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Abstract: Regular crack inspection plays a significant role in the maintenance of concrete structures.
However, most deep-learning-based methods suffer from the heavy workload of pixel-level labeling
and the poor performance of crack segmentation with the presence of background interferences. To
address these problems, the Deformable Oriented YOLOv4 (DO-YOLOv4) is first developed for crack
detection based on the traditional YOLOv4, in which crack features can be effectively extracted by
deformable convolutional layers, and the crack regions can be tightly enclosed by a series of oriented
bounding boxes. Then, the proposed DO-YOLOv4 is further utilized in combination with the image
processing techniques (IPTs), leading to a novel hybrid approach, termed DO-YOLOv4-IPTs, for crack
segmentation. The experimental results show that, owing to the high precision of DO-YOLOv4 for
crack detection under background noise, the present hybrid approach DO-YOLOv4-IPTs outperforms
the widely used Convolutional Neural Network (CNN)-based crack segmentation methods with less
labeling work and superior segmentation accuracy.

Keywords: computer vision; convolutional neural network; YOLOv4; image processing techniques;
crack detection; crack segmentation

1. Introduction

Cracks are common defects appearing on the surface of concrete structures, which can
visually reflect structural degradation. Therefore, regular crack inspections are essential to
the assessment of structural conditions. However, the traditional method of crack inspec-
tion is time-consuming and labor-intensive. As an alternative, computer vision methods,
including the Image Processing Techniques (IPTs)-based method and Convolutional Neural
Network (CNN)-based method, have proved to be efficient and reliable and have been
widely applied to engineering practice in the past few decades [1,2].

Recently, the CNN-based segmentation method has attracted much attention for its
capability of pixel-level crack segmentation, whose results can be directly used to obtain
the geometric parameters of cracks, such as length, width, and direction. Consequently,
the potential damages and the relevant causes can be inferred from the morphological
characteristics of cracks. Representative research in this field can be found in [3–13]. How-
ever, as a deep learning method, CNN-based segmentation suffers from the preparation of
pixel-level labels, which is known to be rather costly [14].

In view of this, a hybrid approach for crack segmentation has been proposed [15–17],
combining the CNN-based object detection method for locating crack regions and the IPTs-
based segmentation method for detecting crack pixels within those regions. The hybrid
approach can greatly reduce the workload of labeling, owing to the fact that the labeling
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time of box annotations is much less than that of pixel annotations [18]. Moreover, the IPTs-
based segmentation method will, in general, exhibit higher computational speed and lower
resource consumption compared with the CNN-based segmentation method. Therefore,
the hybrid approach can merge the advantages of both CNN-based object detection and
IPTs-based segmentation methods, leading to less labeling cost and higher efficiency for
crack segmentation. However, the performance of the hybrid approach will significantly
deteriorate with the presence of false or missed crack region detection. Therefore, object
detection is expected to locate the crack regions precisely so as to improve the performance
of the hybrid approach effectively.

Actually, the existing object detection methods, e.g., Faster Region-CNN (Faster R-
CNN) [19], Single Shot Multibox Detector (SSD) [20], and You Only Look Once (YOLO) [21,22]
are not that effective in detecting cracks. To tackle this problem, Ma et al. [23] introduced a
feature extraction network, namely Resnet, with up to 101 convolutional layers, to enhance
the performance of the original Faster R-CNN for crack detection. Similarly, Pang et al. [24]
developed an improved Faster R-CNN by incorporating the Inception Resnet v2, which
consists of more convolutional layers. In contrast to introducing complex feature ex-
traction networks, Xu et al. [25] utilized several lightweight Squeeze and Excitation (SE)
blocks to achieve better performance in crack detection with Faster R-CNN. In addition,
Yang et al. [26] introduced receptive field blocks with a few convolutional layers to enhance
the feature extraction capability of the network, leading to an improved SSD with higher ac-
curacy for crack detection. Zhang et al. [27] enhanced the traditional YOLOv4 through the
utilization of convolutional attention blocks, which can identify crack regions from multi-
object images. However, the aforementioned studies involve complex networks for crack
detection, owing to the utilization of deep feature extraction networks or the incorporation
of feature extraction blocks. Moreover, the horizontal bounding boxes adopted in the above
object detection methods fail to tightly locate cracks with various distribution directions,
making network training challenging with the presence of background interferences.

In this study, several deformable convolutional layers [28] are incorporated into the
traditional YOLOv4 to enhance the ability of feature extraction for weakly patterned cracks
while keeping the improved network lightweight without loss of accuracy. Furthermore,
to reduce the influence of background interferences during network training, a series of
oriented bounding boxes is introduced into YOLOv4 to tightly enclose the inclined crack
segments, resulting in higher accuracy for crack detection. Based on the above treatments,
the improved YOLOv4 adopted in the present study is termed Deformable-Oriented-
YOLOv4 (DO-YOLOv4), which will be further used in conjunction with IPTs for crack
segmentation, leading to an improved hybrid approach named as DO-YOLOv4-IPTs.

The remainder of this paper starts with a review of CNN-based object detection and
IPTs-based segmentation methods. Then, the methodology of the improved hybrid ap-
proach is presented. Following that, several comparative experiments are presented, and the
experimental results are discussed. Finally, the contributions of this paper are summarized.

2. Related Work
2.1. CNN-Based Object Detection

Typical CNN-based object detection methods are widely used for recognizing and
locating objects with bounding boxes, which can be classified into two main categories:
the two-stage approach and the one-stage approach. For the two-stage object detection
approach, potential regions that may contain objects are first proposed, and then the
features in these regions will be used for box classification and regression. The R-CNN [29]
is the early version of the two-stage approach, which needs to repeatedly extract features
for different regions, resulting in a high computational cost. To improve the detection
efficiency, the Fast R-CNN [30] and Faster R-CNN were proposed successively. In particular,
the Faster R-CNN is a representative two-stage method for its high detection accuracy.
Cha et al. [31] used Faster R-CNN to detect five types of bridge defects, including concrete
cracks, steel corrosions, delamination, etc., and the experimental results showed the high
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accuracy of Faster R-CNN in defect detection. Deng et al. [32] showed that Faster R-CNN
could effectively locate cracks under complex backgrounds, even with the presence of
handwriting scripts. Li et al. [33] enhanced Faster R-CNN through the feature fusion
technique, which was capable of detecting cracks on the tunnel surface with high precision.
Despite the ideal accuracy of Faster R-CNN, it still has the problem of low detection speed
due to the region proposal step.

As high-speed detection is essential for the development of real-time automatic in-
spection systems, the one-stage approach was proposed by removing the time-consuming
region proposal step. The SSD and YOLO are two well-known one-stage methods that
have been applied to crack detection in bridges [34] and pavements [26,35,36] in recent
years. Generally, the one-stage approach outperforms the two-stage approach in terms
of detection speed but compromises in detection accuracy. To tackle this problem, the
YOLOv3 [37] was proposed by using several effective techniques, such as the short-cut
connection [38], feature pyramid [39], and multi-scale detection [20]. Zhang et al. [40]
showed that YOLOv3 achieved comparable accuracy to Faster R-CNN without sacrific-
ing computational efficiency. To further enhance both detection accuracy and speed, the
YOLOv4 was proposed with the advanced network architecture consisting of Cross Stage
Partial Darknet53 (CSPDarknet53) for feature extraction, Spatial Pyramid Pooling (SPP) and
Path Aggregation Network (PAN) for feature enhancement and YOLO head for bounding
box output [22]. On the basis of YOLOv4, Yu et al. [41] developed a novel YOLOv4-FPM for
real-time and accurate detection of bridge cracks, which combines the focal loss, pruning
algorithm, and multi-scale dataset. Additionally, Zhou et al. [42] enhanced the traditional
YOLOv4 by incorporating EfficientNet and depthwise separable convolution, leading to
YOLOv4-ED with superior performance in terms of both detection accuracy and efficiency.

Although the CNN-based methods have achieved great success in the area of object
detection, there are still two critical issues that need to be addressed when applied to crack
detection, i.e., how to establish a lightweight object detection model and how to reduce the
influence of background interferences on network training for detecting line-shaped cracks
with various propagation directions. These two problems will be solved by introducing
deformable convolutional layers and multiple oriented bounding boxes, which will be
elaborated in Section 3.

2.2. IPTs-Based Segmentation

The IPTs-based segmentation methods, including edge detection, seed-growing, and
thresholding methods, have been extensively studied for crack segmentation [43]. For the
edge detection method, the Sobel operator and Canny operator have been widely used
for crack edge identification based on gradient characteristics. Ayenu-Prah and Attoh-
Okine [44] combined the Bi-dimensional Empirical Mode Decomposition (BEMD) with the
Sobel operator to improve the performance of crack edge detection. Abdel-Qader et al. [45]
compared the performance of the Fast Fourier Transform (FFT), Fast Haar Transform (FHT),
Sobel operator, and Canny operator, and the results showed that FHT is more accurate
and reliable for detecting crack edges. The major problem of the edge detection method
lies in its difficulty in detecting complete crack edges, leading to the low performance of
crack segmentation.

The seed-growing method [46,47] has drawn much attention for its capability of
segmenting cracks at high accuracy, in which, to obtain the complete crack, potential crack
seeds are first assigned, and the seeds are linked together via the path-searching algorithm.
Gavilan et al. [48] employed the multiple directional non-minimum suppression technique
to obtain the crack seeds and then connected these seeds by utilizing the minimum distance
cost map. To select crack seeds effectively, Zou et al. [49] further constructed a crack
probability map by employing the tensor voting technique. Nevertheless, the seed-growing
method needs much calculation for seed selection and path searching, resulting in high
computational costs when applied to engineering practice.
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The thresholding method, in which local or global brightness thresholds are used
to identify crack pixels, is known to be fast and simple. Tang et al. [50] employed the
histogram thresholding method to obtain the approximate locations of cracks and then
refine these locations utilizing the snake model. Following that, Li and Liu [51] proposed a
Neighboring Difference Histogram Model (NDHM) considering the fact that crack pixels
are darker than their surroundings. Oliveira and Correia [52] further proposed a dynamic
thresholding method in consideration of the standard deviation of all pixel intensities and
the entropy of each image block. In addition, the computer vision function library OpenCV
also provided an adaptive thresholding method for segmentation, in which the adaptive
threshold is calculated for each input pixel.

Even though there have been a variety of IPTs-based segmentation methods, the
background interferences contained in crack regions will greatly hinder the performance
of crack segmentation. To solve this problem, a hybrid approach is proposed for crack
segmentation by combining the novel DO-YOLOv4 with the effective adaptive thresholding
method, which will be presented in detail in Section 3.

3. Methodology
3.1. Overview of DO-YOLOv4-IPTs

The overview of the proposed hybrid approach DO-YOLOv4-IPTs for accurate crack
segmentation is illustrated in Figure 1, in which the crack region is first detected by module
DO-YOLOv4, and the crack region is then cropped and processed by module IPTs for crack
segmentation. To obtain a lightweight and accurate object detection model, in DO-YOLOv4
shown in Figure 1, the original CSPDarknet53 is improved by introducing deformable
convolutional layers, and the single horizontal bounding box in the traditional YOLO head
is replaced by multiple oriented bounding boxes tightly enclosing the cracks. Then, the
adaptive thresholding method and connected component analysis are adopted to segment
cracks in IPTs effectively.
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3.2. DO-YOLOv4 for Crack Detection
3.2.1. Deformable Convolutional Layers for Feature Extraction

In CNN, the convolutional filter with a size of N × N is used to extract features through
sampling and weighted summation in the process of scanning the input image. However,
the sampling locations are limited to a N × N grid and may be far from the target object with
the scanning of the convolutional filter, leading to low performance of feature extraction.
This problem can be solved by the deformable convolution [28], in which 2D offsets are
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added to the fixed sampling locations, generating deformable sampling locations with
the capability of adjusting to various objects with different locations, shapes, and scales.
Given an example of a 3 × 3 convolutional filter, the process of generating deformable
sampling locations is illustrated in Figure 2, in which the offset field with 3 × 3 2D offsets
obtained by additional convolutional filters helps distribute the sampling locations in
the vicinity of the crack. The deformable convolution has been successfully utilized to
identify retinal vessels of various shapes [53], locate vehicles in high-resolution remote
sensing images [54], and detect dead fish in aquaculture with a lightweight network [55].
In the present study, it will be further employed to enhance the performance of traditional
YOLOv4 for crack detection.
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The original CSPDarknet53 in YOLOv4 consists of 6 convolutional layers and 5 CSP-
blocks with different numbers of Resblocks, as illustrated in Figure 3. The network depth is
increased mainly by stacking more Resblocks in the last three CSPblocks so as to ensure the
capability of feature extraction. In this study, to obtain the optimal features of cracks with
various directions, the five convolutional layers in the original CSPDarknet53 are replaced
by five deformable convolutional counterparts, as shown in Figure 4. Owing to the use
of deformable sampling locations in the deformable convolutional layers, the numbers of
Resblocks employed in CSPblocks c, d, and e are now reduced from 8, 8, and 4 to 2, 2, and 1,
respectively, leading to a lightweighted feature extraction network without loss of accuracy.
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3.2.2. Multiple Oriented Bounding Boxes for Training

In YOLOv4, the traditional single horizontal bounding box is used for object detection.
However, for the detection of an inclined crack, the horizontal bounding box, as shown
in Figure 5a, will certainly induce much more background interferences, which will have
a large influence on the network training and thus deteriorate the performance of crack
detection. In view of this, in the proposed DO-YOLOv4, a series of oriented bounding
boxes is employed to tightly enclose an inclined crack, as shown in Figure 5b, which will
significantly reduce the influence of background interferences on network training and,
therefore, greatly enhance the accuracy of crack detection. For each oriented bounding box,
it can be located using the parameters (cx, cy, w, h, θ) as shown in Figure 6, in which cx and
cy denote the coordinates of the center point of the bounding box, w and h denote its width
and height, and θ denotes the oriented angle from the x-axis.
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3.3. IPTs for Crack Segmentation

In the present hybrid approach, DO-YOLOv4-IPTs, once the crack region is detected
by DO-YOLOv4, the IPTs based on the adaptive thresholding method and connected
component analysis will be further used for crack segmentation, as shown in Figure 7. To
effectively identify crack pixels for each input pixel, the adaptive thresholding method
will assign an adaptive threshold as Ath = Im − C, in which Im is the mean pixel intensity
of a square region around the input pixel and C is a given constant. When the intensity
of the input pixel is lower than the threshold, it is classified as the crack pixel (black),
and the contrary is classified as the background pixel (white). For example, for the input
pixel A with an intensity of 70, as shown in Figure 7, the adaptive threshold is taken as
Ath = Im − C = 97 − 5 = 92, in which Im = 97 is the mean pixel intensity of a region of
3 × 3 pixels around pixel A and C = 5 is the given constant. As the intensity of pixel A is
smaller than the adaptive threshold, it is identified as a crack pixel. However, for the input
pixel B in Figure 7, it can be identified as a background pixel using the same method.
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To further improve the accuracy of crack segmentation, the connected component anal-
ysis is conducted to eliminate the falsely classified crack pixels. For illustration, the crack
pixels in Figure 8 are first clustered into several connected components, and the respective
areas can be calculated based on the number of crack pixels within each component. Then,
an area threshold ARth can be determined by analyzing the size of each component. The
crack pixels within the components that are smaller than the area threshold ARth can be
regarded as falsely classified crack pixels and thus can be removed, leading to a more
accurate segmentation result.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 16 
 

3.3. IPTs for Crack Segmentation 
In the present hybrid approach, DO-YOLOv4-IPTs, once the crack region is detected 

by DO-YOLOv4, the IPTs based on the adaptive thresholding method and connected com-
ponent analysis will be further used for crack segmentation, as shown in Figure 7. To ef-
fectively identify crack pixels for each input pixel, the adaptive thresholding method will 
assign an adaptive threshold as th mA I C= − , in which mI  is the mean pixel intensity of a 
square region around the input pixel and C  is a given constant. When the intensity of 
the input pixel is lower than the threshold, it is classified as the crack pixel (black), and 
the contrary is classified as the background pixel (white). For example, for the input pixel 
A with an intensity of 70, as shown in Figure 7, the adaptive threshold is taken as 

th m 97 5 92A I C= − = − = , in which m 97I =  is the mean pixel intensity of a region of 3 3×  
pixels around pixel A and 5C =   is the given constant. As the intensity of pixel A is 
smaller than the adaptive threshold, it is identified as a crack pixel. However, for the input 
pixel B in Figure 7, it can be identified as a background pixel using the same method. 

 
Figure 7. The adaptive thresholding method for crack segmentation. 

To further improve the accuracy of crack segmentation, the connected component 
analysis is conducted to eliminate the falsely classified crack pixels. For illustration, the 
crack pixels in Figure 8 are first clustered into several connected components, and the 
respective areas can be calculated based on the number of crack pixels within each com-
ponent. Then, an area threshold thAR  can be determined by analyzing the size of each 
component. The crack pixels within the components that are smaller than the area thresh-
old thAR  can be regarded as falsely classified crack pixels and thus can be removed, lead-
ing to a more accurate segmentation result. 

 
Figure 8. The process of connected component analysis. 

  

Figure 8. The process of connected component analysis.

4. Experiments
4.1. Dataset Construction and Implementation Details

In the present study, 740 crack images with different background characteristics were
selected from a public bridge crack dataset [56], in which 500 and 240 images were chosen
for training and testing of the proposed DO-YOLOv4 for crack detection, respectively. Both
training and testing crack images were labeled with a series of oriented bounding boxes
tightly enclosing the cracks by professional annotation software roLabelImg [57].

The present DO-YOLOv4 was implemented based on the open-source deep learning
library PyTorch [58], in which the optimization algorithm Adam [59], widely used in object
detection, was selected to train DO-YOLOv4. In this study, the training was performed for
100 epochs with a batch size of 2 for 256 × 256 input images. The initial learning rate of
the Adam algorithm was set as 0.001, and the decay rate for the learning rate was taken as
0.9 for each epoch. The Complete Intersection over Union (CIoU) loss function [60] and
smooth L1 loss function [19] were adopted to optimize the parameters (cx, cy, w, h) and θ
of the oriented bounding box, respectively, and the Focal loss function [61] was utilized for
the classification of crack or background contained in the oriented bounding boxes.

On the basis of crack detection by DO-YOLOv4, the IPTs were further employed in
the present hybrid approach for crack segmentation, which was implemented based on
the computer vision library OpenCV [62]. The region size for determining the mean pixel
intensity, as illustrated in Figure 7, was taken to be 5 × 5 to 21 × 21 pixels, depending on
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the width of the crack, and the constant C is taken as 5 for determination of the adaptive
threshold. In addition, if the size of the connected component was found to be smaller than
30 pixels by the connected component analysis, the pixels contained in this component
were classified as false crack pixels and should be removed.

All experiments were implemented on a computer with the Intel® Core™ i5-10400
CPU @ 64-bit 2.90 GHz, 16 GB RAM (Intel, Santa Clara, CA, USA), and NVIDIA GeForce
RTX 3080 GPU (NVIDIA, Santa Clara, CA, USA).

4.2. Evaluation of DO-YOLOv4 for Crack Detection
4.2.1. Evaluation Metrics

As the crack region is detected by DO-YOLOv4 using a series of oriented bounding
boxes, the widely-used Intersection over Union (IoU) metric is now defined based on the
overlap of the whole region Ωg enclosed by all ground truth boxes and the whole region
Ωp enclosed by all predicted boxes, as shown in Figure 9. If the IoU of the ground truth
region Ωg and the predicted region Ωp is larger than or equal to 0.5 [63], the detection
result is regarded as a true result (true positive), and the contrary is identified as a false one
(false positive).
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For the current experiment, a total of 240 crack images with 282 cracks were labeled
for testing, leading to 282 ground truth regions Ωg i (i = 1, 2, · · · , 282). Accordingly, a
total of 282 predicted regions Ωp i (i = 1, 2, · · · , 282) were obtained by DO-YOLOv4. For
the predicted region Ωp i, take its confidence Ci to be the average confidence of different
predicted boxes involved in Ωp i. To consider different confidence thresholds, assume
the i-th confidence threshold Ct i to be Ci (i = 1, 2, · · · , 282). Corresponding to Ct i, the
Precision and Recall metrics, Pi and Ri can be obtained as follows [49]:

Pi =
TPi

TPi + FPi
(i = 1, 2, · · · , 282) (1)

Ri =
TPi

TPi + FNi
(i = 1, 2, · · · , 282) (2)

where TPi and FPi respectively represent the number of true and false detection results
among those predicted regions with confidences larger than or equal to Ct i, and FNi
denotes the number of non-detected ground truth regions, i.e., FNi = 282 − TPi.

Using (Pi, Ri) (i = 1, 2, · · · , 282) calculated above, the Precision-Recall (P-R) curve
can be plotted, and the average precision (AP) metric can then be obtained as the area
under the P-R curve [49], which can be used to measure the capability of crack detection
by DO-YOLOv4.
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4.2.2. Testing Results and Analysis

Several typical testing results of the trained DO-YOLOv4 for crack detection are
depicted in Figure 10, from which it can be observed that various inclined cracks, includ-
ing those with individual directions, with different extension directions, and even with
multiple branches, can be well-located and tightly enclosed by a series of oriented bound-
ing boxes. This indicates that DO-YOLOv4 is capable of adjusting to a wide variety of
cracks with different sizes and directions and multiple branches, even in the presence of
background interferences.
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To better evaluate the performance of DO-YOLOv4, its feature extraction network
and crack detection accuracy were compared with those of the traditional object detection
methods, including Faster R-CNN, SSD, YOLOv3, and YOLOv4. For the feature extraction



Appl. Sci. 2024, 14, 1892 10 of 15

network, the improved CSPDarknet53 is adopted in DO-YOLOv4, in which the original
convolutional layers connecting different CSPblocks are replaced by the deformable con-
volutional layers, and a total of 15 resblocks can be reduced, as shown in Figures 3 and 4.
Therefore, as shown in Table 1, the size of improved CSPDarknet53 accounts for roughly
1/10, 1/2, 1/3, and 1/2 of the size of VGG16, Resnet50, Darknet53, and CSPDarkent53,
respectively, leading to the lightweight feature of DO-YOLOv4. For the detection accuracy,
as multiple oriented bounding boxes are employed for crack detection, the area under the
P-R curve of DO-YOLOv4 is much larger compared to those of the traditional object detec-
tion methods, as depicted in Figure 11. Correspondingly, the AP metric of DO-YOLOv4
calculated using the method stated in Section 4.2.1 reaches up to 80.43%, as also shown
in Table 1, which is 21.54%, 39.39%, 35.27% and 27.33% higher than the AP metrics of
Faster R-CNN, SSD, YOLOv3 and YOLOv4, respectively, indicating the high accuracy
of DO-YOLOv4.

Table 1. Comparison of different object detection methods.

Method Feature Extraction Network (Size) Bounding Box AP (%)

Faster R-CNN VGG16 (527.8 MB) Single, horizontal 58.89
SSD Resnet50 (89.67 MB) Single, horizontal 41.04

YOLOv3 Darknet53 (154.82 MB) Single, horizontal 45.16
YOLOv4 CSPDarknet53 (101.5 MB) Single, horizontal 53.10

DO-YOLOv4 Improved CSPDarknet53 (53.3 MB) Multiple, oriented 80.43
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4.3. Evaluation of DO-YOLOv4-IPTs for Crack Segmentation

Once the cracks are detected by DO-YOLOv4 using multiple oriented bounding boxes,
the IPTs are further employed in the regions enclosed by those boxes for crack segmentation,
by which the crack sizes, e.g., the lengths, widths, and areas, etc., can be quantified on the
pixel level.

To evaluate the performance of DO-YOLOv4-IPTs for crack segmentation, several exist-
ing CNN-based crack segmentation methods, including FCN [9], Unet [10], CrackSegNet [64]
and CrackPix [65], were selected for comparison study, and the results of different methods
are depicted in Figure 12, in which the crack areas are denoted in terms of the numbers of
pixels in the brackets. It can be seen from image (a) and image (b) of Figure 12 that, for the
cases with fewer background interferences, CrackSegNet, CrackPix, and DO-YOLOv4-IPTs
perform well with similar segmentation results, while certain discrepancies can be observed
in the results of FCN and Unet. For the very tiny crack with background interferences
shown in image (c) of Figure 12, all four CNN-based methods fail to identify the crack, while
DO-YOLOv4-IPTs is still capable of segmenting the crack correctly. Furthermore, to inves-
tigate the influence of crack-like interferences, the crack images shown in image (d) and
image (e) of Figure 12 were employed for crack segmentation. It can be observed that the
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CNN-based methods are very sensitive to crack-like interferences, and over-segmentation
results were more or less obtained by the CNN-based methods. Whereas DO-YOLOv4-IPTs
still exhibits ideal performance under crack-like interferences.
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To quantify the performance of different crack segmentation methods, the pixel-level
IoU (PIoU) metric is defined herein as the ratio of intersection to union of the ground-truth
crack area and the segmented crack area in terms of the pixel numbers. The PIoU metrics of
different methods for crack segmentation of the images shown in Figure 12 are presented
in Table 2, from which it can be seen that, in general, DO-YOLOv4-IPTs has higher PIoU
metrics than CNN-based methods, in particular for the case of image (c). The mean PIoU
metrics of different segmentation methods are also presented in Table 2, from which it
can be found that DO-YOLOv4-IPTs has the highest mean PIoU metric, as expected. In
summary, DO-YOLOv4-IPTs can maintain a good standard for crack segmentation even
with the presence of complex background within the crack images, which is mainly due to
the high accuracy of DO-YOLOv4 for crack detection, as discussed in Section 4.2.

Table 2. Comparison of CNN-based methods and DO-YOLOv4-IPTs for crack segmentation.

Method
PIoU (%)

Mean PIoU (%)
Mean Time Cost of

Labeling
(min)Image (a) Image (b) Image (c) Image (d) Image (e)

FCN 39.10 47.43 6.95 52.96 55.73 40.44 5
Unet 54.17 69.63 18.38 65.32 40.35 49.57 5

CrackSegNet 64.53 70.39 21.43 49.98 53.54 51.97 5
CrackPix 68.85 77.54 19.22 67.08 52.67 57.07 5

DO-YOLOv4-IPTs 72.49 75.14 61.42 78.24 70.93 71.64 0.5
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In addition to the ideal accuracy of DO-YOLOv4-IPTs, the mean time cost of labeling
of the present hybrid approach in this experiment accounts for roughly 1/10 of those of
the CNN-based methods, as also shown in Table 2. The reason for this lies in the fact that
only box annotations are required for crack detection in DO-YOLOv4-IPTs, while for the
CNN-based methods, time-consuming pixel annotations are needed for crack segmentation.

5. Conclusions

To avoid the time-consuming process of pixel-level labeling brought by CNN-based
crack segmentation methods and to improve the performance of crack segmentation of
concrete structures with the presence of background interferences, a novel hybrid approach
is presented in this study by combining DO-YOLOv4 for crack detection and IPTs for
crack segmentation. Owing to the use of deformable convolutional layers and multiple
oriented bounding boxes, the proposed DO-YOLOv4 has a strong learning ability for crack
characteristics with its lightweight network and is capable of locating a wide variety of
cracks at high accuracy, even with background noise. Following this, the present hybrid
approach DO-YOLOv4-IPTs can effectively reduce the labeling cost by means of box
annotations and meanwhile improve the performance of crack segmentation, in particular
for the images with very tiny cracks and/or crack-like interferences.

For the experiments conducted in the present study, the AP metric of DO-YOLOv4
goes as high as 80.43% and is 21.54%, 39.39%, 35.27% and 27.33% higher than those of
Faster R-CNN, SSD, YOLOv3 and YOLOv4, respectively, indicating the high accuracy of
DO-YOLOv4 for crack detection, and with that, the hybrid approach DO-YOLOv4-IPTs
turns out to have the highest mean PIoU metric of 71.64% with only 1/10 of the mean time
cost of labeling for the traditional methods, showing the promising performance of crack
segmentation by DO-YOLOv4-IPTs.

Despite the success achieved above, it has been observed that the parameters adopted
in IPTs, namely the mean pixel intensity Im, the constant C, and the area threshold ARth,
need to be determined by manual intervention with prior knowledge. The values of
such parameters will have a certain influence on the crack segmentation results by IPTs
within the bounding boxes. The adaptive optimization of such parameters is crucial to
the automatic crack segmentation under different circumstances, which deserves further
research for the present approach.

Furthermore, the robust learning ability facilitated by the deformable convolution and
the oriented bounding boxes can be further utilized to address object detection challenges
in other fields, such as retinal vessel detection, multi-class concrete defect identification, etc.
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