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Abstract: Land-area classification (LAC) research offers a promising avenue to address the intricacies
of urban planning, agricultural zoning, and environmental monitoring, with a specific focus on
urban areas and their complex land usage patterns. The potential of LAC research is significantly
propelled by advancements in high-resolution satellite imagery and machine learning strategies,
particularly the use of convolutional neural networks (CNNs). Accurate LAC is paramount for
informed urban development and effective land management. Traditional remote-sensing methods
encounter limitations in precisely classifying dynamic and complex urban land areas. Therefore, in
this study, we investigated the application of transfer learning with Inception-v3 and DenseNet121
architectures to establish a reliable LAC system for identifying urban land use classes. Leveraging
transfer learning with these models provided distinct advantages, as it allows the LAC system to
benefit from pre-trained features on large datasets, enhancing model generalization and performance
compared to starting from scratch. Transfer learning also facilitates the effective utilization of limited
labeled data for fine-tuning, making it a valuable strategy for optimizing model accuracy in complex
urban land classification tasks. Moreover, we strategically employ fine-tuned versions of Inception-v3
and DenseNet121 networks, emphasizing the transformative impact of these architectures. The
fine-tuning process enables the model to leverage pre-existing knowledge from extensive datasets,
enhancing its adaptability to the intricacies of LC classification. By aligning with these advanced
techniques, our research not only contributes to the evolution of remote-sensing methodologies
but also underscores the paramount importance of incorporating cutting-edge methodologies, such
as fine-tuning and the use of specific network architectures, in the continual enhancement of LC
classification systems. Through experiments conducted on the UC-Merced_LandUse dataset, we
demonstrate the effectiveness of our approach, achieving remarkable results, including 92% accuracy,
93% recall, 92% precision, and a 92% F1-score. Moreover, employing heatmap analysis further elucidates
the decision-making process of the models, providing insights into the classification mechanism. The
successful application of CNNs in LAC, coupled with heatmap analysis, opens promising avenues
for enhanced urban planning, agricultural zoning, and environmental monitoring through more
accurate and automated land-area classification.

Keywords: deep learning; transfer learning; land-area classification; CNN

1. Introduction

The utilization of remote-sensing (RS) imagery for land-cover (LC) classification is of
paramount importance across various domains, encompassing environmental protection,
agriculture and urban planning, and land resource management [1]. Recent accessibility to
high-resolution remote-sensing (HRRS) images and the ability to gather multi-temporal
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and multi-source RS images from diverse geographic regions [2] present new opportunities
for multiple-time-scale LC classification. Nevertheless, the complex features visible in
HRRS images, such as geometrical and object structures, introduce new challenges for
classification [3]. Variability in photographic distortions, scale variations, and illumination
changes in RS images make it difficult to apply existing models to diverse HRRS images
effectively [4]. Furthermore, spectral and spectral–spatial (SS) features have traditionally
been employed in the literature to interpret RS images for land-cover classification [5].
However, these features struggle to capture the contextual information in HRRS images
due to increased spatial resolution [6]. To address these challenges, deep CNNs have
gained attention for their ability to comprehend HRRS images [7] and represent semantic
and high-level image properties [8,9], such as scene classification [10], object detection [11],
image retrieval [12], as well as LC classification [13]. However, two significant issues arise
when applying deep models to LC classification with multi-source HRRS data: insufficient
transferability and the lack of an extensive, well-annotated land-cover dataset. The chal-
lenges in applying land-cover classification with multi-source images include issues of
insufficient transferability, where models struggle to adapt effectively to diverse dataset
images, and the absence of extensive well-annotated land-cover dataset images.

To address these issues, therefore, this study introduces an efficient and robust LAC
system that harnesses fine-tuned versions of Inception-v3 and DenseNet networks, leverag-
ing transfer learning. The primary objectives include enhancing LC classification perfor-
mance through the contextual understanding of deep CNNs and conducting a comparative
analysis to assess the system’s advancements and competitive edge over existing models
in the field of satellite sensing imagery interpretation. This approach addresses the limita-
tions posed by the diversity and complexity of HRRS images, ultimately contributing to
improved land-cover classification in remote-sensing applications. Various CNN models,
including Inception-v [14], DenseNet201 [8], and ResNet-50 [15], have been trained on a
labeled dataset.

Recent research highlights innovative applications of deep learning, especially (CNNs)
in the unmanned aerial vehicle (UAV) domain. For instance, Chen, Wang, and Zhang’s
work [16] combines CNNs and cooperative spectrum detection for unauthorized drone
identification. Haq et al. [17] employ a stacked auto-encoder deep learning approach to
achieve accurate forest area assessment using UAV-captured images applicable to forest
management. Kawaguchi, Nakamura, and Hadama et al.’s research [18] leverages CNNs to
identify diverse drone types, achieving over 90% accuracy in recognition and showcasing
the prowess of CNNs in drone identification across various models and shapes, including
radio-controlled flying objects [19].

Recent studies have showcased the diverse applications of deep learning in the fields
of image classification and object detection. Chehreh, Moutinho, and Viegas [20] introduced
a classification method for rotary-wing unmanned aerial vehicles and birds, enhancing
image classification accuracy notably with the CDNTS layer. Youme and colleagues [21]
presented an automated approach for detecting hidden waste dumps in Senegal, employing
single-shot detector techniques for feature extraction, though facing challenges in regions
with imprecise ground truths. Genze and team [22] explored deep learning’s generalization
capabilities for early weed detection in sorghum fields, creating expert-curated datasets
and achieving strong model generalization with an F1-score exceeding 89% on testing
data, even in challenging conditions, including degraded captures with motion blur and
occluded plants, surpassing existing research.

These research studies highlight the application of deep learning and machine learn-
ing techniques for various tasks in the context of unmanned aerial vehicles (UAVs) and
remote sensing. Shahi and colleagues [23] focus on the identification of crop diseases using
UAV-based remote sensing, emphasizing the role of image processing methods, assessing
the effectiveness of ML and DL techniques, and exploring future research directions in
UAV-based crop disease detection and classification [24,25]. Behera, Bakshi, and Sa [26,27]
present lightweight CNN architectures for real-time segmentation and object extraction
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on IoT edge devices, achieving high performance on datasets suitable for urban and agri-
cultural mapping, as well as road damage detection using YOLO algorithms. Shanthi and
team [28] discuss the use of face identification algorithms in drones for security, identity
verification, disaster relief, and more, aiming to aid technologists in developing hybrid al-
gorithms for real-time face recognition across diverse scenarios. These studies demonstrate
the versatility of deep learning and UAV-based applications in diverse domains.

Aydin and Singha [29] presented YOLOv5, a one-shot detector trained with augmented
data and pre-trained weights, achieving a 90.40% mean average precision. This represents
a significant 21.57% improvement over the previous YOLOv4 model when tested on the
same dataset. Yao et al. [30] investigated split learning in IoD networks via simulations.
Findings reveal that separation levels have minimal impact on accuracy, increasing client-
side layers extends training time, communication overhead is a major bottleneck, client
numbers insignificantly affect accuracy, and training time slightly rises with more clients.

The methods described in the literature offer advancements in deep learning for drone
image classification, but they are subject to various limitations. These include challenges
related to data diversity, labeling accuracy, real-time processing, adverse conditions, privacy,
benchmarking against existing methods, real-world deployment, and model interpretability.
To mitigate these limitations, we reduced bias and domain gap through fine-tuning and
domain adaptation techniques, considering a more diverse and representative target dataset,
and developing model interpretability tools specific to the transfer learning context. The
main findings of this study are as follows:

• The primary objective of this study is the development of a highly efficient and reli-
able land-cover (LC) classification system. To achieve this, we strategically employ
fine-tuned versions of Inception-v3 and DenseNet networks, emphasizing the trans-
formative impact of transfer learning. The fine-tuning process enables the model to
leverage pre-existing knowledge from extensive datasets, enhancing its adaptability
to the intricacies of LC classification. This approach increases both the efficiency
and reliability of the model, underscoring the vital role of transfer learning method-
ologies in optimizing the performance of our LC classification system. By aligning
with these advanced techniques, our research not only contributes to the evolution
of remote-sensing methodologies but also underscores the paramount importance
of incorporating cutting-edge methodologies, such as fine-tuning, in the continual
enhancement of LC classification systems.

• By enhancing classification accuracy through the precise characterization of contextual
information in high-resolution remote-sensing (HRRS) images, we demonstrate the
significance of leveraging the powerful capabilities inherent in deep convolutional
neural networks (CNNs). The fine-tuned networks play a crucial role in capturing
intricate features, contributing to the system’s heightened accuracy and reliability in
LC classification.

• A detailed comparative analysis is conducted to evaluate our land-cover classifica-
tion system against state-of-the-art models within the field of satellite sensing im-
agery interpretation. This comprehensive assessment scrutinizes the system’s per-
formance, accuracy, and efficiency in comparison to the most advanced solutions,
thereby highlighting its significant advancements and competitive edge within the
domain of land-cover classification. Notably, the fine-tuned models achieved baseline
accuracy comparatively.

The structure of the remaining sections of this work is as follows. The land-area
classification system’s comprehensive methodology is explained in Section 3. Section 4
reports experimental results and comparative analysis with baselines, and finally, Section 5
concludes the article.

2. Proposed Methodology

The proposed methodology for land-cover classification is discussed in this section,
which mainly includes data preprocessing and model training and evaluations, as shown
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in Figure 1. In this study, we use different deep learning models for fine-tuning and transfer
learning, optimizing critical hyper-parameters like batch size, activation function, and
learning rate. The utilization of optimizers assists in adjusting the learning rate within
the neural models to enhance performance. All these steps are briefly explained in the
subsequent sections.

Figure 1. The high-level diagram of the proposed work for LAC.

2.1. Preprocessing

In the initial phase of the research study, data is collected, typically captured with
mobile device cameras or other vision sensors that record information crucial to influ-
encing the output of subsequent deep learning (DL) and machine learning (ML) models.
Following this data collection, the preprocessing stage becomes paramount, involving
various techniques such as resizing, noise reduction, and data augmentation to enhance
the quality of images or videos. As a foundational step in our investigation, we employ
data normalization, a process illustrated mathematically in Equation (1), where each pixel
value is standardized to the range of [−1, 1].

Ri =
I − Imin

Imax − Imin
(1)

In this context, the representation of the initial data is denoted as I, where Imin and
Imax represent the minimum and maximum values within the input data, respectively. To
standardize the data input, “Ri” is introduced. Before the training, all images underwent
resizing to dimensions of 224 × 224 × 3. Additionally, various data transformations were
applied to the input images, encompassing operations such as flipping, 15◦ rotation, and
0.2 zooming. Introducing data augmentation, as depicted in Figure 2, played a pivotal
role in enhancing dataset variability, effectively mitigating overfitting and bolstering the
model’s accuracy and generalization capabilities.

2.2. Convolutional Neural Networks

The convolutional neural network (CNN) was introduced by [31] in the late 1980s and
contains three main key layers: convolution, pooling, and fully connected. Convolutional
layers are used to extract features from input data by placing the kernel and the input image
through a convolutional process to extract features. The feature map is created by sliding a
small 5 × 5 × 3 rectangular matrices over the image, which is known as the kernel. The
pooling layer is used to condense the feature size, which is divided into average, maximum,
and minimum pooling. In the field of computer vision (CV), CNN has recently achieved



Appl. Sci. 2024, 14, 1844 5 of 15

higher performance in comparison to conventional machine learning methods. Several
CNN-based architectures are developed for image classification, and each has its own types
of pros and cons. For instance, some of these models are effective but computationally
expensive, while some are lightweight and resource friendly. After a thorough analysis of
recent models, we choose Inception-v3 and DenseNet121 for LAC. These models have a
balance between effectiveness and computational efficiency, which makes them suitable for
accurate and concise land-cover classification. The proposed diagram of fully connected
layers is given in Figure 3.

Figure 2. Data augmentation techniques, such as flipping, rotation, zooming, and cropping, employed
to augment the training dataset and improve the model performance.

Figure 3. Proposed diagram of fully connected layers.

2.3. Inception-V3 Model

An upgraded variety of the Inception-v1 [31] model is called the Inception-v3 model [31].
For greater model adaptability, the network is optimized in several ways by the Inception-v3
model. Its network is larger than that of the Inception-v1 and v2 models. It is a low-
configuration computer that was used to train a deep CNN model. Training can be difficult
and time-consuming; it may even take several days at times. This issue is resolved by transfer
learning, which preserves the model’s last layer for application to new categories. The 48
layers of the Inception-V3 model comprise newly added layers based on our dataset classes,
and all the model’s upper layers are frozen, as shown in Figure 4.
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Figure 4. Architecture of Inception-V3 model with proposed fully connected layers.

Moreover, complex DL problems benefit from the use of a model such as Inception-V3.
Other Deep learning models employ a basic stack of convolutional layers, pooling layers,
and fully connected layers, like Vgg16, Vgg19, and AlexNet, among others. The Inception-
V3 models apply 1 × 1 convolutions, also referred to as point-wise convolutions, and then
apply convolutional layers with varying kernel sizes simultaneously. This results in an
increased number of hidden layers. This means that Inception-V3 models perform better
for complex tasks or extracting features. For more complicated issues, Inception is utilized
because it enables it to learn more complex features.

2.4. DenseNet121 Model

A deep learning architecture called DenseNet121 [32] was revealed in 2017 for use
in computer vision and image categorization applications. It is distinguished by its deep
connectivity, in which every layer has a direct connection to every layer that comes before
it and after it, encouraging feature reuse and gradient flow across the network. It employs
bottleneck and transition layers to regulate the number of parameters and geographical
dimensions to manage model complexity. This architecture, shown in Figure 5, has gained
popularity in the computer vision field due to its efficiency and leading-edge performance,
which address important issues with deep neural networks and produce amazing results
in image classification applications.

Figure 5. The architecture of DenseNet121 model with proposed fully connected layers.

2.5. ResNet-50 Model

A deep neural network architecture called ResNet-50 [33], or residual network, was
created to overcome the difficulties involved in training extremely deep networks; the
architecture is shown in Figure 6. Since its introduction in a 2015 study, it has developed into
a key model in the domains of computer vision and deep learning. ResNet-50 uses residual
blocks with skip connections to achieve both performance and depth. The vanishing
gradient issue, which frequently impedes training in deep networks, is lessened by these
connections, which allow the gradient to move through the network more efficiently.
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ResNet-50 models are, therefore, capable of becoming extremely deep, with hundreds of
layers, which enhances their accuracy and efficiency for many uses for computer vision,
such as image classification, object identification, and segmentation.

Figure 6. The architecture of ResNet-50 model with proposed fully connected layers.

ResNet-50 topologies are available at different depths, with the total number of layers
indicated by numbers such as ResNet-18, ResNet-50, and so forth. Because of their novel
approach to residual connections, which has been widely adopted and expanded to other
domains outside image recognition, these models have had a significant influence on the
evolution of deep neural networks. The success of deep learning has been greatly aided
by the ResNet-50 concept, which has made it possible to create deep and highly accurate
models that remain at the front of ML and AI research.

2.6. Fine-Tuning and Transfer Learning

This section outlines the steps involved in training and refining our models. Initially,
pre-trained weights from the extensive ImageNet dataset, comprising 14 million images
categorized into a thousand classes [34], are utilized. The Keras library facilitates the impor-
tation of these weights, accelerating convergence through the incorporation of previously
learned features and improving image recognition performance. The transfer learning
approach leverages the benefits of ImageNet weights, specifically tailored for image classi-
fication. This method expedites tasks by requiring less effort compared to the utilization of
randomly initialized weights. Fine-tuning is then performed on the UCMerced_LandUse
dataset images, focusing on adjusting the final layers of the base model while freezing all
other layers to retain the initial UCMerced_LandUse dataset weights. This strategic ap-
proach optimizes training by preserving the valuable insights gained from the pre-trained
ImageNet weights in the initial layers. During this process, all other layers are frozen
to maintain the weights obtained from the initial training on the UCMerced_LandUse
dataset [35]. Upon combining the proposed layers and classifier, the entire network is
released once the final layers have been trained on the UCMerced_LandUse dataset. Evalu-
ation of the model accuracy is then conducted using test data, incorporating weights from
both the ImageNet dataset and the UCMerced_LandUse images. All DL models undergo
fine-tuning with diverse hyper-parameters outlined in Table 1. Image input dimensions
are 224 × 224 × 3, utilizing a batch size of 32. We use an SGD optimizer and employ
categorical cross-entropy (CC) as the loss function. The SoftMax activation function is
applied to the output layer, ensuring the robustness and effectiveness of the land-cover
classification model.
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Table 1. Proposed model hyper-parameters.

Performance
Measure Inception-v3 DenseNet-121 ResNet-50

Image dimensions 224 × 224 224 × 224 224 × 224

Optimizers SGD SGD SGD

Batch size 32 32 32

No. of epochs 50 50 50

Loss CC CC CC

Activation function SoftMax SoftMax SoftMax

3. Experimental Results and Discussion
3.1. Dataset

The “UCMerced_LandUse Dataset” is widely used in the field of computer vision
and machine learning for land use classification tasks. This dataset was created by the
University of California, Merced, and it consists of high-resolution aerial images of various
land use and LC classes, as given in Table 2. It is commonly used for tasks such as image
classification, object recognition, and segmentation. Researchers and practitioners often
use the UCMerced_LandUse Dataset for training and evaluating ML algorithms, especially
for image classification tasks related to land use and LC mapping. It provides a valuable
resource for testing the effectiveness of different models and techniques in remote-sensing
and computer vision applications.

Table 2. Detail distribution of dataset.

S. No Class No. of Images Train Images Test Images

1 Agricultural 1000 800 200

2 Airplane 1000 800 200

3 Baseball
diamond 1000 800 200

4 Beach 1000 800 200

5 Buildings 1000 800 200

6 Chaparral 1000 800 200

7 Forest 1000 800 200

8 Freeway 1000 800 200

9 Golf course 1000 800 200

10 Harbor 1000 800 200

11 Intersection 1000 800 200

12 Mobile home
park 1000 800 200

13 Overpass 1000 800 200

14 Parking lot 1000 800 200

15 River 1000 800 200

16 Runway 1000 800 200

17 Storage tanks 1000 800 200

18 Tennis court 1000 800 200

Total Images 18,000 14,400 3600
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3.2. Evaluation Parameters

The evaluation parameters used in this study are F1-score, accuracy, precision, and recall.
In comparison to all observations, the ratio of correctly predicted observations is known as
accuracy. Accuracy is assessed using Equation (2), wherein the terms false positive (FP),
false negative (FN), true positive (TP), and true negative (TN) are utilized.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision is the ratio of correctly predicted positive observations to all predicted positive
observations, as shown in Equation (3).

Precision =
TP

TP + TN
(3)

The ratio of all actual class observations to all correctly predicted positive observations
is known as recall, as shown in Equation (4).

Recall =
TF

TP + FN
(4)

F1-score is the precision and recall weighted average. It is computed using Equation (5).

F1 − score = 2 · (Precision × Recall)
Precision + Reall

(5)

The hyper-parameters configuration is used to fine-tune both CNN networks. All the
models are trained with a 0.0001 learning rate and 32-batch size using the Adam optimizer.
Using the UCMerced_LandUse dataset, we fine-tune the inception-V3, DenseNet121, and
ResNet-50 models by freezing all top layers and adding new layers according to the number
of classes in the dataset classes. Each model is trained by using Python 3.8, TensorFlow
2.13.0, sklearn 1.0, matplotlib 3.7.3, and NumPy 1.24.3 libraries and an Intel(R) Core (TM)
i7-8700 CPU with RAM of 16 GB, Seoul, South Korea.

3.3. Experimental Results

Evaluations and experiments are conducted on three pre-trained models: DenseNet121,
Inception-v3, and ResNet-50. Assessment metrics encompass F1-score, recall, accuracy,
and precision. The training process involves fifty epochs for each of the Inception-v3,
DenseNet121, and ResNet-50 models. Upon completion of the training, the testing accu-
racies for the three models are as follows: 95% for Inception-v3, 94% for DenseNet121,
and 93% for ResNet-50. Additionally, the validation accuracies are reported as 92%, 91%,
and 91% for Inception-v3, DenseNet121, and ResNet-50, respectively. Table 3 shows the
precision, recall and F1-Score for each model. These results provide insights into the
model performance, indicating their ability to generalize well to unseen data. Furthermore,
Figure 6 displays the model’s static visual results. Actual labels are displayed in the first
row, followed by the predicted labels of the Inception-v3 model in the second row, the
DenseNet121 model predicted labels in the third row, and the ResNet-50 model predicted
labels in the last row. The correct predicted labels are displayed as black, while the incor-
rect predicted labels are given as red as shown in Figure 7. We can see from Table 2 that
Inception-V3 performs better than DenseNet121 and ResNet-50. Additionally, it demon-
strates how the DenseNet121 and ResNet-50 models misunderstand certain labels, such as
“river”, “runway”, and “airplane”. Additionally, the confusion matrices and heatmaps for
the models and classes are displayed in Figures 8 and 9, respectively.
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Table 3. Average precision, recall, and F1-score of the three models.

S. No Model Precision % Recall % F1-Score

1 Inception-V3 93 92 92

2 DensNet201 91 90 89

3 ResNet-50 91 90 88

Figure 7. Visual results of the three models. Red color are used to represent the incorrect prediction
where models are confused but inception model is not confused and give us correct prediction of
all classes.
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Figure 8. Confusion matrices of all three models: Inception-V3, DenseNet121, and ResNet-50.

Figure 9. Heatmap analysis of all classes.

Finally, Table 2 displays the F1-score, precision, and recall for all Inception-v3, Den-
sNet121, and ResNet-50 models in the land areas. This illustrates that DenseNet121 and
ResNet-50 are not as effective as Inception-V3 because some classes’ accuracies are lower
comparatively.
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3.4. Comparison with Contemporary Techniques

The comparative analysis presented in Table 4 assesses the performance of the pro-
posed model against modern techniques, employing various deep learning models. The
first model, EfficientNet [36], demonstrates an accuracy of 83%, a precision of 83%, a recall
of 71%, and an F1-score of 77%. Moving on to the second model, CNN [37] achieved an
accuracy of 89%, a precision of 87%, a recall of 84%, and an F1-score of 85%. This model
outperforms EfficientNet in terms of accuracy and F1-score. The third model, ResNet34 [38],
displays an accuracy of 70%, a precision of 70%, a recall of 70%, and an F1-score of 71%. While
this model achieves a balanced performance, it falls behind in accuracy compared to the
other models. However, the Inception-V3 model surpasses all others with an accuracy
of 92%, a precision of 93%, a recall of 92%, and an F1-score of 92%. This indicates superior
performance compared to the aforementioned models. The DenseNet121 model in the
proposed system achieves an accuracy of 91%, a precision of 91%, a recall of 90%, and an
F1-score of 89%. Although slightly lower than Inception-V3, it outperforms EfficientNet,
CNN, and ResNet34. Lastly, the ResNet-50 model in the proposed system yields an accuracy
of 91%, a precision of 90% [31], a recall of 90%, and an F1-score of 88%. It maintains competi-
tive performance, particularly in accuracy and F1-score, when compared to other models.
In short, the proposed Inception-V3 model stands out as an effective model in terms of
accuracy and F1-score, showcasing the efficacy of the suggested system in surpassing the
state-of-the-art techniques.

Table 4. Comparative analysis of the proposed system with SOTA methods.

Test Models Total No. of Classes Model Accuracy % Precision % Recall % F1-Score %

EfficientNet [34] - 83 83 71 77

CNN [35] 04 89 87 84 85

ResNet34 [36] 10 70 70 70 71

Proposed Inception-V3 18 92 93 92 92

Proposed
DenseNet121 18 91 91 90 89

Proposed ResNet-50 18 91 90 90 88

4. Ablation Study

In a comparison of the AID (Aerial Image Dataset) and UC Merced datasets, UC
Merced comes out on top for certain applications. UC Merced provides a good balance
of manageable dataset size and high-resolution aerial images, making it suitable for tasks
like land-use classification. The dataset’s moderate scale allows for efficient model training
and testing without compromising scene diversity. UC Merced provides a comprehensive
representation for training robust models by covering a wide range of land-use categories.
The higher resolution of the dataset aids in the detailed analysis of aerial imagery, which is
useful for tasks requiring precision in land-area classification. While both the AID and UC
Merced datasets are useful in the field of aerial image analysis, the UC Merced dataset’s
balance of dataset size, diversity, and resolution makes it a better choice for applications that
require both efficiency and detailed scene understanding. Herein, additional experiments
are performed with different models to fully assess their generalization abilities. The
detailed result of each model is given in Table 5.
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Table 5. Comparative analysis of datasets.

Dataset UC Merced AID

No. of Classes 18 30

No. of images 18,000 9000

Inception V3 Acc 92% 86%

DenseNet121 91% 89%

Res-Net50 91% 85%

5. Conclusions

In this study, we introduced a robust approach to land-area scene classification (LASC)
through the implementation of three distinct deep learning (DL) models—Inception-v3,
DenseNet121, and ResNet-50—leveraging the power of transfer learning. Our LASC system
demonstrates impressive accuracy rates of 92%, 91%, and 91% in classifying both static and
real-time land-area scenes from images. While these results show promise, there remains
potential for further enhancement. Our system has the capacity to evolve, extending its
capabilities to classify multiple land-area scene categories in real time. Such advancements
could significantly contribute to improved urban planning and land management across
both urban and rural areas, benefiting a diverse range of stakeholders. Upon analyzing our
models’ performance metrics, including recall, accuracy, precision, and F1-score, Inception-v3
emerges as the top performer, outclassing DenseNet121 and ResNet-50. Inception-v3 excels
in accurately classifying land-area scene poses in images, achieving remarkable scores of
92% accuracy, 93% precision, 92% recall, and 92% F1-score. DenseNet121 follows closely with
scores of 91%, 91%, 90%, and 89%, while the ResNet-50 model achieves scores of 91%, 91%,
90%, and 88%, respectively.

Our future endeavors with the LASC system will focus on the development of robotics
and smartphone applications. Additionally, we aim to enhance the system’s accuracy by
creating an improved CNN incorporating advanced data fusion techniques. This strategic
approach is expected to result in even more precise land-area scene classification, ultimately
facilitating more informed decision-making in the realms of land management and urban
planning. The widespread applications of these advancements underscore the potential
benefits for various stakeholders in diverse domains.
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