
Citation: Pasquale, C.; Giuseppe, B.;

Francesco, Q. JITScanner: Just-in-Time

Executable Page Check in the Linux

Operating System. Appl. Sci. 2024, 14,

1912. https://doi.org/10.3390/

app14051912

Academic Editor: Luis Javier García

Villalba

Received: 22 December 2023

Revised: 20 February 2024

Accepted: 21 February 2024

Published: 26 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

JITScanner: Just-in-Time Executable Page Check in the Linux
Operating System †

Pasquale Caporaso 1,2,* , Giuseppe Bianchi 3 and Francesco Quaglia 2,*

1 CNIT Natl. Network Assessment and Monitoring Lab, Università di Roma Tor Vergata, 00133 Rome, Italy
2 Dipartimento di Ingegneria Civile e Ingegneria Informatica (DICII), Università di Roma Tor Vergata,

00133 Rome, Italy
3 Dipartimento di Ingegneria Elettronica (DIE), Università di Roma Tor Vergata, 00133 Rome, Italy;

giuseppe.bianchi@uniroma2.it
* Correspondence: pasquale.caporaso@cnit.it (P.C.); francesco.quaglia@uniroma2.it (F.Q.)
† This paper is an extended version of our paper published in 2023 18th International Conference on

Availability, Reliability and Security, Benevento, Italy, 29 August–1 September 2023.

Abstract: Modern malware poses a severe threat to cybersecurity, continually evolving in sophistica-
tion. To combat this threat, researchers and security professionals continuously explore advanced
techniques for malware detection and analysis. Dynamic analysis, a prevalent approach, offers
advantages over static analysis by enabling observation of runtime behavior and detecting obfus-
cated or encrypted code used to evade detection. However, executing programs within a controlled
environment can be resource-intensive, often necessitating compromises, such as limiting sandboxing
to an initial period. In our article, we propose an alternative method for dynamic executable analysis:
examining the presence of malicious signatures within executable virtual pages precisely when their
current content, including any updates over time, is accessed for instruction fetching. Our solution,
named JITScanner, is developed as a Linux-oriented package built upon a Loadable Kernel Module
(LKM). It integrates a user-level component that communicates efficiently with the LKM using scal-
able multi-processor/core technology. JITScanner’s effectiveness in detecting malware programs and
its minimal intrusion in normal runtime scenarios have been extensively tested, with the experiment
results detailed in this article. These experiments affirm the viability of our approach, showcasing
JITScanner’s capability to effectively identify malware while minimizing runtime overhead.

Keywords: malware analysis; OS security; antievasion

1. Introduction

The importance of services running on contemporary computing systems is growing
significantly. There is an increasing demand for solutions that extend beyond simply
analyzing code statically. These solutions should offer the capability to actively control
actions that might be executed by potentially harmful programs, rather than relying solely
on static analysis. This approach is highlighted in several literature studies [1–3].

Dynamic analysis, surpassing its static counterpart in various aspects, concentrates
on observing the actual behavior of malware. It focuses on activities such as network
connections, file system access, and system calls. This method simplifies the identification
of obfuscated or encrypted code, which is commonly employed by malware programs.
Nevertheless, dynamic analysis utilizing sandboxing brings about a considerable overhead
and has been proven to be detectable in specific configurations [4–7].

In this article, we take a different approach and introduce JITScanner (Just-in-Time
Scanner), a Linux-based solution. This solution is based on identifying, along wall-clock-
time, appropriate moments for conducting actual checks on the content of a specific ex-
ecutable page. The primary aim is to circumvent the necessity of checking pages that,

Appl. Sci. 2024, 14, 1912. https://doi.org/10.3390/app14051912 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14051912
https://doi.org/10.3390/app14051912
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-0552-7894
https://orcid.org/0000-0001-7277-7423
https://orcid.org/0000-0002-5616-7980
https://doi.org/10.3390/app14051912
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14051912?type=check_update&version=1

Appl. Sci. 2024, 14, 1912 2 of 20

although associated with a program or an external library used by the program, are not
actively present in RAM.

We use the term “materialized” to denote a virtual page that currently resides in a
page frame within the RAM, accessible by the application in its address space. Pages that
are not materialized will prompt a fault to be managed by the operating system if accessed.
For instance, pages that are mmap-ed in a Posix operating system at a certain point in time
might materialize later during the application’s execution. By focusing on pages that are
actively accessed for instruction fetching, we aim to bypass the expense of checking pages
that the application does not utilize for storing machine instructions needed for execution.

From a technical perspective, JITScanner encounters a significant challenge with pages
that are allocated for Write-Execute (WX) usage. Simply checking these pages at the time
their content materializes and upon their initial use for executing machine instructions
is inadequate for confirming that they will not harbor exploitable malicious signatures
accessible to attackers. At the same time, it is crucial to note that WX pages hold substantial
relevance in legitimate scenarios, particularly in supporting Just-in-Time (JIT) compiling
within language-specific virtual machines [8].

To address this issue, our solution incorporates support for a security-focused state
machine, managed at the kernel level. This “shadow” state machine operates in a way that
the actual actions an application can perform on any WX (Write-Execute) page—such as
writing or fetching instructions—are entirely logical. In particular, at any given moment,
only one of the two possibilities (W or X) is allowed to happen without being traced by the
operating system kernel.

This approach enables us to identify instances where an executable page is revisited
by the CPU to fetch machine instructions after its content has been updated. Consequently,
this allows us to recheck for the potential presence of malicious signatures following the
modification of the page’s content, i.e., the re-materialization of its content.

Importantly, this solution also addresses scenarios where an attacker exploits en-
crypted code that is later decrypted over time into an executable page. This particular
scenario is critical and cannot be effectively handled by traditional static analysis techniques
and tools and it presents a potential loophole for evading antivirus software that conducts
dynamic analysis of active programs [9].

In our solution, we also provide the support for checking the page content upon an
instruction fetch if a previously materialized non-executable page is requested to become
executable via specific system calls. The same applies to executable pages that are also
made writable and undergo updates over time. By incorporating this functionality, we
ensure that whenever a non-executable page is dynamically altered to become executable or
when executable pages are permitted to be writable and are modified, our system conducts
checks on their content during instruction fetch. This approach helps maintain security
by verifying the integrity of pages that undergo permission changes or content updates,
preventing potential vulnerabilities that might arise due to these transitions.

The architecture of JITScanner includes a subsystem to allow the communication of
executable-page snapshots to user-level daemons, which can perform the page-content
check asynchronously, off the critical path of the applications under control. This subsystem
has been designed in order to enable the exploitation of parallelism in the machine, which
is a common feature of nowadays multi-processor/multi-core chip-sets. Furthermore,
the asynchronous page-content check offered by JITScanner can evolve along time by simply
updating the logic (or the dataset of reference signatures) characterizing the user-level
daemon activity. At the same time, the core kernel-level engine of JITScanner still enables
the possibility to carry out the synchronous check of an executable page, which can be
particularly useful for assessing the presence of specific malicious signatures. Addtionally,
it embeds mechanisms for protecting JITScanner from Denial-of-Service (DoS) attacks.

We conducted comprehensive testing of JITScanner using diverse non-malicious
workloads as well as a range of malware samples. Our tests demonstrated that the overhead

Appl. Sci. 2024, 14, 1912 3 of 20

introduced by JITScanner is practically negligible. Moreover, the results highlighted the
effectiveness of JITScanner in detecting malicious software.

The remainder of this article is structured as follows. Related work is discussed in
Section 2. JITScanner is presented in Section 3. Its experimental assessment is provided in
Section 4. Usage scenarios and directions for further extensions are discussed in Section 5.
Conclusions are drawn in Section 6.

2. Related Work

The literature on techniques for detecting malicious software is very ample. One trend
consists of the exploitation of machine learning techniques in order to identify malware
components in both traditional [10] and cloud oriented platforms [11]. Compared to all
these techniques, our solution is essentially orthogonal, since we focus on a low-level
service for deferring (or hopefully avoiding) the check of a given virtual page content along
time, which can be implemented also according to machine learning techniques exploiting
some knowledge base on malicious executable-page signatures.

Memory forensic analysis relies on memory images, such as VM (Virtual Machine)
images, to deduce the potential existence of malicious software or applications [12,13].
While certain techniques aim to reduce the number of memory checks required, this
approach fundamentally differs from our proposal. Our approach is centered on bypassing
checks on non-materialized pages, which are still present within the file systems or VM
dumps analyzed by memory forensic techniques. Additionally, our solution addresses
encrypted code that dynamically undergoes decryption at a granular level and is installed
on an executable page within the address space. In contrast, memory forensics solutions
typically conduct checks at a coarser level since events of interest, such as API calls, lead to
memory dumps that are not immediate. Consequently, the transient content of memory
before the actual dump is not actively tracked within these solutions. The distinction lies in
our ability to focus on non-materialized pages and handle dynamically decrypted code at a
fine granularity, which sets our approach apart from traditional memory forensics methods.

Our approach fundamentally differs from any static checker, such as ClamAV [14],
because we specifically aim to avoid checking the entire image of a program. Instead, we
provide the capability for dynamic checks at runtime, even accommodating WX (Write-
Execute) pages loaded into an application’s address space. While certain antivirus tools
perform operations during runtime as well [15], they do not utilize the kernel-level tech-
nique that we introduce, nor do they possess the capability to manage the virtualization of
access permissions to critical pages, such as WX pages, as we do through our shadow state
machine. Recent studies have shown that common antivirus tools can be circumvented
by software that intelligently utilizes these types of pages within an application’s address
space [9]. These attacks often involve materializing critical binary code into these pages at
a later time, for instance, by decrypting code in such a page during runtime—a tactic that
can be directly countered by leveraging our solution.

Indeed, the detection of malicious software often involves behavioral analysis of
applications, achieved through methods such as intercepting library calls or system calls.
Antivirus solutions employing dynamic analysis [15] and eBPF (Extended Berkeley Packet
Filter) kernel-level solutions [16,17] typically follow this paradigm. This form of behavioral
analysis operates independently from (and can be combined with) our approach because it
does not specifically target the identification of signatures within code hosted on executable
pages, as our solution does. Furthermore, our approach factors in the dynamic decryption
of code blocks, which is a distinct focus compared to the behavioral analysis employed by
these solutions.

Various operating system security solutions aim to enhance the robustness in manag-
ing an application’s address space. For instance, some approaches involve making user-
level pages inaccessible for instruction fetching when operating in kernel mode, as seen
in solutions such as KPTI (Kernel Page-Table Isolation) [18]. However, these approaches
remain distinct and separate from our solution. The primary focus of these methods is to

Appl. Sci. 2024, 14, 1912 4 of 20

mitigate risks associated with running kernel-level software. They aim to enhance security
by reducing vulnerabilities that may arise within the kernel space. In contrast, our solution
targets the reduction of risks that are primarily dependent on the user-level portion of
the application. We concentrate on fortifying security measures concerning the user-level
aspects, particularly in identifying and mitigating risks associated with executable pages
and their content within the application’s address space.

Our technique leverages a sophisticated handling of unused bits within the entries of
an active program’s page table. While similar approaches have been utilized by kernel-level
solutions oriented towards performance improvements—such as transparently managing
page contents for checkpointing [19] or in the development of distributed shared-memory
layers [20]—our innovation lies in utilizing these available bits to construct a completely
new shadow state machine. This state machine forms the backbone of our JITScanner
technique, enabling us to dynamically manage and monitor the execution of code within
an application’s address space with enhanced security measures.

In comparison to the OmniUnpack kernel-level security solution [21], there are distinct
differences in the methodology and capabilities of our JITScanner approach. OmniUnpack
intercepts the initial attempt to fetch an instruction from a modified WX (Write-Execute)
page and marks the page, but the actual verification occurs at a later time. This delay could
potentially allow an attacker to rewrite the malicious page, concealing its actual content
before the inspection takes place. Conversely, our JITScanner utilizes page snapshots,
enabling us to track every transition of an executable page’s content, particularly each
time it is reused for instruction fetching. This granular monitoring provides a more
comprehensive observation of page content transitions, enhancing our ability to detect
potential malicious alterations. Moreover, while OmniUnpack does not handle purely
executable pages, limiting its ability to trace such pages in conjunction with WX pages,
JITScanner overcomes this limitation. We specifically designed JITScanner to trace both
purely executable pages and WX pages, which is crucial in countering sophisticated attack
techniques such as ROP (Return Oriented Programming). ROP techniques exploit gadgets
located anywhere within both executable and WX pages, and our comprehensive tracing
capability helps prevent such exploits. Additionally, OmniUnpack’s compatibility is limited
to Windows XP and cannot be deployed on more recent Windows operating system releases.
In contrast, our solution is designed to function with current Linux releases and aligns
with the latest support for developing Linux kernel modules, providing compatibility and
usability with modern Linux systems.

In comparison to the work presented in [22] for Windows XP, there are several funda-
mental differences between its kernel-level service and our proposal with JITScanner. The
work in [22] introduces a kernel-level service that logs any page accessed for execution but
not considered trusted, subsequently allowing analysis of the page content to determine
the presence of critical machine instruction patterns. However, there are two significant
distinctions from our proposal. Firstly, the approach in [22] relies on a preliminary classifi-
cation of non-malicious pages (e.g., library pages) to trigger the inspection of executable
pages. In contrast, JITScanner supports the inspection of any executable page as soon as its
content materializes in RAM and is accessed via an instruction fetch, without requiring
prior classification. Secondly, similar to OmniUnpack, the work in [22] introduces a mem-
ory management mechanism that excludes the possibility of fetching instructions from a
writable page at page mapping time. However, once the page is accessed by an instruction
fetch, it becomes regularly usable after a copy is logged on the hard drive. This mechanism
lacks support for scenarios where executable code within a WX page undergoes multi-
ple updates throughout the application’s lifespan. Conversely, our proposal, JITScanner,
addresses this scenario directly by leveraging the shadow state machine to manage WX
permissions and page snapshots. This capability allows us to monitor and manage updates
to code residing in specific WX pages efficiently and effectively.

Approaches that rely on running applications within an emulation environment,
as outlined in [23], aim to utilize shadow memory to detect potential malicious alterations

Appl. Sci. 2024, 14, 1912 5 of 20

in an application’s address space. However, emulation-based approaches might introduce
some level of interference or non-transparency while running applications within the
emulation environment. In contrast, our proposal manages executable pages through a
fully transparent kernel-level service. By operating at the kernel level, our solution ensures
a higher degree of transparency in managing executable pages within an application’s
address space. This transparency is vital, as it allows for seamless and efficient monitoring
and management of executable pages without introducing additional layers or interference
that might affect the application’s operation or introduce complexities into the system.

Table 1 summarizes the aspects discussed in this section, showing a comparison of
our solution against the current state-of-the-art methods.

Table 1. Comparison of JITScanner with literature solutions.

JITS MAAR [10] ClamAV [14] Tracee [16] Deep-Hook [11] Falco [17] Will. et al. [22]

Can be used on
non-virtualized
environment

✓ ✓ ✓ ✓ ✗ ✓ ✓

Allows for dynamic
analysis ✓ ✓ ✗ ✓ ✓ ✓ ✓

Remains effective
against packed
malware

✓ ✓ ✗ ✓ ✓ ✓ ✓

Uses signatures
check ✓ ✗ ✓ ✗ ✓ ✗ ✓

Reduces memory
search ranges ✓ na ✗ na ✗ na ✗

Allows monitoring
of multiple memory
writes on
executable pages

✓ na ✗ na ✗ na ✗

Finally, this article extends our work in [24], in particular via the extension of the
use-cases that are employed in the experimental assessment. More precisely, we have
considered different/wider sets of malware applications to assess the effectiveness of
JITScanner. Furthermore, we studied the case of applications based on Just-in-Time compil-
ing technology—and relying on multiple differentiated programming languages—which
can lead to stress the behavior of JITScanner in terms of management of pages associated
with WX permissions. This leads to enlarge the assessment of the performance impact
of JITScanner. Furthermore, this article also deepens some methodological and technical
aspects characterizing our solution.

3. The JITScanner System
3.1. Baseline Concepts and Methodology

The design principle of JITScanner is simple yet effective: we perform a binary code
security check on an executable page only when that page content is actually materialized in
memory and is accessed for an instruction fetch. This approach detects malware that decrypts
malicious stages during the execution, and thwarts malicious code which delays execution
to evade sandboxing.

At a high level of description, Figure 1 allows outlining the central difference between
JITScanner and literature solutions for malware detection. In particular, the common way
of proceeding in the literature consists of working at either the application loading time
(e.g., with the static analysis of software and/or with the instrumentation via hooks—as in
antivirus products) or the application runtime (e.g., via the interception of calls to services,
such as system-library or system-call usage). However, between these two phases malware

Appl. Sci. 2024, 14, 1912 6 of 20

software can also perform decryption steps of its own code during its execution, which is
not directly interceptable by these load/execution steps based solutions. In JITScanner, we
have the possibility to check any piece of code in an executable page just when execution
on that page (re)-starts, possibly after a dynamic modification of the page content. Hence,
from the actual usage of pieces of code fetched by the CPU for their execution, we enable
taking snapshots of the code image in an executable page for their analysis. Overall, our
approach ultimately combines dynamic with static analysis, as code (a snapshot of it) is
analyzed at the time of its actual execution in a just-in-time fashion.

Figure 1. Common existing solutions (top picture) vs. JITScanner (bottom picture).

The malware detection conducted by JITScanner is based upon basic principles, specif-
ically the reliance on page-fault handlers for intercepting and managing the CPU fetch of
instructions from executable pages. Although JITScanner is the first solution to leverage
this mechanism for the purpose of conducting memory analysis on Linux systems—while
also including WX pages—the ideas it relies on are essentially reusable in any other op-
erating system family. Overall, the methodology JITScanner exploits lies naturally on
contemporary address space management solutions in common software systems. We
believe this widens the applicability of our ideas.

In the following sections, we delve into the details of the architecture and technical
approaches that underpin the design of JITScanner.

3.2. Architectural Hints

The objectives of our system are two-fold: we want to perform a comprehensive
analysis of every executable page that can be exploited by an execution flow of a program,
while minimizing at the same time the intrusiveness. To achieve these objectives, our
system employs a multi-faceted approach, the scheme of which is summarized in Figure 2.

The architecture of our solution exploits both a kernel-level layer and a user-level
layer. The kernel-level layer, which is fully implemented as a Linux Kernel Module (LKM),
performs two critical actions:

(1) It intercepts the first access to an executable page (or an updated executable page—this
is the case of WX pages), which is carried out via an instruction fetch by the CPU;

(2) While handling the interception of the instruction fetch, and after the kernel material-
ized the target page in RAM, we perform critical checks on the page content which
might lead to the forced termination of the application.

The verification process described in point (2) occurs within the same thread that
initiated the access (for instruction fetch) to the executable page. Consequently, it operates
synchronously concerning the application’s execution.

To ensure swift handling of this scenario, allowing the thread to quickly resume ex-
ecuting user-level code if the application termination is not prompted, our architecture
integrates modules responsible for conducting these critical checks directly at the kernel
level. However, in typical situations, it is essential to restrict the number of checks per-

Appl. Sci. 2024, 14, 1912 7 of 20

formed synchronously. For instance, a common scenario might involve merely verifying if
the page content includes the embedding of shellcode. Limiting the synchronous checks
helps maintain efficient and responsive execution of the application by balancing the critical
verification tasks without impeding the performance of the user-level code.

Figure 2. System architecture.

To still enable a more ample check of the page content, we exploit the user-level part
of the architecture. It involves a program that receives input from the kernel in the form
of a tuple: < page_content, o f f set, process_id, thread_id >. The o f f set denotes the position
(linear address) of the first fetched instruction within the page. This program conducts
a more comprehensive check of the page content asynchronously concerning the thread
that initiated the page access. This approach allows for a broader examination to detect
potential malicious signatures within the executable page, carried out off the critical path
of the original application’s execution. This checking program can be configured to take
action, such as blocking the application (e.g., via the kill() system call), if it identifies any
security-critical aspect during the asynchronous check.

Moreover, the page_content included in the tuple represents a snapshot of the ex-
ecutable page captured at the time of the intercepted instruction fetch. This snapshot
capability enables the analysis of the complete history of the content of any WX (Write-
Execute) page over time, a feature not facilitated by solutions such as in [21]. This historical
analysis provides a more comprehensive view of changes occurring within WX pages,
enhancing the detection and understanding of potential security threats.

The combination of an initial synchronous check at the kernel level followed by
a subsequent asynchronous check at the user level provides configurability based on
the criticality of the hosted services within the system. For services of lower criticality,
the synchronous check can be omitted entirely. This prioritizes application performance,
allowing the application to continue functioning without delay, even if the asynchronous
check later identifies a malicious signature in an executable page that the application has
already accessed. This modular approach offers flexibility and adaptability. It allows for
straightforward customization and future expansion while enhancing reliability and ease of
maintenance. By decoupling the synchronous and asynchronous checks and tailoring their
execution based on service criticality, the system can strike a balance between performance
optimization and security enforcement, ensuring efficient operation while maintaining a
level of security appropriate for the service’s importance.

We also note that performing the kill of the malicious application in JITScanner is a
baseline choice, but alternative solutions for the handling of the malware program can
be simply adopted. As an example, there are works that have proposed the dynamic
setup of facilities at the operating system level in order to manage malware suspicions in

Appl. Sci. 2024, 14, 1912 8 of 20

specific programs (see, e.g., [3]). The combination of JITScanner with these solutions can
be immediate since, rather than killing the identified malware, JITScanner could simply
alert an external system (passing to it baseline information, as for example identifiers of
processes and users) in order to let that system start the management of the malware
according to its own rules.

In the JITScanner architecture, the user-level component can effectively utilize existing
code analysis methods accessible in the literature. In our current implementation, we
have developed a user-level layer centered around Yara rules, a well-established system
renowned for malware classification [25]. Regarding the kernel-level synchronous check,
we have incorporated a baseline check to identify the presence of the meterpreter shellcode
within the memory page.

In any case, the check facilities within our solution can be perceived as plug-ins that are
highly extensible and can be effortlessly expanded at any given moment. Fundamentally,
our solution comprises an engine dedicated to the management of executable pages within
an address space. This engine serves as a stable core foundation upon which various
checking mechanisms can be built, refined, and enhanced over time.

This modular architecture aligns with our primary research objective, which revolves
around providing an effective kernel-level system to combat dynamic loading and obfus-
cation techniques. These techniques often pose significant challenges to traditional static
analysis methodologies. By focusing on the core engine for managing executable pages
and offering a flexible framework for diverse checking mechanisms, our solution aims
to address these challenges and ensure an evolving and robust defense against dynamic
loading and obfuscation techniques commonly utilized by malicious actors.

Our implementation has been tailored for kernel version 5 of Linux, and for x86
processors with PAE (Physical Address Extension) enabled. However, generalizing our
LKM to support other architectures should be easy, since we have utilized generic kernel
functions wherever possible.

3.3. Executable-Page Access Interception

Within JITScanner’s framework, the primary focus lies in intercepting a genuine access
to an executable virtual page, particularly when the CPU actively fetches an instruction
from that specific virtual page. Consequently, our solution does not initiate checks on any
executable virtual page until the moment when the application actually requires the binary
code contained within it.

In line with the typical on-demand paging process, this need arises after an executable
page is allocated by the kernel and placed into an RAM frame. Subsequently, the page-
table of the application is updated, granting the execution capability and making the
page accessible. It is precisely at this point—when the CPU fetches instructions from
the executable page—that JITScanner intervenes to conduct the necessary checks and
verifications, ensuring the integrity and security of the fetched binary code.

To precisely identify the moment when a memory page is initially accessed for an
instruction fetch, our solution employs a series of strategically placed kernel probes within
the page fault handling process. Specifically, we utilize the kprobe subsystem provided by
the Linux operating system to set up a hook on the return of a core page-fault handling
procedure. In greater detail, we have installed a kretprobe on the handle_mm_fault() pro-
cedure within the Linux kernel. Upon completion of this procedure’s execution, the target
page that triggered the fault has already been materialized in RAM. At this stage, we can
conduct the synchronous check on its content since it is now available in memory. Addi-
tionally, we take a snapshot of the page, which is managed for subsequent examination
by the asynchronous check. This approach allows us to precisely time the execution of
checks and efficiently manage the content of accessed pages for both synchronous and
asynchronous analysis.

An essential consideration in our hook execution is to perform the page check only if
the accessed page for instruction fetch is a legitimate page within the address space. Any

Appl. Sci. 2024, 14, 1912 9 of 20

attempt to access a non-legitimate page does not result in the actual materialization of
the page in RAM through the operating system’s handle_mm_fault() function. Instead, it
leads to the delivery of the SIGSEGV signal to the application, indicating a segmentation
fault or an invalid memory access attempt.

This distinction is particularly pertinent in our management of WX (Write-Execute) pages.
For these pages, an “original” page fault triggered by the operating system—associated with
the first access to the virtual executable page, which we intercept using the hook—is insuf-
ficient for checking the absence of malicious signatures. As a result, careful consideration is
necessary to ensure that our page checks are executed only when the accessed pages are
legitimate within the application’s address space, thereby optimizing the effectiveness of
our security measures while avoiding unnecessary checks on non-legitimate pages.

For managing WX (Write-Execute) pages, we have developed an innovative kernel-
level mechanism that dynamically adjusts the actual page permissions while the program
is executing. Despite these dynamic modifications, the page remains “logically” accessible
at the application level in both Write (W) and Execute (X) modes.

This kernel-level facility operates entirely transparently to the actual program, ensur-
ing that the application is unaware of these permission modifications. However, it grants
us the capability to monitor and track page access—whether for writing data or fetching
instructions—throughout the program’s execution.

Essentially, this facility establishes a shadow state machine that aligns with the legiti-
mate permissions granted to the application for the page. By dynamically managing and
tracking the permissions without the application’s knowledge, we can maintain security
while ensuring necessary access to the pages, offering a nuanced and transparent approach
to managing WX pages.

The shadow state machine within our system implements a time-separated alternating
mechanism between write and execute permissions for pages. When a page is in “write
mode” in the shadow state machine, it allows page-update operations without triggering
user execution-mode interruptions such as page faults or interception via our kernel-level
support. However, any attempt to execute instructions from that page will result in a fault,
redirecting control to our kernel-level hook for interception and handling. Conversely,
when a page is in “exec mode” within the shadow state machine, it permits instruction-fetch
operations. In this mode, attempts to update the page will trigger a fault, intercepted by
our kernel-level support for handling. This alternating logic between write and execute
permissions ensures a controlled and secure mechanism for managing page access and
operations within the application’s address space. A representation of this logic is shown
in Figure 3.

Figure 3. Shadow state machine for WX permissions.

With our facility that manages page permissions dynamically, we have the capability
to trigger the page-verification process whenever the access mode transitions between write
and execute permissions. However, based on the goals of our solution, we believe that
conducting a signature check on the executable page is essential only during instruction
fetches. This is the critical moment where potential exploitation of malicious code could
occur, making it the prime instance for initiating the signature check.

Appl. Sci. 2024, 14, 1912 10 of 20

By specifically targeting the instruction-fetch operations for page verification, we can
efficiently focus our security measures on the most vulnerable points in time, ensuring
that checks for malicious signatures are conducted precisely when the executable page is
being accessed for instruction execution. This targeted approach enhances the effectiveness
of our security measures while optimizing performance by avoiding unnecessary checks
during other access modes.

To support shadowing, we set the XD bit on the lowest level of the page table (the
PTE), disabling instruction fetches from the page as soon as the WX page is materialized.
By doing this, when the user program tries to execute the instructions on the page, a page
fault occurs due to the lack of required permissions. We intercept this page fault and do
the following:

• Clear the XD bit, to allow the user to execute the page from now on;
• Clear the W bit, to disable writes on the page;
• Suppress the SIGSEGV signal generated by the invalid access to prevent the kernel

from terminating the user program or making it run an SIGSEGV handler.

To handle the interception of kernel-level functions responsible for delivering the
SIGSEGV signal during CPU fetches, our approach involves suppressing this signal, since
the page fault is generated by our shadowing mechanism. In Linux, faults occurring during
instruction fetches are managed within the architecture-specific code of the kernel before
calling the handle_mm_fault() function. However, these functions cannot be directly
hooked using the kprobe mechanism. As an alternative, we have chosen to place a kernel
probe on the force_sig_fault() function, which is triggered whenever an invalid memory
access occurs. By hooking into this function, we can effectively suppress the delivery of
the signal. Moreover, the synchronous checking of page content and the passage of page
snapshots to the asynchronous checker are handled through the hook installed on the
return of the handle_mm_fault() function. This comprehensive approach enables us to
intercept and manage the necessary signals and functions, ensuring the seamless operation
of our shadowing mechanism and the subsequent verification processes.

To effectively handle the hook for the force_sig_fault() kernel function, it is crucial
to differentiate between standard invalid-access faults and those triggered by our shadow
state machine. For this purpose, we utilize two unused bits within the lowest level page
table entry (PTE) of the x86 processor. These bits store the original write and execute
permissions for a specific page before any modifications by our module.

During the interception of a fault, we check these bits within the PTE. If the fault
originates from a genuine invalid access generated by the program and not by our shadow
state machine, the bits help us identify this distinction. In such cases, we allow the kernel to
handle the fault without any intervention from our module. This mechanism ensures that
our system effectively identifies and manages faults triggered by the shadow state machine
while allowing standard invalid-access faults to be handled conventionally by the kernel.

We present in Listings 1 and 2 the main parts related to the hook-based page man-
agement process. In Listing 1, we illustrate the management of our state machine in
the handle_mm_fault() hook, which is invoked on page materialization and a write ac-
cess violation. The steps are as follows: first, we do some general checks to ensure that
the fault occurred in a valid vm_area with the appropriate flags. We then examine our
ORIG_WRITE_BIT bit in the page table, to verify if the page has been modified by our state
machine and if writes were initially permitted, if so, we disable execution and allow the
write. Otherwise, we let the kernel handle the fault conventionally. In Listing 2, we report
the hook for force_sig_fault(), which is called on an execute-address violation. Here,
we check if our ORIG_EXE_BIT bit is set in the page table. If it is not set, we let the kernel
handle the fault. If it is set, this fault is generated under our state machine and needs to be
resolved. To this end, we first run a synchronous check of the page content at kernel level.
If a threat is detected, we allow the kernel to complete the fault, resulting in the delivery
of the SIGKILL signal to the running process. If no threat is found during the kernel-level

Appl. Sci. 2024, 14, 1912 11 of 20

check, we transfer the page snapshot to the user agent for asynchronous checking and then
fix the page table to allow the execution to continue.

The necessity of a TLB (Translation Lookaside Buffer) flush within the code listings is
crucial due to the way TLBs maintain information based on the previous access permissions
of a page. When the permissions of a specific page are modified, it becomes imperative to
eliminate this page’s address from the TLB across all CPUs involved in executing threads
operating within the same address space as the intercepted thread accessing memory.

In our implementation, we have leveraged the __flush_tlb_one_user API provided
by the Linux kernel for this purpose. This API allows us to perform a TLB flush for a specific
page address. Additionally, we combine this API with the Inter-Processor-Interrupt (IPI)
approach to execute the function across all CPUs involved. This approach ensures that the
TLBs across all relevant CPUs are updated and purged of the outdated page information,
aligning them with the modified access permissions for the page.

Listing 1. The hook on handle_mm_fault().

i f (general_checks () == OK &&
pte [faul t_page] & ORIG_WRITE_BIT) {

s e t _ b i t (faul t_page , XD_BIT) ;
s e t _ b i t (faul t_page , W_BIT) ;
s e t _ b i t (faul t_page , ORIG_EXE_BIT) ;
f l u s h _ t l b (faul t_page) ;
goto al low_write ;
} e lse {
goto s tandard_faul t_handler ;
}

Listing 2. The hook on force_sig_fault().

i f (pte [rip_page] & ORIG_EXE_BIT) {
i f (sync_check (rip_page) != OK) goto s e n d _ s i g _ k i l l ;

t r ans fer _pa ge_ t o_u ser (rip_page) ;

c l e a r _ b i t (rip_page , XD_BIT) ;
c l e a r _ b i t (rip_page , W_BIT) ;
s e t _ b i t (faul t_page , ORIG_WRITE_BIT) ;
f l u s h _ t l b (faul t_page) ;
goto allow_normal_execution ;
} e lse {
goto s tandard_faul t_handler ;
}

Finally, installing hooks on system calls such as mprotect() is a significant step within
our system. This particular system call is capable of altering the access permissions to a
page, such as adding executable (X) or writable (W) permissions to a page that previously
had different permissions. By placing hooks on system calls such as mprotect(), we ensure
the correlation between any change in access permissions and the need to recheck the page
content upon the next instruction fetch from that page. This approach guarantees that
whenever there is a modification in permissions using mprotect() or similar calls, our
system is aware of it. Consequently, it can plan to perform necessary content rechecks
when the page is accessed for instruction fetching, aligning with the modified permissions
and ensuring security integrity.

3.4. Protection Against DoS

It is integral for our system that the page fault hook and the driver, responsible for
transferring page content and metadata to the user-space agent, communicate efficiently.
In our architecture, we employ a hash table for this purpose. This hash table organizes
intercepted pages, creating copies (page snapshots) and categorizing them based on their
associated process ID. These pages are stored within different buckets in the hash table,

Appl. Sci. 2024, 14, 1912 12 of 20

allowing parallel access for both insertion (storing a copy of an executable page to be
checked) and deletion (transferring the page copy to a user-space buffer).

However, a critical aspect of this solution is the potential for a flow of page-fault
interceptions, potentially caused by a malicious program intending to disrupt our page-
management system. This influx of page faults can result in uncontrolled effects due to the
intensive memory usage required to store copies of executable pages in the kernel-level
hash table before transferring them to the user-space agent.

This scenario of numerous intercepted page faults can lead to an excessive volume of
memory usage within the kernel, potentially impacting system stability and performance.
It is crucial to develop mechanisms or safeguards within the system to handle such sce-
narios efficiently, ensuring that the system remains resilient against potential attacks while
maintaining its stability and operational integrity.

To fortify the system against Denial of Service (DoS) attacks stemming from memory
depletion due to excessive kernel-level allocations, we have integrated an additional hash
table. This secondary hash table maintains support for parallel access across different
buckets. Each entry within this hash table is responsible for tracking the user ID associated
with pending executable-page copies awaiting delivery to the user-level agent, along with
a counter representing these pages.

As a preventive measure, we have implemented a threshold mechanism within the
system. When the counter surpasses a specified threshold value for a particular user’s
pending page copies, it signifies an abnormal influx of page faults. In response, actions are
taken to prevent potential DoS scenarios. The system can be configured to either terminate
or block the process generating additional page faults on behalf of the same user.

This configuration flexibility is achieved by exposing a parameter within our software
architecture, accessible through the /sys file system. This level of configurability enables
dynamic adjustments based on the system’s operational needs and the criticality of the
protected environment. By providing this flexibility, administrators can fine-tune the
system’s response, choosing between process termination or blocking based on the current
circumstances and security requirements.

Our system implementes a Time-to-Live (TTL) mechanism as a form of rate-limiting
control to prevent excessive page copies from being generated for the same user ID. Once
an event (kill/block) occurs due to surpassing the threshold, the corresponding entry in
the hash table associated with that user enters a TTL period.

During this TTL period, the counter within the hash table entry is decremented each
time a copy of an executable page related to the same user ID is successfully delivered to
the user-space agent. However, if processes from the same user generate additional page
faults requesting page copies during this TTL period, they are still subjected to termination
or blocking. Essentially, no new page copies are allowed for processes of that same user
throughout the entire TTL duration.

Furthermore, to contrast DoS caused by excessive memory usage of this second hash
table, we added a second TTL. If the entry of the hash table associated with a given user
ID keeps a counter that remains set to zero for the whole TTL, then this entry is removed
from the hash table—it will be reinserted in the future upon a page fault interception for a
program run from the same user ID. This avoids keeping useless entries in this hash table,
and thus, contrasting attacks that can be based on the exploitation of programs with the
setuid flag active. In fact, these would allow an attacker to operate via multiple user ID
values, enlarging at some point in time the number of entries of the hash table.

4. Assessment

For the assessment of our proposal, we concentrate on two key aspects. Firstly, we
assess our system capability of detecting malware. Concerning this point, our emphasis
lies on the ability of JITScanner to maintain effectiveness against both plain and packed
malware. In relation to this aspect, we mention again that the Yara-based signature checker
used in JITScanner is a kind of plugin that actually determines the final false positive/neg-

Appl. Sci. 2024, 14, 1912 13 of 20

ative rate. However, at the same time, the core part of JITScanner is the kernel-level engine
for enabling the creation of the snapshots of any page-image that is actually used by an
application—in terms of instruction fetch. Hence, JITScanner can support the employment
of differentiated signature checkers—including signature checkers that will be developed
in the future—which can clearly provide improvements in terms of correct rate of identifi-
cation of malware. Secondly, JITScanner is devised as a system that can offer continuous
support for malware detection, being active on operating systems where regular (non-
malware) applications are anyhow used. Hence, assessing the performance impact of
JITScanner on common applications, as well as memory usage, is a relevant additional
aspect we come with in this experimental study.

To evaluate the effectiveness and performance of our solution, a series of tests have
been conducted on a VMWare virtual machine with Linux kernel version 5.13 as the guest
operating system, utilizing a host with an i7-1165g7 2.80 GHz Intel processor with eight
cores and 32 GB of RAM.

4.1. Effectiveness

Our effectiveness testing focuses on two primary objectives:

1. Measuring the “signature flexibility” of JITScanner, which is the extent to which
signatures from plain malware remain effective for a variant in the same family;

2. Measuring the “signature retention” of JITScanner, which is the extent to which
signatures from plain malware remain effective for their packed counterparts.

For the malware dataset, we selected the “VirusShare_ELF_20200405”, which is the
latest dataset provided by the free malware sharing website VirusShare, comprising ap-
proximately 40,000 samples [26]. To showcase the effectiveness of JITScanner, and of a
representative tool we used as competitor, namely ClamAV [14], we executed the samples
both in their original state and after packing them with a simple packer sourced online [27].
From the original 40,000, we picked 1930 samples that where compatible with our chosen
packer and scanned them with ClamAV. Out of these, we extracted 466 samples which
ClamAV associated with an immediately identifiable malware family; these are reported in
Table 2. After this, we run all samples, both in plain and in packed form, under JITScan-
ner and logged the pages whose accesses in write-execute and/or execute mode have
been intercepted (all the datasets exploited in this study have been made available at:
https://github.com/Capo80/Malware_Datasets (accessed on 20 February 2024)).

Table 2. Families of the samples used.

Family Name Malware Type Number of Samples

Emotet Trojan 2
Mirai Botnet 52

Tsunami Botnet 71
Gafgyt Trojan 320

XMRIG Miner Coin-miner 21

For the logged pages with samples associated with a family, we chose the most com-
mon signature, ensuring that it did not yield any false positives during normal operations
in our test. For the selection of such most common signature, we took from each logged
page a sequence of bytes of code of length sufficient to identify actual machine instructions
that typically appear after the prologue (e.g., classical push instructions at the beginning
of a function) of the block of code where the thread jumped for fetching instructions into
the page. For the different families of malware we analyzed, the length of this sequence
of bytes was between 15 and 20. The most common signature of each family has been
added to the Yara rules database. In particular, we added these signatures to the user
agent of JITScanner, deployed it, and reanalyzed all samples on our automated malware
testing facility, namely PHOENIX [28]. For this effectiveness test, the meterpreter shellcode

https://github.com/Capo80/Malware_Datasets

Appl. Sci. 2024, 14, 1912 14 of 20

check on the executable page carried out at kernel level did not identify malware. Hence,
malware identification is essentially carried out by the user-level agent.

To assess point 1, we decided to select the most common signature for each family,
which we identified through our log of extracted pages. Subsequently, we compared
the efficacy of these signatures against the most common signature detected by ClamAV.
The results are presented in Table 3. As we can see, JITScanner has a comparable or superior
effectiveness across all analyzed families, with the exception of Gafgyt. This discrepancy
is likely attributable to the limited number of pages per sample captured in our logs for
Gafgyt—the average is 4—which is significantly lower compared to other families; this
prevented us from finding an effective signature. We believe that this type of malware
detects that it is running on a testing environment (e.g., because of the detection of a reduced
number of CPUs) and gives rise to a rapid termination. Such short or failed executions can
lead not to intercept actual activities that the malware can (at least potentially) carry out via
WX pages that include code signatures—which would have been observed by JITScanner.
However, at the same time, this is the scenario where the malware becomes essentially idle
and does not lead to real security problems.

Table 3. Signature flexibility of JITScanner and ClamAV.

Family Detected Plain Total Samples Signature Flexibility

JITScanner Emotet 2 2 100%
ClamAV Emotet 1 2 50%

JITScanner Tsunami 57 71 80.2%
ClamAV Tsunami 33 71 46.47%

JITScanner XMRIG_Miner 13 21 61.90%
ClamAV XMRIG_Miner 8 21 38.09%

JITScanner Gafgyt 76 320 23.75%
ClamAV Gafgyt 238 320 74.75%

JITScanner Mirai 15 52 28.84%
ClamAV Mirai 8 52 15.38%

To assess point 2, we compared the traces extracted from the plain malware to those
obtained from the packed samples. It is clear that all signatures are retained if the pages
extracted from the plain sample constitute a subset of those extracted from the packed
sample. The packed samples will obviously execute over more pages, as they need to de-
crypt the payload from memory. The details of the experiments are summarized in Table 4.
As observed, there exists a substantial difference between the effectiveness of ClamAV and
JITScanner when dealing with packed malware. ClamAV lacks a mechanism for detecting
signatures at runtime. This makes it not capable to effectively detect packed samples once
their signature is unpacked in memory for its actual usage. Conversely, JITScanner is able
to use the same signatures for the most of all samples examined, recognizing 75.91% of
them as malware. Furthermore, some malwares are no longer recognized because either
the unpacker did not successfully lead to the execution of the malware code (and hence,
JITScanner could not intercept the fetch of the malware instructions from memory) or the
unpacking led to different access permissions for a few pages. As for the latter aspect, we
found that some pages that are set up with read-execute permission with a regular loading
of the ELF are instead setup as read-only by the unpacker. In this case, JITScanner does
not perform any snapshot of the read-only page for a final check of its content when it is
materialized—such a snapshot is instead performed for read-execute pages, which gives
rise to a different signature characterizing the application.

Appl. Sci. 2024, 14, 1912 15 of 20

Table 4. Signature retention of JITScanner and ClamAV.

Sign. in Plain Sign. in Packed Total Samples Signature Retention

ClamAV 515 0 515 0%

JITScanner 515 391 515 75.91%

4.2. Performance

The second test we conducted was focused on performance evaluation. In particular,
we carried out two distinct experiments in our study. Initially, we measured the perfor-
mance of our solution when using conventional applications. Subsequently, we assessed
the slowdown introduced by our solution for applications employing Just-in-Time (JIT)
compilation, which make (important) usage of WX pages.

For the first test, we executed multiple trials of several classic Linux command-line
utilities, both with and without the presence of our LKM, and with and without the
synchronous kernel-level check. Each data point reports the average execution time over
2000 samples. The results are shown in Figure 4. Additionally, the slowdown caused by
our module without the synchronous check is reported in Table 5. Our findings indicate a
slowdown in the range of 7% to 13%, which we can consider acceptable.

Figure 4. Execution time of common command-line utilities.

For our second test, we selected three programming languages that are compatible
with Just-in-Time (JIT) compilation, i.e., Lua, PHP, and Ruby, and used them to run a set of
commonly utilized tests from the Debian benchmark game [29]. Furthermore, to establish
a performance baseline, we included the C language as a reference point. To mitigate
excessive variability in our measurements, we configured the benchmark parameters to
execute computationally non-trivial workloads, each with an execution time of approxi-
mately one second. Subsequently, similar to what done for the previous test, we conducted
500 iterations of the benchmarks under the following conditions: with and without the
incorporation of our LKM, and with and without the synchronous level check of the
page content.

The results of these experiments are presented in Figure 5 and the performance
slowdowns are reported in Table 6. Our observations are as follows:

1. In the absence of the synchronous check, no test exhibited a slowdown exceeding 5%,
and in some instances, no discernible slowdown was observed at all;

Appl. Sci. 2024, 14, 1912 16 of 20

2. With the synchronous check enabled, the majority of tests experienced a slowdown of
less than 10%, with some exceptions noted for the PHP language-based tests.

With these results and taking into account the possibility to disable the synchronous
check, which, in certain scenarios, may have a greater impact on the slowdown, our
architecture introduces a negligible performance overhead on JIT-based applications.

spectral fannkuch matmul binarytrees fasta
Test Name

0.6

0.8

1.0

1.2

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
)

C Language
No LKM
LKM with no sync
LKN with sync

spectral fannkuch binarytrees fasta
Test Name

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
)

PHP Language

No LKM
LKM with no sync
LKN with sync

spectral fannkuch matmul binarytrees fasta
Test Name

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
)

LuaJit Language
No LKM
LKM with no sync
LKN with sync

spectral fannkuch matmul binarytrees fasta
Test Name

1

2

3

4

5

6

7

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(s
)

Ruby2 Language
No LKM
LKM with no sync
LKN with sync

Figure 5. Execution time of JIT benchmarks.

Table 5. Slowdown of common command-line applications with no synchronous page check.

Application Name Slowdown

cat 7.46%
ls 10.57%
touch 9.95%
diff 13.90%
stat 11.06%

Additionally, it should be noted that our performance evaluation results refer to a
kind of worst-case scenario for our system, as we tested it on very short-lived applications.
In these cases, the cost of the initial security check on a page may not be fully offset by
its subsequent accesses for instruction fetch. The slowdown is, therefore, expected to be
less pronounced in applications where the longer overall execution time will mitigate the
impact of the initial page check.

Appl. Sci. 2024, 14, 1912 17 of 20

Table 6. Slowdown of JIT benchmark applications.

Language Benchmark Name No Sync Slowdown Sync Slowdown

C spectralnorm 0.00% 1.47%
C fannkuchredux 0.00% 1.61%
C matmul 2.13% 2.13%
C binarytrees 0.00% 0.92%
C fasta 0.00% 2.86%
LuaJit spectralnorm 0.58% 2.33%
LuaJit fannkuchredux 1.06% 7.45%
LuaJit matmul 4.62% 7.69%
LuaJit binarytrees 2.74% 9.59%
LuaJit fasta 0.00% 1.44%
PHP spectralnorm 1.04% 8.33%
PHP fannkuchredux 0.00% 28.12%
PHP binarytrees 0.00% 15.38%
PHP fasta 0.91% 7.27%
Ruby2 spectralnorm 0.86% 3.45%
Ruby2 fannkuchredux 1.79% 4.46%
Ruby2 matmul 2.56% 10.26%
Ruby2 binarytrees 0.93% 4.63%
Ruby2 fasta 0.47% 0.62%

4.3. Memory Usage

The final test we performed was aimed at measuring the memory utilization of our
system under normal conditions. We simulated a typical user interaction with software
applications while monitoring the quantity of page snapshots awaiting analysis; we report
our findings in Figure 6:

• From second 0 to second 60, our user was interacting with the web browser, checking
their Facebook notifications, then moving to YouTube to start watching a video—
for the rest of the test, the video kept playing in the background, while the user
continued with their normal/foreground activity;

• From second 60 to 80, the user played a game of Mine Sweeper;
• From second 80 to 100, the user modified and saved a LibreOffice document;
• From second 100 to 130, the user opened Gimp and tested various options.

Figure 6. Memory usage of JITScanner.

It can be observed that the vast majority of page snapshot creations (and their transfer
to the user agent) occur at the beginning of the programs and when programs such as web
browsers start new processes, resulting in extremely small memory usage spikes; after the

Appl. Sci. 2024, 14, 1912 18 of 20

application has started, the number of page transfers decreases sharply, resulting in a near
zero extra memory usage.

Furthermore, it is important to note that the test was conducted with a limited num-
ber of threads on the user side, due to the limitations of the used virtual machine. As a
result, the software did not massively utilize our hash table supporting concurrent ac-
cesses, whose deep exploitation would further reduce memory usage and improve the
overall performance.

5. Usage Models and Potential Extensions

JITScanner presents a flexible and adaptable solution to bolster the security of exe-
cutable pages through its dynamic and just-in-time scanning methodology. The system’s
approach involves conducting security checks on binary code precisely at the instant when
instructions are fetched from the most recent materialized page content. This strategy
serves as an effective measure to mitigate potential risks posed by delayed execution of
malicious code and malware that selectively decrypts malicious stages during runtime.

By focusing on scanning code at the moment of instruction fetching, JITScanner
significantly reduces the window of opportunity for malicious activities to occur undetected.
This proactive scanning mechanism enhances the system’s ability to identify and neutralize
threats that might attempt to evade detection by decrypting or executing malicious code
after being loaded into memory. Overall, JITScanner’s dynamic and real-time security
checks contribute significantly to fortifying the protection of executable pages against
various sophisticated threats and attack vectors.

5.1. Flexibility and Performance Trade-Offs

It is crucial to highlight that JITScanner does not enforce any specific binary code
checking methodology. The current Proof-of-Concept (PoC) implementation showcases the
use of Yara rules for asynchronous checks and the meterpreter shellcode signature search
for synchronous checks merely as examples. However, in principle, JITScanner remains
flexible to integrate any alternative technique capable of operating on a selected section of
code, specifically the executable page accessed during instruction fetching.

In scenarios where a particular analysis method is resource-intensive or time-consuming,
JITScanner has the capability to delegate its operation entirely to an external user-space
thread. This delegation facilitates asynchronous analysis without impeding the execu-
tion of the code under examination. Additionally, for less critical services, JITScanner
allows the bypassing of synchronous checks. This prioritizes application performance and
accommodates potential delays in identifying malicious signatures, especially when the
asynchronous check is activated. This adaptability ensures that JITScanner can accommo-
date various analysis methods while catering to diverse performance and security needs
based on specific application contexts.

5.2. Process Management Strategies

In our Proof-of-Concept (PoC) implementation, we have opted for simplicity by ter-
minating the application upon identifying any security-critical aspect, thereby preventing
potential further harm. However, JITScanner maintains the flexibility to employ various
strategies, including adaptive approaches, based on specific circumstances. For instance,
the system can initiate deeper monitoring only when specific content identified in a ma-
terialized executable page, accessed during instruction fetching, triggers a match against
known malicious signatures.

As an example of adaptive strategies, JITScanner can dynamically activate the log-
ging of system calls for a process that initiates execution using an executable page with
identified malicious content. Additionally, for the same process, certain system calls could
be selectively rejected at the kernel level, particularly considering input parameters (such
as file names) received by those system calls. This approach provides a granular control
mechanism to prevent potentially harmful operations.

Appl. Sci. 2024, 14, 1912 19 of 20

Moreover, as previously mentioned, JITScanner is designed to integrate seamlessly
with external systems. When JITScanner detects malicious signatures actively used during
execution, it can communicate with and trigger other external security systems to establish
additional security barriers for the traced processes. This collaborative functionality enables
JITScanner to synergize with external security measures, enhancing the overall security
posture by creating a multi-layered defense against potential threats.

6. Conclusions

In this paper, we have introduced an innovative approach to dynamic executable
analysis, focusing on the detection of malicious signatures within executable virtual pages.
Our proposed approach is implemented in JITScanner, a Linux-oriented package built as
a Loadable Kernel Module (LKM). JITScanner facilitates the inspection of any executable
page snapshot each time its updated content in RAM is accessed for instruction fetching.
This capability enables the management of pages with Write-Execute (WX) permissions,
even when these pages undergo multiple updates throughout the application’s lifecycle.

JITScanner is designed to support both synchronous and asynchronous page checks,
offering configurability to meet the specific requirements of diverse environments. The com-
bination of synchronous checks within the critical execution path and asynchronous checks
performed outside this critical path ensures flexibility and adaptability in balancing security
and system performance.

Our experimental data demonstrate the efficacy of JITScanner, showcasing its poten-
tial as an effective and scalable method for detecting and analyzing malware. This tool
equips security professionals and researchers with a robust solution to identify malicious
signatures within executable pages, contributing to the enhancement of system security
and threat analysis capabilities.

The ability to dynamically perform comprehensive security checks on executable pages
places JITScanner in a somewhat intermediate position between classical static analysis
and behavioral analysis tools, and we believe it represents an additional tool to include in
the arsenal of Blue teams.

Author Contributions: Conceptualization, P.C., G.B. and F.Q.; methodology, F.Q.; software, P.C.;
validation, P.C. and F.Q.; writing, P.C., G.B. and F.Q. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was partially supported by ECS Rome Technopole CUP N.: E83C22003240001.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/Capo80/Malware_Datasets (accessed on 20 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Matos, D.R.; Pardal, M.L.; Correia, M. Sanare: Pluggable Intrusion Recovery for Web Applications. IEEE Trans. Dependable Secur.

Comput. 2023, 20, 590–605. [CrossRef]
2. Elkhail, A.A.; Lachtar, N.; Ibdah, D.; Aslam, R.; Khan, H.; Bacha, A.; Malik, H. Seamlessly Safeguarding Data Against Ransomware

Attacks. IEEE Trans. Dependable Secur. Comput. 2023, 20, 1–16. [CrossRef]
3. Carnà, S.; Ferracci, S.; Quaglia, F.; Pellegrini, A. Fight Hardware with Hardware: Systemwide Detection and Mitigation of

Side-Channel Attacks Using Performance Counters. ACM Digit. Threat. Res. Pract. 2023, 4, 1–24. [CrossRef]
4. Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques: A survey. ACM Comput.

Surv. (CSUR) 2019, 52, 1–28. [CrossRef]
5. Apostolopoulos, T.; Katos, V.; Choo, K.K.R.; Patsakis, C. Resurrecting anti-virtualization and anti-debugging: Unhooking your

hooks. Future Gener. Comput. Syst. 2021, 116, 393–405. [CrossRef]
6. Yokoyama, A.; Ishii, K.; Tanabe, R.; Papa, Y.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Inoue, D.; Brengel, M.; Backes, M.; et al.

Sandprint: Fingerprinting malware sandboxes to provide intelligence for sandbox evasion. In Proceedings of the Research in
Attacks, Intrusions, and Defenses: 19th International Symposium, RAID 2016, Paris, France, 19–21 September 2016; Proceedings
19; Springer: Berlin/Heidelberg, Germany, 2016; pp. 165–187.

https://github.com/Capo80/Malware_Datasets
http://doi.org/10.1109/TDSC.2021.3139472
http://dx.doi.org/10.1109/TDSC.2022.3214781
http://dx.doi.org/10.1145/3519601
http://dx.doi.org/10.1145/3365001
http://dx.doi.org/10.1016/j.future.2020.11.004

Appl. Sci. 2024, 14, 1912 20 of 20

7. Miramirkhani, N.; Appini, M.P.; Nikiforakis, N.; Polychronakis, M. Spotless sandboxes: Evading malware analysis systems using
wear-and-tear artifacts. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1009–1024.

8. IBM. The JIT Compiler. 1993. Available online: https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=reference-jit-compiler
(accessed on 20 February 2024).

9. Bernardinetti, G.; Cristofaro, D.D.; Bianchi, G. PEzoNG: Advanced Packer For Automated Evasion On Windows. J. Comput. Virol.
Hacking Tech. 2022, 18, 315–331. [CrossRef]

10. Salehi, Z.; Sami, A.; Ghiasi, M. MAAR: Robust features to detect malicious activity based on API calls, their arguments and return
values. Eng. Appl. Artif. Intell. 2017, 59, 93–102. [CrossRef]

11. Landman, T.; Nissim, N. Deep-Hook: A trusted deep learning-based framework for unknown malware detection and classification
in Linux cloud environments. Neural Netw. 2021, 144, 648–685. [CrossRef] [PubMed]

12. Kumara, M.A.; Jaidhar, C.D. Execution Time Measurement of Virtual Machine Volatile Artifacts Analyzers. In Proceedings of the
21st IEEE International Conference on Parallel and Distributed Systems, ICPADS 2015, Melbourne, Australia, 14–17 December
2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 314–319. [CrossRef]

13. Xie, X.; Wang, W. Rootkit detection on virtual machines through deep information extraction at hypervisor-level. In Proceedings
of the 2013 IEEE Conference on Communications and Network Security (CNS), National Harbor, MD, USA, 14–16 October 2013;
pp. 498–503. [CrossRef]

14. ClamAV. 2004–2024. Available online: https://www.clamav.net/ (accessed on 20 February 2024).
15. Koret, J.; Bachaalany, E. The Antivirus Hacker’s Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2015; Chapter 9.
16. Acquasecurity. 2020–2023. Available online: https://aquasecurity.github.io/tracee/v0.6.4/ (accessed on 20 February 2024).
17. Sysdig. The Falco Project. 2016–2023. Available online: https://falco.org/ (accessed on 20 February 2024).
18. Page Table Isolation (PTI). 2017. Available online: https://docs.kernel.org/x86/pti.html (accessed on 20 February 2024).
19. Santoro, A.; Quaglia, F. Transparent optimistic synchronization in the high-level architecture via time-management conversion.

ACM Trans. Model. Comput. Simul. 2012, 22, 21:1–21:26. [CrossRef]
20. Principe, M.; Tocci, T.; di Sanzo, P.; Quaglia, F.; Pellegrini, A. A Distributed Shared Memory Middleware for Speculative Parallel

Discrete Event Simulation. ACM Trans. Model. Comput. Simul. 2020, 30, 11:1–11:26. [CrossRef]
21. Martignoni, L.; Christodorescu, M.; Jha, S. OmniUnpack: Fast, Generic, and Safe Unpacking of Malware. In Proceedings of the

Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007;
pp. 431–441. [CrossRef]

22. Willems, C.; Freiling, F.C.; Holz, T. Using Memory Management to Detect and Extract Illegitimate Code for Malware Analysis. In
Proceedings of the 28th Annual Computer Security Applications Conference ACSAC ’12, Orlando, FL, USA, 3–7 December 2012;
pp. 179–188. [CrossRef]

23. Bulazel, A.; Yener, B. A Survey On Automated Dynamic Malware Analysis Evasion and Counter-Evasion: PC, Mobile, and Web.
In Proceedings of the 1st Reversing and Offensive-oriented Trends Symposium, Vienna, Austria, 16–17 November 2017; pp. 1–21.
[CrossRef]

24. Caporaso, P.; Bianchi, G.; Quaglia, F. JITScanner: Just-in-Time Executable Page Check in the Linux Operating System. In
Proceedings of the 18th International Conference on Availability, Reliability and Security, Benevento, Italy, 29 August–1 September
2023; ARES ’23. [CrossRef]

25. VirusTotal. Yara Rules. 2014–2023. Available online: https://virustotal.github.io/yara/ (accessed on 20 February 2024).
26. Virus_share. 2020. Available online: https://virusshare.com/torrents (accessed on 20 February 2024).
27. Cyberfined. Cryptor ELF Loader. 2018. Available online: https://github.com/cyberfined/cryptor (accessed on 20 February 2024).
28. Bernardinetti, G.; Caporaso, P.; Di Cristofaro, D.; Quaglia, F.; Bianchi, G. PHOENIX: A Cloud-based Framework for Ensemble

Malware Detection. In Proceedings of the 2023 21st Mediterranean Communication and Computer Networking Conference
(MedComNet), Island of Ponza, Italy, 13–15 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 11–14.

29. Kostya. 2023. Available online: https://github.com/kostya/jit-benchmarks (accessed on 20 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=reference-jit-compiler
http://dx.doi.org/10.1007/s11416-022-00417-2
http://dx.doi.org/10.1016/j.engappai.2016.12.016
http://dx.doi.org/10.1016/j.neunet.2021.09.019
http://www.ncbi.nlm.nih.gov/pubmed/34656885
http://dx.doi.org/10.1109/ICPADS.2015.47
http://dx.doi.org/10.1109/CNS.2013.6682767
https://www.clamav.net/
https://aquasecurity.github.io/tracee/v0.6.4/
https://falco.org/
https://docs.kernel.org/x86/pti.html
http://dx.doi.org/10.1145/2379810.2379814
http://dx.doi.org/10.1145/3373335
http://dx.doi.org/10.1109/ACSAC.2007.15
http://dx.doi.org/10.1145/2420950.2420979
http://dx.doi.org/10.1145/3150376.3150378
http://dx.doi.org/10.1145/3600160.3605035
https://virustotal.github.io/yara/
https://virusshare.com/torrents
https://github.com/cyberfined/cryptor
https://github.com/kostya/jit-benchmarks

	Introduction
	Related Work
	The JITScanner System
	Baseline Concepts and Methodology
	Architectural Hints
	Executable-Page Access Interception
	Protection Against DoS

	Assessment
	Effectiveness
	Performance
	Memory Usage

	Usage Models and Potential Extensions
	Flexibility and Performance Trade-Offs
	Process Management Strategies

	Conclusions
	References

