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Abstract: Semantic segmentation of 3D point clouds in drivable areas is very important for unmanned
vehicles. Due to the imbalance between the size of various outdoor scene objects and the sample size,
the object boundaries are not clear, and small sample features cannot be extracted. As a result, the
semantic segmentation accuracy of 3D point clouds in outdoor environment is not high. To solve
these problems, we propose a local dual-enhancement network (LDE-Net) for semantic segmentation
of 3D point clouds in outdoor environments for unmanned vehicles. The network is composed of
local-global feature extraction modules, and a local feature aggregation classifier. The local-global
feature extraction module captures both local and global features, which can improve the accuracy
and robustness of semantic segmentation. The local feature aggregation classifier considers the feature
information of neighboring points to ensure clarity of object boundaries and the high overall accuracy
of semantic segmentation. Experimental results show that provides clearer boundaries between
various objects, and has higher identification accuracy for small sample objects. The LDE-Net has
good performance for semantic segmentation of 3D point clouds in outdoor environments.

Keywords: 3D point clouds; local augmentation; semantic segmentation; outdoor environment;
unmanned vehicles

1. Introduction

With the rapid development of mobile robot technology and artificial intelligence,
ground unmanned vehicles have been widely used in various fields such as logistics, trans-
portation, security, inspection, and so on [1]. Driverless technology can improve production
efficiency, reduce safety risks, reduce operating costs, increase resource utilization, and
promote industrial transformation and upgrading [2].

Meanwhile, the traditional automotive industry, relying on the development of artifi-
cial intelligence, is vigorously researching and developing autonomous driving technology.
The outstanding role of autonomous driving technology in reducing driver intensity and
improving driving safety has given this technology a promising development prospect.

The core technical system of autonomous driving can be mainly divided into three lev-
els: perception, decision-making, and execution. Perceiving and locating the surrounding
environment is a prerequisite for autonomous driving technology.

Currently, there are roughly two approaches to autonomous driving perception tech-
nology: one is a machine vision-centric solution with millimeter-wave radar and cameras,
typically represented by companies such as Tesla, Mobileye, Baidu Apollo, etc.; the other
is a sensor route centered on high-precision maps and LiDAR, represented by companies
such as Waymo and Huawei.

In the debate between pure vision and LiDAR, some argue that pure vision solutions
are sufficient for most road scenarios, while LiDAR is merely a complement. They believe
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that human drivers primarily rely on visual information during driving, making pure vision
solutions more aligned with human driving habits. Furthermore, with the continuous
development of computer vision technology, the accuracy and reliability of pure vision
solutions are constantly improving. However, others contend that LiDAR is crucial for
autonomous vehicles. They argue that in complex road scenarios and adverse weather
conditions, pure vision solutions struggle to ensure accuracy, whereas LiDAR can provide
more reliable information. Additionally, LiDAR can be fused with other sensors to further
enhance the accuracy and safety of autonomous vehicles.

Previously, pure vision solutions were held as overwhelmingly dominant. However,
with the continuous advancement of LiDAR technology, an increasing number of vehicles
are being equipped with LiDAR. Furthermore, the declining cost of LiDAR will further
promote its development. Therefore, processing the data collected by LiDAR has become
increasingly important.

The 3D point clouds obtained from LIDAR scanning are represented as a set of points.
The significance of semantic segmentation lies in assigning labels to each point, allowing
for differentiation of the entire point clouds and achieving the purpose of initial visual
understanding. With semantically calibrated 3D point clouds, unmanned vehicles can
accurately identify actionable areas, enabling better decision-making and control. It can
also extract slope surfaces for safe slope calculations to prevent accidents. Therefore,
accurate semantic segmentation of 3D point clouds is a crucial prerequisite for constructing
driverless technology, and its precision determines the reliability of autonomous driving,
the accuracy of safety inspections, and the precision of 3D modeling.

In recent years, many deep learning methods have been applied to 3D point cloud
semantic segmentation [3,4]. These methods can be roughly classified into three cate-
gories: projection-based methods, voxel-based methods, and direct point-based methods.
Projection-based methods project the 3D point clouds onto a plane and turn them into 2D
images, then use 2D images for semantic segmentation, which lose the spatial character-
istics of the original 3D point clouds. Voxel-based methods transform 3D point clouds
into dense or sparse 3D grids. Semantic segmentation is performed using standard 3D
convolution. Computing the dense grids requires significant computational resources,
making it impractical for real-world applications. Transforming into sparse grids may
result in the loss of certain 3D features. In contrast, point-based methods directly operate on
the 3D point clouds, and can balance the semantic segmentation effect and computational
cost. Recently, scholars have proposed many methods for semantic segmentation of scenes,
such as RandLA-Net [5].

Due to the enormous scale of outdoor scenes, extremely uneven distribution of data
samples, and high requirements for clarity of object boundaries, existing methods were
not specifically designed for outdoor environments and thus cannot perform well in such
environments [6]. Training deep learning network models for semantic segmentation
typically utilizes supervised learning, which requires a large number of outdoor sites and
cloud semantic segmentation data sets. Currently, there are no publicly available datasets
specifically designed for outdoor environments that we can use directly. The problems
we have encountered are summarized as follows: the mainstream semantic segmentation
methods do not exhibit high accuracy, there is inadequate extraction of mine boundaries’
features, and small-scale data features are also inadequately extracted.

To solve the above problems, we designed LDE-Net, a semantic segmentation network
of 3D point clouds in outdoor environments for driverless unmanned vehicles. As shown
in Figure 1, the LDE-Net consists of an encoder-decoder framework, local-global feature
extraction modules, and a local feature aggregation classifier. The LDE-Net utilizes the
local-global information extraction module, effectively resolving the issue of disconnected
neighborhoods among 3D point clouds in outdoor environments. The local aggregation
classifier can consider neighborhood information at the final classification stage to ensure
more accurate classification in outdoor environments.
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Figure 1. Framework of the LDE-Net. 
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The rest of this article is organized as follows: Section 2 reviews related work that
has been carried out; Section 3 provides a detailed introduction to the LDE-Net; Section 4
presents experimental results to demonstrate the advantages of the network; and Section 5
draws conclusions.

2. Related Work

In this section, we will review the research related to dataset and 3D point cloud
semantic segmentation.

In recent years, due to the rapid development of deep learning, a variety of data
sets applied to visual understanding have appeared, thus promoting the development
of visual understanding. Most datasets utilize RGB cameras to capture 2D images with
color features, for example [6–10], including images captured in different weather and
lighting conditions. However, Geiger, A. [11] has pioneered the provision of a multi-modal
dataset KITTI, which provides dense point clouds, frontal stereo images, and GPS/IMU
data from LiDAR sensors. Meanwhile, Choi, Y. [12] also provides data composed of RGB
and thermal cameras, RGB stereo sound, 3D LiDAR, and GPS/IMU. Chen, Y. [13] has
done the same work as well. Caesar, H. [14] introduces the multi-view mode 3D detection
dataset Nuscenes. Huang, X. [15] and Xibin Song, X. [16] focus on creating datasets for
pixel-level semantic segmentation tasks, including scene parsing, 3D car instance, and lane
segmentation tasks. Haibao Yu [17] focuses on 3D detection tasks using LiDAR.

The existing methods for extracting features from 3D point clouds can generally
be divided into three groups: projection-based [18–21], voxel-based [22–24], and point-
based [25–29]. Table 1 shows the relevant details.

Table 1. Comparison of semantic segmentation methods for 3D point clouds.

Methods Dataset Used Characteristic Limited

Projection-
based

SnapNet [18] Semantic3D These methods project a 3D
point cloud onto a 2D

image plane. They can be
segmented by using the

mature 2D image
processing technology.

They have low
computational complexity.

These methods lose some
information in the process of
projection. They have poor
segmentation for complex
3D shapes. They select the

appropriate projection angle
and parameters manually.

SqueezeSeg [19] KITTI

SqueezeSegV2 [20] KITTI

RangeNet++ [21] KITTI
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Table 1. Cont.

Methods Dataset Used Characteristic Limited

Voxel-based

SPLATNet [22] RueMonge2014, ShapeNet These methods convert the
point cloud data into a

voxel grid. They use voxel
information to represent

3D objects. They can retain
neighborhood information.

These methods may result in
information loss. They have

high time and space
complexity. They can be

difficult to select the correct
voxel resolution.

FCPN [23] ScanNets, ShapeNet

SSCNs [24] ShapeNet, NYU Depth (v2)

Point-based

PointNet [25] ModelNet40, ShapeNet,
Stanford 3D

These methods directly
process 3D point cloud

data and preserve
geometric information and
details in the point cloud.
They can effectively deal
with the sparsity of the

point cloud. They have low
computational and

memory consumption.

Most of these methods adopt
expensive neighborhood
search mechanisms. They
require large scale, high

quality annotated data. They
are computationally complex.

PointSIEF [26] S3DIS, ScanNet

PointWeb [28] S3DIS, ScanNet,
ModelNet40

ShellNet [29]
ModelNet40, ShapeNet,

ScanNet, S3DIS,
Semantic3D

RandLA-Net [5] SemanticKITTI,
Semantic3D, S3DIS

Projection-based methods first project the 3D point clouds onto a 2D plane, then use
2D convolution to obtain the semantic labels of each pixel, and finally fuse the multi-view
semantic labels to obtain the semantic labels of each point. Lawin et al. [18] first projected
a 3D point cloud onto 2D planes from multiple virtual camera views. To achieve fast
and accurate segmentation of 3D point clouds, Wu et al. [19,20] proposed an end-to-end
network based on SqueezeNet and SqueezeNetV2. Milioto et al. [21] proposed RangeNet++
for real-time semantic segmentation of LiDAR point clouds.

Voxel-based methods voxelize the point clouds and then perform semantic segmenta-
tion using standard 3D convolution. Jing and Suya [22] first convert a point cloud into a
group of voxels. Then, they input these data into 3D CNN for voxel segmentation. Finally,
they assign all points within a voxel with the same label as the voxel. Rethage et al. [23]
proposed a fully convolutional network (FCN) which extracts different levels of geometric
relationships layer by layer from the point clouds using 3D convolution and weighted
average. The FCN is used for feature extraction and long-range dependency integration,
and it can effectively handle colored point clouds. Graham et al. [24] proposed a deep
learning network based on index structures that can significantly reduce both memory and
computational costs.

Point-based methods directly take the 3D point clouds into the network. Charles
et al. [25] designed a shared MLP to learn the features of each point. Jiang et al. [26]
implemented orientation encoding and scale awareness using a three-stage and order-
wise convolution method. This method effectively stacks and encodes information from
eight spatial directions, which concatenates multi-scale features for adaptive processing
of different scales. Engelmann et al. [27] developed an approach that differs from the
grouping technique used in PointNet++. They defined two neighborhoods in both world
space and feature space by using K-means clustering and K-nearest neighbors (KNN).
Additionally, they introduced pairwise distance loss and centroid loss to better regularize
feature learning. To simulate interactions between different points, PointWeb investigates
the relationships between all point pairs within a local region by densely constructing locally
fully connected networks [28]. They proposed an adaptive feature adjustment module for
information exchange and feature refinement, which aids in learning discriminative feature
representations. PointWeb can effectively extract the local features of the point cloud, but it
processes the point cloud in a grid-based way. Therefore, PointWeb does not work well
when dealing with irregular point cloud shapes. Zhang et al. [29] presented a permutation-
invariant convolution method based on the statistical quantities of concentric spherical
shells. This method queries a set of multiscale concentric spheres, summarizes the statistical
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data using max-pooling operations in different shells, and obtains the final convolution
output using MLP and 1D convolution. However, ShellNet’s processing efficiency for
large-scale point cloud data is low. The number and radius of shells need to be manually
set, which may affect their generalization ability.

The above methods exhibit lower accuracy in semantic segmentation of large-scale
3D point cloud data in urban environments. Hu et al. [5] proposed an efficient and
lightweight RandLA-Net that can be used for colored point cloud segmentation. This
network utilizes random point sampling to achieve high efficiency in terms of memory
and computation, and further proposes a local feature aggregation module to capture and
preserve geometric features.

3. Semantic Segmentation of 3D Point Clouds

This article proposes a novel semantic segmentation network of 3D point clouds in
outdoor environments for driverless vehicles. As shown in Figure 1, the LDE-Net includes
a feature extraction network and a local feature aggregation classifier. The feature extraction
network consists of an encoder and a decoder, with local-global feature extraction modules
(LGFE) embedded in the encoder.

3.1. Framework of the LDE-Net

The 3D point cloud P = {pi = (xi, yi, zi) | 1 ≤ i ≤ n} is inputted into the feature extrac-
tion network, which then outputs the 3D point cloud P = {pi = (xi, yi, zi, li) | 1 ≤ i ≤ n}
with semantic labels. n is the total number of points, (x i, yi, zi) is the coordinate of a point
pi, and li is the semantic category information of a point pi. The feature extraction network
can extract local and global features for each point of the input outdoor 3D point cloud.
Local-global feature extraction modules can better classify each point according to the
extracted features.

The feature extraction network processes the 3D point cloud P and obtains the output
feature Fout =

{
fout
i =

(
f 1
i , f 2

i , f 3
i , f 4

i , f 5
i , f 6

i , f 7
i , f 8

i
)∣∣1 ≤ i ≤ n

}
. The output feature Fout is

classified by the local feature aggregation classifier to finally obtain the 3D point cloud P
with semantic labels.

3.2. Feature Extraction Network

The 3D point cloud P is fed into the feature extraction network. Our challenge is to
design a feature extraction network that is tailored to the specific structure of 3D point
clouds in order to extract features and achieve a more accurate semantic segmentation of
point clouds. The feature extraction network is composed of an encoder and a decoder.

3.2.1. Encoder-Decoder Module

As shown in Figure 1, the input of the encoder module is the 3D point cloud P. It
contains spatial information and color information of the 3D point cloud P. The 3D point
cloud P is extracted by a multilayer perceptron network and the dimension is unified to
8. The encoder module reduces the number of points by random sampling and learns the
spatial contextual features of each point through the local-global feature extraction module
(LGFE) five times. The number of points is gradually decreased from n to n/512, while the
feature dimension is learned from 8 to 512.

In the decoder module, the features are up-sampled by nearest-neighbor interpolation
and further condensed through the multilayer perceptron (MLP) network. The total number
of points is restored to n, and the dimension of the features is condensed to 8. Finally, we
can obtain the output feature Fout of the feature extraction network.

3.2.2. The Local-Global Feature Extraction Module

The local-global feature extraction module is embedded in the encoder module. As
shown in Figure 2, the input of the module includes the spatial information, color in-
formation and feature information Fe learned previously. After feature learning by the
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local-global feature extraction module, the extracted features Fo is outputted. The local
information is extracted by using the dual distance feature extraction module, while the
global information is extracted using by the global feature extraction module.
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The dual distance feature extraction module From a 3D perspective, distance is an
important indicator of the correlation between points. The smaller the distance between
points, the higher their correlation. Distance includes not only the spatial distance between
two points but also the feature distance between two points. Therefore, we propose the dual
distance feature extraction module based on the spatial and feature distances between two
points, which can automatically learn the effective local information features. Its specific
structure is shown in Figure 2.

The input of the dual distance feature extraction module is the spatial information,
feature information, and color information of the point pi and its k neighboring points. The
dimension of spatial information and color vector information is (k, 3), and the dimension
of input feature is (k, 8).

In this module, we calculate the spatial distance dj
ig and feature distance dj

i f between

the point pi and its j-th neighboring point pj
i as

dj
ig =

∣∣∣pi − pj
i

∣∣∣ j = 1, · · · , k

dj
i f =

∣∣∣ f (pi)− f
(

pj
i

)
| j = 1, · · · , k

(1)

where |·| is the L1 norm. f (pi) is the i-th point feature and f
(

pj
i

)
is its j-th neighboring

point feature. Since the features are automatically learned by the network, we use the
negative exponent of both distances to learn two attention concentration weights and use λ

to adjust dj
i f to address instability to obtain the dual distance dj

i.

dj
i = exp

(
−dj

ig

)
⊕ λexp

(
−dj

i f

)
(2)

where ⊕ is the concatenation operator.
Then, the dual distance dj

i and the feature fj
i are concatenated as

dj+
i = dj

i ⊕ fj
i (3)
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where fj
i is obtained by concatenating the color information and the feature information of

the k neighboring points of the point pi.
And a shared MLP and softmax are applied to dj+

i to obtain aj
i

aj
i = softmax

(
MLP

(
dj+

i

))
. (4)

Finally, the output feature of the dual distance feature extraction module is obtained by

fi = MLP
(
∑k

j=1

(
aj

i ⊙ fj
i

))
(5)

Global Feature Extraction Module The dual distance feature extraction module can
extract the semantic features between two points within the neighborhood, but its power
to judge the semantic segmentation of the overall 3D point clouds is insufficient. Since
the semantic segmentation of the entire 3D point clouds requires integration and global
information, we propose a global feature extraction module to learn global features from
the 3D point cloud P.

As shown in Figure 3, we use 2D point clouds to express the relationship between the
local region and the global region in the 3D point clouds. We use the farthest distance li
between a given point pi and the local boundary, and the farthest distance gi between the
point pi and the global boundary to extract the global features.
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Then, the global feature ri of the point pi is computed as

ri =
exp(−li)
exp(−gi)

. (6)

Furthermore, MLP is used to further extract the global information

rig = MLP( {r i | 1 ≤ i ≤ n
}
). (7)

After both the local feature and the global feature are extracted, we combine them
into complete extracted features. The dual distance feature extraction module can calculate
and extract the neighborhood features of each point. When we extract the neighborhood
features of n points, we stitch them together to get Fd =

{
fi}n

i=1 .
Eventually, the local features of all points converge to F+

d

F+
d = Fd + MLP(Fe). (8)



Appl. Sci. 2024, 14, 1777 8 of 16

After the local-global feature extraction module, the extracted feature Fo of the local-
global feature extraction module are obtained.

Fo = rig ⊕ F+
d . (9)

3.3. Local Feature Aggregation Classifiers

The semantic features Fout extracted by the Feature Extraction network are transformed
into specific semantic labels by the classifier. In previous semantic segmentation of 3D
point clouds, the classifier generates point-wise semantic labels individually via MLPs
implemented by fully connected layers. A fully connected layer consists of a linear transfor-
mation and a non-linear activation function. However, the non-linear activation function
results in neighbor inconsistency in the prediction. To address this problem, we introduce
a feature aggregation (FA) module into the MLP classifier, which enables the classifier to
reference neighborhood information during classification. With this module, the contextual
awareness ability of classification is enhanced.

For a given point pi in P, we have used the KD-Tree algorithm to construct its neigh-

borhood Ni =
{

pj
i

∣∣∣ 1 ≤ j ≤ k
}

.
As shown in Figure 4, the feature aggregation module searches for the k nearest

neighboring points and represents the feature of the neighboring point pj
i as ej

i, which
comes from the output feature Fout that has been processed by MLP.
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The feature ej
i is further addressed by the learnable weight wi and activation function

to obtain the neighborhood feature:

êj
i = ReLU

(
wie

j
i

)
. (10)

Finally, we use channel-wise max pooling to aggregate the neighborhood feature êj
i to

obtain the final feature of the point pi:

ei = maxpooling({ êj
i

∣∣∣1 ≤ j ≤ k
}
). (11)

The max pooling operation may cause the disappearance of the feature of the origin
point. To address this issue, we combine the original feature with the feature after max
pooling. Finally, the final output feature Fc are obtained after MLPs and dropout. Fc is
represented by a 2D matrix (n × c), where c represents the number of categories in the
entire dataset.
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4. Experiment and Analysis

In this section, we evaluate our LDE-Net on two typical point cloud in the outdoor
environment dataset: Semantic3D and SemanticKITTI.

4.1. Dataset Introduction

Semantic3D is a large outdoor point cloud dataset with more than 3 billion points
from the real world, including urban and rural scenarios. It consists of 15 training point
clouds and 15 online test point clouds. In addition to coordinate and color information,
each point also has an intensity value, but we do not use them. Each point is annotated
with one of the semantic tags from the eight classes.

SemanticKITTI consists of 43,552 densely annotated LIDAR scans belonging to 21 se-
quences. Each scan is a large point cloud with ~105 points spanning up to 160 × 160 × 20 m3

in 3D space. Officially, sequences 00 to 07 and 09 to 10 (19,130 scans) are used for training,
sequence 08 (4071 scans) for validation, and sequence 11 to 21 (20,351 scans) for online
testing. The original 3D points only have 3D coordinates and no color information. The
mIoU scores in more than 19 categories are used as standard indicators.

4.2. Experimental Detail

We deploy the LDE-Net network on a Linux server with a hardware environment,
which consists of an Nvidia V100 GPU with 24 GB memory and 72 GB RAM. The software
environment includes Cuda version 11.0, Cudnn version 8.74, TensorFlow version 1.15,
and Python version 3.8.

In the model training process, we set the batch size to 8 and used an Adam optimizer
with an initial learning rate of 0.01. We trained the model for 100 epochs, with a learning rate
reduction of 5% after each epoch. The number of nearest neighbor points searched by KNN
was set to 16. A fixed number of points (40,960 points) were sampled from each training
point cloud and fed into the network for training. Multiple non-repetitive samplings were
performed to ensure that the network could learn the features of the original point cloud.

During the testing phase, we sampled a fixed number of points from each point
cloud as input for inference. To ensure that all points in each point cloud were inferred,
we performed non-repetitive sampling multiple times until all points were inferred to
complete the point cloud test. In order to evaluate the performance of the model, we used
the following evaluation methods for comprehensive evaluation: overall accuracy (OA),
mean class accuracy (mAcc), and mean intersection over union accuracy (mIoU). These can
be defined as follows:

OA =
∑n−1

i=0 pii

∑n−1
i=0 ∑n−1

j=0 pij
(12)

IoU =
pii

∑n−1
j=0 pij + ∑n−1

j=0 pji − pii
(13)

mIoU =
1
n

n−1

∑
i=0

pii

∑n−1
j=0 pij + ∑n−1

j=0 pji − pii
(14)

where pij represents the number of points with ground truth label i and predicted label j in
the point clouds and n represents the number of semantic classes.

4.3. Semantic3D

Table 2 reproduces the experimental results of several classic algorithms for seman-
tic segmentation of 3D point clouds in Semantic3D dataset, including SnapNet_ [17],
RF_MSSF [30], SEGCloud [31], ShellNet [28], GAENet [32], SPG [33], KPConv [34], and
RandLA-Net [5]. In the projection-based approach, SnapNet_ projects 3D point clouds into
multi-view images and then extracts features using traditional 2D convolutional neural
networks. The projection process results in the loss of point cloud geometry information.
Therefore, the accuracy of semantic segmentation of the 3D point cloud is very poor. SEG-



Appl. Sci. 2024, 14, 1777 10 of 16

Cloud divides the point cloud into a set of occupancy voxels. Then, 3D convolutional
neural networks is applied to segment the point cloud scene. In this case, the voxel size is a
very important hyperparameter, and the quantization error of voxelization will lead to the
loss of geometric information. The high precision of voxel size will bring the burden of cal-
culation. Point-based methods include ShellNet, GACNet, SPG, KPConv, and RandLA-Net,
described in related work sections. Compared with other methods, RandLA-Net has better
segmentation accuracy, and it is used as a representative to compare with our method. The
results showed that LDE-Net was superior to all of them in terms of the mloU and the OA.

Figure 5 shows the semantic segmentation of LDE-Net and RandLA-Net in detail. The
edges obtained by RandLA-Net are very rough and can cause some trouble. In labeling
each point, LDE-Net adds a local feature aggregation classifier that takes into account the
semantic information of the surrounding points. As a result, the edges obtained by LDE-Net
are very smooth and precise. As shown in Figure 5, the red boxes are all details of how
our method (LDE-Net) compares to RandLA-Net. Table 2 shows the accuracy of LDE-Net
on the semantic3D dataset. Due to the addition of the global feature extraction modules
and two local feature extraction modules, LDE-Net is 0.2% higher than RandLA-Net on
the mIoU.
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Table 2. Results of different methods in Semantic3D.

Methods mIou OA
Class Accuracy

Man-Made Natural HighVeg Low Veg Buildings Hard Scape Scanning Cars

SnapNet_ 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SEGCloud 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
RF_MSSF 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6
ShellNet 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
GAENet 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8

SPG 73.2 94.0 97.4 92.6 87.9 44.0 84.2 31.0 63.5 76.2
KPConv 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7

RandLA-Net 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8
Our 77.6 95.0 96.8 90.5 85.1 52.3 97.5 54.3 71.2 79.5

4.4. SemanticKITTI

Table 3 reproduces the experimental results of several classic algorithms for seman-
tic segmentation of 3D point clouds in SemanticKITTI dataset, including PointNet [24],
PointNet++ [35], SPG [33], SqueezeSegV2 [34], RangeNet++ [19], and RandLA-Net [5].

Table 3. Results of different methods in SemanticKITTI.

Methods
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PointNet 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SPG 17.4 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8

PointNet++ 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
SqueezeSegV2 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3
RangeNet++ 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9
RandLA-Net 53.9 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7

Our 54.9 91.3 73.9 62.0 22.6 88.6 93.9 40.0 27.9 28.2 40.5 81.2 61.9 67.1 45.0 49.3 10.9 58.0 50.0 54.1

PointNet and PointNet++ are not suitable for 3D point cloud semantic segmentation
in large scenes, so the accuracy is very poor. SqueezeSegV2 proposes a spatially adaptive
convolution to better capture symbiotic relationships between objects in LiDAR images, and
also uses KNN for post-processing. RandLA-Net is a 3D point cloud semantic segmentation
for large scenes, which leads to its better effect, and it is used as a representative to compare
with our method. RandLA-Net has a module for local feature extraction, so its semantic
segmentation accuracy of some objects is relatively high. In contrast, our method has
a global feature extraction module and two kinds of local feature extraction modules.
Therefore, our method (LDE-Net) is higher than RandLA-Net in semantic segmentation
accuracy for some objects and overall.

Figure 6 shows the results of semantic segmentation between our method (LDE-Net)
and RandLA-Net on the SemanticKITTI dataset. It can be seen from the results that road
and sidewalk are similar in some aspects. RandLA-Net does not distinguish well between
road and sidewalk. Since LDE-Net has two kinds of local feature extraction modules and
global feature extraction modules, it can better reference the neighborhood information so
that these classes of semantic segmentation accuracy is higher. Table 3 shows the accuracy of
LDE-Net on the semanticKITTI dataset. Due to the addition of the global feature extraction
modules and two local feature extraction modules, LDE-Net is 1% higher than RandLA-Net
on the mIoU.
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4.5. Complexity Comparison Experiment

We systematically evaluated the overall efficiency of PointNet, PointNet++, SPG,
RandLA-Net, and LDE-Net on Sequence 08 of the SemanticKITTI dataset. Table 4 quanti-
fies the total time, parameters, and mIoU of different methods. PointNet has the fewest
parameters and faster inference times. Since PointNet is a feature extraction for the whole
point cloud, it is not suitable for 3D point cloud semantic segmentation in large-scale envi-
ronments. Then, PointNet++ added local feature extraction specifically, and the inference
time, parameter number, and mIoU also increased a lot. SPG has fewer parameters, but
it takes the longest time to process point clouds due to the expensive steps of geometric
partitioning and supergraph construction. Compared with RandLA-Net, LDE-Net once
again enhances the ability to extract local features. Its model complexity and inference time
increased, but it has some advantages in terms of the mIoU. Thus, LDE-Net improves the
mIoU by 1% with a slight increase in computation time.

Table 4. Experimental of model complexity and inference time.

Total Time (Seconds) Parameters (Millions) mIoU (%)

PointNet 192 0.8 14.6
PointNet++ 9831 0.97 20.1

SPG 43,584 0.25 17.4
RandLA-Net 185 1.24 53.9

LDE-Net (Our) 191 1.32 54.9

4.6. Ablation Experiments

The above comparative experiments demonstrate the advantages of the LDE-Net in the
semantic segmentation of outdoor environments. In order to better understand the network
and evaluate the role of each module, we conducted several ablation experiments as follows.
We focused on two modules in LDE-Net: local-global feature extraction modules (LGFE)
and the local feature aggregation classifier (LFAC). The purpose of ablation experiments
is to investigate the impact of these two modules on the overall semantic segmentation
accuracy of the network.

In Table 5, BaseNet represents the basic network without these two modules, LGFE
represents the local-global feature extraction module, and LFAC represents the local feature
aggregation classifier.

Table 5. Ablation experiment of LDE-Net on SemanticKITTI dataset.

mIoU
(%)

Total Time
(Seconds)

Parameters
(Millions)

Base-Net 50.1 173 1.10
Base-Net + LGFE 53.3 189 1.30
Base-Net + LFAC 52.1 190 1.27

Base-Net + LGFE + LFAC (LDE-Net) 54.9 191 1.32

As shown in Table 5, the mIoU of a network without LGFE is 2.8% lower than the
LDE-Net with LGFE. The mIoU without LFAC module is 1.6% lower than that with LFAC
module. Although the two modules will slightly increase the number of arguments and
inference time, the increase in mIoU is significant. This shows that local feature aggregation
classifiers and local-global feature extraction module can improve the context-aware ability
of the classifier by referring to neighborhood features, thus improving the overall accuracy.

From the above experiments, it can be seen that each module in LDE-Net has its
own meaning, and the combination can achieve the best effect. Both LGFE and LFAC can
enhance the model’s local perception ability. Therefore, it is meaningful to use all modules
of LDE-Net for semantic segmentation in colored outdoor environment, and good results
can be obtained.
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5. Limitations and Future Work

The above experiments show that the mIoU accuracy of semantic segmentation and
processing speed of our method have been improved to some extent, but the accuracy of
small sample data is still very low. This leads to certain errors in visual understanding in
driverless scenes, and has a certain impact on the judgment of driverless driving. In order
to solve the forgetting problem caused by sample imbalance, some scholars have proposed
the use of memory module to enhance the ability of small sample feature extraction. Our
next task is to introduce this memory network into existing models to solve the problem of
low accuracy for small samples.

For the same dataset of urban scenes, Semantic3D has location and color information,
while SemanticKITTI only has location information. This results in a slight gap between
SemanticKITTI’s accuracy and Semantic3D’s accuracy. Considering that many lIDARs
in reality do not have the ability to collect color information. We consider calculating
the neighborhood normal vector information of each point to enhance the information
representation ability of the point cloud. The position information and normal vector
information of the point cloud are sent to the network to enhance the accuracy.

6. Conclusions

Semantic segmentation of outdoor scene environments is a key technology to ensure
the driving of unmanned vehicles. In this article, we propose a novel network LDE-Net for
semantic segmentation of colored 3D point clouds in outdoor environments. The network
is composed of local-global feature extraction modules and a local feature aggregation
classifier. LDE-Net integrates a local-global feature extraction module into encoder to
improve feature extraction capability. The local feature aggregation classifier is designed to
classify the extracted features and consider the neighborhood information to enhance the
local perception ability. The employment of these technologies will facilitate the deployment
of unmanned vehicles in real world settings with greater efficiency. Experimental results
demonstrate that the LDE-Net has better performance than other methods.
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