions
4.1. Water Quality and Pollution Status

In the study area, exposed bedrock, developed cracks, thin surface rooted soil zone,
sparse vegetation, uneven annual rainfall, and strong monsoon effect lead to uneven distri-
bution of groundwater resources in the inland basin in terms of morphology and burial,
contributing to severe rocky desertification, water scarcity, and notable pollution. The
primary pollution sources in the basin include dispersed domestic waste, farmyard manure
application in fields, and unregulated livestock farming, leading to a high concentration of
total bacterial count, total coliforms, and other microbes in the soil. The research focused
on identifying primary pollution indicators in the soil surface karst zone of the study
area, including total bacterial count, total coliforms, COD, pH, and oxidation-reduction
potential. It was observed that under long-term agricultural activity, the thin surface soil
layer serves as a direct source of pollution for groundwater in the soil surface karst zone.
The uneven distribution of water resources, combined with intense pollution and the local
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residents’ limited awareness of water resource conservation, has resulted in significant
ecological degradation.

4.2. The Temperature and Porosity Effects on Groundwater Quality

The results of the present study have demonstrated that temperature was the most
significant factor influencing groundwater pathogen-microbiota indicators. Mesophilic mi-
crobes, such as bacteria and coliforms, exhibit optimal growth within specific temperature
ranges. Coliforms, which are commonly found in the intestines of animals and humans,
demonstrate optimal growth at temperatures ranging from 30 ◦C to 40 ◦C, with the most
rapid reproduction occurring at 37 ◦C. The quantity, metabolism, and activity are subject to
change when the temperatures are not conducive to their survival [44–48]. This is consistent
with our finding that TBC and TEC values are lower below 30 ◦C. In summer, with high
temperatures, the average groundwater TEC values are approximately seven times higher
than in other seasons. This suggests that during summer, the microbial TBC and TEC
exceedance in soil surface karst zone groundwater is severe, rendering it unsuitable as a
source of potable water for human use.

Soil consists of particles of varying sizes, and its particle size distribution, coupled
with porosity, constitutes one of its critical physical properties. These aspects significantly
influence the evolution of groundwater microbes. Research by scholars such as Bradford
and Harter, using saturated soil columns with varied particle sizes, has demonstrated that
as particle size diminishes, microbial concentration at the column outlet decreases, while
retention at the inlet increases [32,33]. Furthermore, David’s experiments on agricultural
grassland soil revealed that particles of different sizes possess distinct adsorption surface
energies. For instance, only 2% of Escherichia coli were retained in soil particles ≥31 µm,
compared to 65% in particles <2 µm [49]. In studies involving Bacillus subtilis spores in
soil, Minyoung found that doubling the soil particle size could increase the migration
speed of spore microbes by 82%, likely due to the impact of larger pores in sandy soil on
both adsorption capacity and hydrophobic interactions [50]. This is consistent with our
finding that in denser soil or with smaller soil particle sizes, the groundwater TBC and TEC
values increase. This phenomenon underscores that in rocky desertification areas under
agricultural conditions, more frequent tilling and looser soil quality correlate with higher
groundwater TBC levels, with the smallest and most stable fluctuations.

4.3. Implication

The results highlight that temperature exerts the most significant influence on the
quality of karst groundwater. Elevated temperatures lead to increased pH, COD, and
microbial indicator (total bacterial count and total coliforms) values in groundwater, along
with wider ranges in ORP values. When the temperature exceeds 25 ◦C, the total bacterial
count markedly increases with rising temperatures, while below 25 ◦C, there is minimal
response to temperature variations. Total coliform concentration gradually increases with
temperature, showing a more rapid rise above 15 ◦C. At the same temperature, depth shows
little impact on water quality changes in surface karst springs. When porosity exceeds
0.55, the hydrodynamic cycle is accelerated, and soil oxygen content increases, resulting in
higher ORP values and lower pH, indicative of a pronounced oxidative environment in the
soil–water matrix. This suggests that the surface charge of soil mineral particles increases,
thereby enhancing the adsorption capacity of the soil mineral surface for microbial indica-
tors in karst groundwater, leading to more enriched pathogen-microbiota indicators. On
the contrary, when porosity is less than 0.55, the surface soil layer exerts the opposite effect
on karst groundwater microbes, reducing the concentration of pollution indicators. This
indicates that denser soil surface karst zone soil or smaller soil particle sizes possess some
capacity to purify karst groundwater quality.
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