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Abstract: In Fourier transform spectroscopy (FTS), the conventional Mertz method is commonly
used to correct phase errors of recovered spectra, but it performs poorly in correcting nonlinear
phase errors. This paper proposes a phase correlation method–all-pass filter (PCM-APF) model to
correct phase errors. In this model, the proposed improved phase correlation method can correct
linear phase errors, and all-pass filters are applied to correct the residual nonlinear phase errors. The
optimization algorithm for the digital all-pass filters employs an improved algorithm which combines
the subtraction-average-based optimizer (SABO) and the golden sine algorithm (Gold-SA). The
proposed PCM-APF model demonstrates high correction precision, and the optimization algorithm
for the filters converges faster than traditional intelligent optimization algorithms.

Keywords: Fourier transform spectroscopy; phase correction; phase correlation method; all-pass
filters; meta-heuristic algorithm

1. Introduction

In recent years, Fourier transform spectroscopy (FTS) has undergone significant devel-
opment. It has been widely applied in various disciplines and fields such as analytical chem-
istry [1], hyperspectral imaging [2], frequency comb spectroscopy [3], earth sciences [4],
ultrafast spectrometry [5], and so on. Traditional FTS provides interference data of spectra,
requiring further processing of interferograms to obtain the desired spectral information.
This includes operations such as apodization, phase correction, and fast Fourier transform,
among others.

In FTS, phase correction is crucial for eliminating phase errors in the recovered spec-
tra. Several methods, including the double-sided interferogram method, the convolution
method, and the Mertz method [6–8], can be employed. The double-sided interferogram
method calculates all data points in a double-sided interferogram, completely eliminating
phase errors. However, it is highly sensitive to noise. Therefore, in the recovery of spectra,
single-sided interferogram methods are commonly employed. Among them, the Mertz
method and the convolution method are the most commonly used. The Mertz method is
easy to compute, but it may not be as effective in correcting nonlinear phase errors. On the
other hand, the convolution method can correct nonlinear phase errors, but when the phase
error is substantial it may require multiple convolution operations, resulting in increased
computational complexity and instability [9,10].

Using the phase correlation method to correct phase errors in FTS was first proposed
by Wang in 2011 [11]. This method can reach high precision in linear phase correction. The
phase correlation method involves time delay calculation of two channels of interferograms
to correct linear phase errors.
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A phase correction method based on all-pass filters was initially proposed by
Furstenberg in 2005 [12] and improved by Li in 2015 [13], who introduced an all-pass
filter–delayer–phaser (ADP) model for phase correction. The all-pass filter has a
magnitude–frequency response of 1 across the entire frequency range. Therefore, it is
used as a filter to correct residual phase errors in the interferogram. In this way, the
amplitude of the output spectra remains stable, and only the phase is modified [12–14].

This paper presents a practical phase correction model called the PCM-APF model.
The proposed model shows high correction accuracy and efficiency, combining the phase
correlation method with all-pass filters. For filter optimization algorithm, we adopt an
improved gold sine-subtraction average-based optimizer (GS-SABO) algorithm, combining
the subtraction average-based optimizer (SABO) and the golden sine algorithm (Gold-SA)
to optimize the parameter settings of the filters [15,16]. The PCM-APF model uses an
improved phase correlation method to correct linear phase errors, while all-pass filters are
used to correct the remaining phase errors.

2. Phase Correction by the Mertz Method

Figure 1 depicts a common imaging FTS system based on a Michelson interferometer.
In FTS, the incident beam undergoes modulation within the interferometer, generating two
outgoing beams with varying optical path differences. These two beams interfere on the
image plane, creating interferograms. The collected interferogram and the spectra of the
incident beam are related through Fourier transform:

B(ν) =
∫ +∞

−∞
I(∆)e−j2πν∆d∆ (1)

B(ν) is the recovered spectrum from interferogram I(∆), ν is the wavenumber, and ∆
is the optical path difference.

Figure 1. An imaging FTS system based on a Michelson interferometer.

In the Mertz method, small double-sided interferograms near the zero-path difference
(ZPD) point, with high interference signal intensity and SNR (signal-to-noise ratio), are
usually used to calculate the error phase:
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φ = arctan
Im(ν)

Re(ν)
(2)

Im (ν) and Re (ν) are the imaginary and real parts of the spectra recovered by a small
double-sided interferogram.

In this method, we assume that the error phase is a slowly varying function with
respect to the wavenumber. Therefore, the small double-sided interferograms can be
interpolated to the desired number of data points, which is used to guide the phase
correction. The correction formula is as follows:

S(ν) = R(ν) cos(φ(ν)) + I(ν) sin(φ(ν)) (3)

R(ν) and I(ν) represent the real and imaginary parts of the original recovered spec-
tra, respectively. φ(ν) represents the error phase obtained from the small double-sided
interferograms and S(ν) represents the spectra corrected by the Mertz method [9].

In sampling of interferograms, it is challenging to precisely sample the ZPD position. If
the sampled ZPD point is sampled after the real ZPD position with an offset of ε, according
to the displacement property of the Fourier transform, the corresponding phase error is
φ(ν) = εν. However, from the study of Liu [17] we know that the collected interferograms
are always finite, i.e., they cannot be infinitely long, and so, do not meet the ideal time-shift
property of the Fourier transform, so the phase error caused by the zero-point drift will also
have nonlinear components. At the same time, the general Fourier transform spectrometer
system can also produce spectra with a nonlinear phase error due to the instrument line
shape (ILS) of the spectrometer, caused by optical aberrations [18].

3. Phase Correlation Method

The proposed PCM-APF model first requires the correction of linear phase errors,
primarily caused by the ZPD offset. In some scholars’ research, to determine the linear
phase component, they often perform linear fitting of the phase curve. In [19], polynomial
fitting is used for phase correction. However, it must be considered that the phase error
curve calculated by the inverse tangent function may jump if there is nonlinear phase
error [20]. It is obvious that we have to unwrap the phase error curve before we can use the
linear fit in this case, which increases the uncertainty and potential computation in practice;
so we use the phase correlation method.

The phase correlation method is one of the most commonly used techniques for signal
time-delay estimation. By calculating the cross-correlation function of two signals and
identifying the location of the maximum value of the function, we can find the time delay
which is equal to the distance in the x-axis between the maximum value point and the zero
point [21].

In the PCM method proposed in [11], a Hanning window is applied to the interfer-
ogram initially. Subsequently, data points of equal length on both sides of the sampled
point with maximum interference intensity are taken as two signals. The phase correlation
method is then employed to calculate the time delay between these two signals.

Differing from the PCM method, the PCM-APF model in this paper modifies the
phase correlation method used. It is essential to understand that the application of the
Hanning window in the PCM method serves a purpose distinct from apodization in FTS
data processing. Its function is more akin to the general phase correlation method [21,22],
aiming to enhance the SNR of the selected signals. Moreover, due to the inherent asymmetry
of the interferogram caused by the error phase, applying a Hanning window may lead to
increased errors in time-delay estimation.

In the PCM-APF model proposed in this paper, we employ a new approach to selecting
two signals. Let us assume that the collected interferogram only has ZPD-point drift,
meaning it contains only linear phase error. Just like the Mertz method, we pre-define the
number of data points for two small double-sided interferograms. Subsequently, we extract
two small double-sided interferograms near the point of maximum interference intensity
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(sampled ZPD point). As illustrated in Figure 2, A and B represent the two endpoints of the
larger double-sided interferogram, and similarly, C and D represent the two endpoints of
the smaller double-sided interferogram. Then, we select the interference signal from point
A to D as Signal1, and similarly, choose the interference signal from point B to C as Signal2.
Additionally, since the selected signals are all in regions of the original interferogram with
higher SNR, there is no need to apply a Hanning window to the selected signals.

Figure 2. A schematic representation of the selection of two signals in PCM-APF model.

Suppose the distance of the real ZPD position of the interferogram from the sampled
ZPD position is ε. By geometric considerations, it can be easily deduced that the theoretical
time delay between Signal1 and Signal2 should be 2ε. In other words, by following the
method described above to obtain the two interferometric signals, then using the previously
mentioned phase correlation method to calculate the time delays of the two signals, and finally,
dividing the result by 2, we can determine the linear ZPD-point drift of the interferogram.

Since the method described above can only provide ZPD-point drift values in integer
multiples of the sampling interval, so further sub-pixel peak estimation of the obtained cross-
correlation function is needed. Wang [11] presented a fitting method for peak detection at
peak positions [11,23]. In our PCM-APF model in this paper, we utilize the Hilbert difference
method for sharpening the correlation peaks to achieve peak position determination. Figure 3a
shows the basic process of ZPD offset calculation in proposed PCM-APF model.

The Hilbert difference method involves taking the difference between the absolute
values of the cross-correlation function and its Hilbert transform. This process preserves
values near the peaks while reducing the correlation of values outside the peaks. As a result,
the sharpness of the main peak in the waveform of the received signal’s correlation function
significantly increases [24]. After using the Hilbert difference method, the correlation peak
becomes sharp and steep. Therefore, we assume that the points on the left and right sides
near the peak have the same derivative values, but the point on the left is positive, while
the one on the right is negative. As shown in Figure 3b, we define the maximum point
and its adjacent two data points: R(−1), R(0), and R(1) (supposing that R(1) >R(−1)).
By geometric considerations, we can derive that
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∆t =
∆s

2
[1 − |R(0)− R(1)|

|R(0)− R(−1)| ] (4)

where ∆t is the distance between the sampled maximum point and the actual peak, and ∆s
is the sampling interval.

(a)

(b)

Figure 3. (a) ZPD offset calculation process in proposed PCM-APF model. (b) The line shape changes
in Hilbert difference method and peak detection.

So the linear phase correction of this interferogram can be completed using the Mertz
method. This involves processing the original interferogram using Equation (3), where the
error phase is φ(ν) = (N∆s + ∆t)ν. N∆s represents the distance from the maximum point
R(0) to the y-axis, and its value is an integer multiple of the sampling interval.

4. All-Pass Filter and PCM-APF Model
4.1. Digital All-Pass Filter

Filters with amplitude responses that remain constant across the entire frequency band
are called all-pass filters. An all-pass filter is an infinite impulse response (IIR) filter, and its
system transfer function can be written in fractional form as follows:

H(z) = aN+aN−1z−1+aN−2z−2+···+1z−N

1+a1z−1+a2z−2+···+aN z−N =
z−N Q(z−1)

Q(z)
(5)

where Q(z) = 1 + a1z−1 + a2z−2 + · · ·+ aNz−N . We can further determine the zeros and
poles of the all-pass filter:
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H(z) =
z−NQ

(
z−1)

Q(z)
=

N

∏
i=1

z−1 − p∗i
1 − piz−1 =

N

∏
i=1

−p∗i
[
z −

(
1
pi

)∗]
z − pi

(6)

Obviously, pi and (1/pi)
∗ are a set of zeros and poles of the filter, which are conjugated

to each other.
Based on previous research, we can infer that the phase response of an all-pass filter is

θ(ω) = −Nω − 2 arg Q
(

eiω
)

(7)

where the arg function represents the phase angle calculation using the arctan method,
similar to Equation (2) [12,13].

4.2. The PCM-APF Model

The correction results of the sub-pixel phase correlation method still contains residual
nonlinear phase errors. To effectively eliminate these residual errors, the use of an all-pass
filter is well suited. The residual error is still calculated using the arctan function:

θres(ω) = arctan
Im(B′(ω))

Re(B′(ω))
(8)

where θres represents the nonlinear residual phase error, and B′(ω) is the spectrum corrected
after the sub-pixel phase correlation correction step. Here, ω is not the wavenumber
but represents the normalized frequency, which ranges from 0 to π radians/s, where π
radians/s corresponds to the Nyquist frequency vmax. The relationship between normalized
frequency ω and wavenumber ν is as follows:

ω = π
ν

νmax
(9)

Since a stable all-pass filter only generates negative phase responses, so the interfero-
gram needs to pass through a delay line before applying the filter. This introduces a linear
phase component, ensuring that the residual phase error curve values are all positive [14].
Thus, the final output error phase is

θout(ω) = θres(ω) + Nshi f tω − Nω − 2 arg Q
(

eiω
)

(10)

The value of the order N of the all-pass filter should depend on the smoothness
of the error phase curve. N also depends on the magnitude of the residual phase error
we expect for the corrected spectra. For a 3–10 degree error and a typical interferogram
resulting from an absorption experiment on a rapid-scan FTIR, N = 9 will suffice [12]. In
the proposed PCM-APF model, the value of N will be smaller because the interferogram is
“pre-processed” by the phase correlation method before passing through the all-pass filter,
in which most of the linear phase errors are removed.

We aim for a smaller value of θout. So for an Nth-order all-pass filter, we establish
an error function concerning the filter parameters and the delay order Nshi f t, with the
expectation that the error function reaches its minimum value:

E
(

Nshi f t, a1, a2, · · · , aN

)
= max

ωa≤ω≤ωb
(θout(ω)) (11)

where ωa and ωb represent the upper and lower limits of the normalized frequencies.
So the whole PCM-APF model for phase correction is as shown in Figure 4.
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Figure 4. The PCM-APF model.

4.3. Filter Parameter Optimization Strategy

This paper uses an evolutionary algorithm to optimize Equation (11), employing
a novel GS-SABO algorithm and population initialization strategies. This optimization
method has a straightforward computational principle, fast convergence, and, in many
engineering problems, performs better than traditional approaches like particle swarm
optimization (PSO) [25].

4.3.1. SABO Algorithm

SABO is a new meta-heuristic algorithm developed by Trojovský in 2023 [15], and like
most smart algorithms, it is also necessary to initialize and define a population in SABO,
usually using a random function. SABO employs the arithmetic average position of all
individuals in the population to update the positions of all individuals in the population.
SABO accomplishes this using a specific operation, denoted as “−v”, where “A − vB”
means individual B subtracts v from individual A. Its definition is as follows:

A − vB = sign(F(A)− F(B))(A − v⃗ ∗ B) (12)

where sign represents the sign function; F(A) and F(B) represent the fitness values of
individuals A and B; v⃗ is a random vector with the same dimensions as the individual,
where each dimension’s size is randomly chosen from the set {1, 2}; and “∗” denotes the
Hadamard product of two vectors.

In SABO, the displacement of any individual Xi in the search space is calculated as the
arithmetic average of the v-subtractions of other individuals Xj relative to Xi. Therefore,
the new position of each individual is calculated using the following formula:

Xnew
i = Xi + r⃗i ∗

1
N

N

∑
j=1

(
Xi − vXj

)
, i = 1, 2, . . . , N (13)

where r⃗ is a random vector with the same dimensions as an individual, and N is the total
number of individuals. Xnew

i represents the updated new position, which replaces the
original position if it is better; otherwise, the original position is retained [15]:

Xi =

{
Xnew

i , Fnew
i < Fi

Xi, else
(14)

4.3.2. Population Initialization and Improvement Scheme

A population with good diversity in the initial stage can significantly improve the
algorithm’s search efficiency. Randomly initializing individuals in the search space for
the initial population can lead to poor diversity. Furthermore, since there is no prior
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knowledge about the global optimal solution for the optimization problem, it is essential
to distribute individuals as uniformly as possible in the search space during population
initialization [26].

Using chaos to generate the initial population can provide good diversity. The basic
idea is to map the optimization variables to the value range within the chaos variable
space using mapping rules, and then, linearly transform the obtained optimization solution
back to the optimization space. There are several models for generating chaotic sequences,
including logistic mapping, Chebyshev mapping, cubic mapping, ICMIC mapping, neuron
mapping, sine mapping, and others [27,28]. In this paper, we use logistic mapping:

Yk+1 = 4Yk(1 − Yk) (15)

Additionally, to accelerate the convergence speed of population evolution, researchers
have introduced the concept of reverse learning. When applied to algorithm initialization,
this involves the following steps: First, we use chaotic sequences to generate an initial
population matrix. Then, we compute the reverse population of this population.

Finally, we calculate the fitness of the corresponding individuals and select the better
individuals to form a new initial population, completing the population initialization process
[29]. Additionally, reverse learning can also be performed after a certain number of iterations.

4.3.3. Gold-SA and the GS-SABO Algorithm

Similiar to SABO, the Gold-SA is also a meta-heuristic algorithm; it was proposed
by Tanyildizi in 2017 [16]. The design of the algorithm is inspired by the sine function
in mathematics; the algorithm utilizes the sine function in mathematics to perform a
computational iterative optimization search; its advantages are fast convergence, good
robustness, ease of implementation, and having fewer parameters and operators to regulate.

Based on the relationship between the sine function and the unit circle, Gold-SA can
traverse all the values on the sine function, i.e., search for all the points on the unit circle,
and at the same time, it introduces the golden section number in its position updating
process to narrow down the space of the solution, so as to scan the area that may only
produce good results, which largely improves the search speed and makes the search and
development reach a good balance.

For Gold-SA, its individual position update formula is

Xnew
i = Xi|sin(r1)|+ r2 sin(r1)|x1Xbest − x2Xi| (16)

where r1 and r2 are random numbers, r1 ∈ [0, 2π] and r2 ∈ [0, π]; x1 and x2 are coefficients
obtained by introducing the golden section number:

x1 = a(1 − τ) + bτ
x2 = aτ + b(1 − τ)

(17)

The initial values of a and b are −π and π, and τ = (
√

5 − 1)/2. Subsequently, the
values of a, b, x1, and x2 vary with the target value. The scheme of parameter modification
is detailed in [16].

Since SABO does not utilize the global optimum at each iteration but updates the
current individual using the positions of all individuals, it is easy to fall into a local optimum
solution when the initialized individuals are poorly positioned, which we also verified by
algorithmic replication. In order to solve this drawback, we introduce Gold-SA fused with
SABO as a novel algorithm called GS-SABO: if the individual adaptation value under the
current iteration does not change, the individual position is updated using Gold-SA. This
will not increase the computation of the fitness value too much, but also helps the SABO
algorithm to jump out the local optimal solution by using the advantage of Gold-SA in the
global optimization search. The flowchart of GS-SABO is shown in Figure 5.
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Figure 5. Flowchart of GS-SABO, combining SABO and Gold-SA.

4.3.4. All-Pass Filter Parameter Optimization Steps

For an Nth-order all-pass filter, it has N zeros, and to ensure the stability of the filter,
these zeros must lie outside the unit circle. These zeros may be on the real axis or not on
the real axis. If they are not on the real axis, it requires two dimensions of a population
individual to represent one zero. However, when there is a complex zero, there is always a
conjugate zero symmetric about the real axis. Therefore, using two dimensions of a particle
can represent a pair of complex zeros. So, for N zeros, an N-dimensional vector is needed
for representation. If N is even, the odd dimensions represent the real parts of the zeros,
and the even dimensions represent the imaginary parts of the zeros. If N is odd, then
the first N − 1 dimensions represent complex zeros, and the last dimension represents a
real zero.

The algorithm steps are as follows:
Step 1: Calculate residual phase by using Equation (8).
Step 2: Set the population size M, the dimension N of the individual in the population

(the order of the filter), the allowable error e, and the maximum number of iterations nmax.
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If N is even, the number of complex zeros Ncc = N/2, the number of real zeros Nr = 0;
if N is odd, the number of complex zeros Ncc = (N − 1)/2, the number of real zeros Nr = 1.
Set the order Nshi f t of the delay line in the all-pass filter system. Set the current number of
iterations t = 0.

Step 3: Set M × N initial values, and use Equation (15) to calculate the chaotic initial
individual position.

Step 4: Construct complex zeros: zk = Xi(2k − 1) + Xi(2k)j, (k = 1, 2, ...Ncc;
i = 1, 2, ...M); if N is odd, then there is also a real zero xi(N). Calculate the magnitude of
each zero, and if the magnitude is less than 1 take its reciprocal as the new zero.

Step 5: Calculate the response function Q(z) for each individual:

Q(z) =
Nr

∏
i=1

(
zi − z−1

) Ncc

∏
j=1

(
zj − z−1

)(
z∗j − z−1

)
(18)

Calculate the output phase error by Equations (7), (8), (10), and (11).
Step 6: Calculate the inverse population of the initial population and repeat

steps 4–5 using the inverse population to calculate the error function of each individ-
ual in the inverse population. Optimize a new initial population by comparing it with the
size of the error function of the individuals in the initial population.

Step 7: Construct a new complex zero matrix (same as step 4). Record the size of the
error function for each individual of the new initial population. Set the best individual
position as Xbest and the smallest error as fbest.

Step 8: Calculate the new position of each individual in the population by using
Equations (12) and (13). Calculate and record the new error function value of each individ-
ual based on the new position. And also record Xbest and fbest.

Step 9: Use Equation (14) to determine whether to update the individual position by
step 8. If yes, skip to step 13.

Step 10: Calculate the new position of the current individual by using Equation (16).
Step 11: Similar to step 7, calculate the error and record the new Xbest and fbest,

if possible.
Step 12: Update the Gold-SA coefficients by referring to the coefficient update method

in [16].
Step 13: Compare fbest with e. If fbest < e, skip to step 15.
Step 14: Let t = t + 1. If the value of t reaches the maximum number of iterations nmax,

skip to step 14; otherwise, skip to step 8.
Step 15: End the iteration to obtain the optimal calibration results and filter

parameter settings.

5. Simulation Experiment
5.1. Filter Optimization Algorithm Performance Comparison

In this section, we focus on comparing the improved GS-SABO algorithm with the
traditional PSO algorithm when optimizing the all-pass filter parameters.

The wavenumber range of spectra in the simulation experiment was set to be
1000–4000 cm−1 (maximum wave number: 15,802 cm−1). The spectral phase error function
was θ(ω) = 0.5 sin(4ω). The computer hardware configuration used in the simulation was
11th Gen Intel (Santa Clara, CA, USA) (R) Core (TM) i5-11300H CPU with 16 GB of memory.
We calculated the size of the output phase error by using these two algorithms.

The total number of individuals M = 20, the individual dimension (all-pass filter order)
N = 8, and the number of iterations nmax = 200. Twenty repetitions of the experiment were
performed for both algorithms and the output phase error results obtained are shown in
Figure 6a,b. Overall, the correction using the proposed GS-SABO algorithm outperforms
the conventional PSO: the average maximum phase error of GS-SABO is 3.25◦ compared to
4.43◦ for PSO; and GS-SABO is also better in terms of optimization stability.
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(a) (b)

(c)

Figure 6. (a) Optimization results (residual phase error) of GS-SABO. (b) Optimization results
(residual phase error) of PSO. (c) Phase error convergence curves for GS-SABO and PSO (within
400 iterations).

We also focus on the convergence of the two algorithms in the all-pass filter optimiza-
tion problem, and Figure 6c shows the convergence curves of the two algorithms within
400 iterations. Overall, the proposed GS-SABO algorithm has better optimization results,
as well as optimization efficiency, with fewer iterations.

5.2. Experiments for PCM-APF Model

Experiments were conducted using the HITEMP database when comparing the pro-
posed PCM-APF with the Mertz method. HAPI is the Python interface for this database,
which allows for various operations such as downloading spectral lines and simulating
spectra using encapsulated functions [30]. A simulated emission spectrum was created
using air with 10% acetylene gas under standard atmospheric conditions (296 K envi-
ronmental temperature and one standard atmosphere pressure). The spectral line shape
function used was Voigt, and the wavenumber range was 1000–1200 cm−1. Figure 7a
displays the normalized spectra after intensity normalization.

Figure 7a also shows the error phase curve (error phase function: φ = 466.905 −
765.471ω + 461.631ω2 − 122.509ω3 + 12.132ω4). The proposed PCM-APF model and the
traditional Mertz method were employed to correct the nonlinear phase error (with a
small number of sample points in the small double-sided interferogram, set to 128). In the
PCM-APF model, we set the order of the delay line Nshi f t = 9 and the order of the all-pass
filter N = 8; for the optimization algorithm, the population size M = 20 and the number of
iterations nmax = 200, using the proposed GS-SABO algorithm.

Figure 7b,c show the spectral curves recovered using the PCM-APF model and the
conventional Mertz method in different wavenumber ranges. It can be found that the
spectra recovered using the Mertz method have obvious aberrations, especially at the low
frequencies of the spectra, which seriously affects the quality of the recovered spectra,
which also proves that the Mertz method is indeed deficient in dealing with the problem of
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nonlinear phase errors. However, the spectra can be well recovered using the proposed
PCM-APF model. Figure 7d shows the absolute values of the normalized spectral errors
recovered using these two methods. The maximum normalized spectral error of the spectra
recovered using the Mertz method is about 0.047, while the value using the PCM-APF
model is about 0.008, which is a huge difference, showing the great improvement of the
calibration accuracy of the PCM-APF model.

(a)

(b) (c)

(d)

Figure 7. (a) Normalized spectra and error phase curve. (b) Recovered results of Mertz method
and PCM-APF model (wavenumber: 1008–1020 cm−1). (c) Recovered results of Mertz method
and PCM-APF model (wavenumber: 1055–1065 cm−1). (d) Spectral error after Mertz method and
PCM-APF model.
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Finally, the parameter settings for the filter calculated by the PCM-APF model are
{a0 = 1, a1 = −1.756691, a2 = 1.301406, a3 = −0.871274, a4 = 0.626228, a5 = −0.525851,
a6 = −0.133867, a7 = 0.097102 and a8 = −0.001376}.

6. Conclusions

In FTS, phase correction techniques typically utilize the well-established Mertz algo-
rithm. However, this method exhibits limited effectiveness in correcting nonlinear phase
errors. The all-pass filter technique based on the principles of IIR filtering demonstrates
superior performance in terms of both correction accuracy and handling nonlinear phase
errors, as convincingly demonstrated in [14]. Building upon this foundation, this paper
introduces the use of the phase correlation method, commonly employed in signal delay
estimation and image registration, to calculate the linear component of phase errors. The
residual phase errors are then corrected using the all-pass filters. Additionally, the im-
proved GS-SABO algorithm employed in the optimization of the filter parameters exhibits
favorable properties, particularly rapid convergence.

Overall, through the theoretical analysis and simulation validation presented in this
paper, it is evident that our proposed PCM-APF model for phase correction in FTS is a
viable and effective approach.
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