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Abstract: We propose a method that enables the precise determination of the number of atoms
in a Dick-noise-free optical lattice clock, by effectively addressing quantum projection noise. Our
approach relies on conducting stability measurements at three distinct parameter sets, allowing us to
differentiate between quantum projection noise, photon shot noise, and technical noise. Importantly,
it enables accurate extraction of the atom number, even in the presence of photon shot noise and
technical noise. We utilize numerical simulations to validate our approach, optimize the modulation
parameters for minimal uncertainty, and investigate the impact of atom number fluctuations on the
determinacy of our results. The numerical results show the validity of our method and demonstrate
an estimated uncertainty in the atom number that is below 4% with 6.7 h measurement, provided that
the standard deviation of atom number fluctuation is kept below 0.14 times the average atom number.

Keywords: atom number measurement; noise analysis; clock stability; optical clocks

1. Introduction

Ultra-cold atoms confined within an optical lattice have played a pivotal role in the
development of modern atomic clocks [1–3], the advancement of quantum techniques [4–8],
and the exploration of fundamental physics [9–12]. Accurate determination of the atom
number in the lattice is crucial to fully harness the potential of these applications. For
instance, precise knowledge of the atom number is essential for studying many-body
interactions [13,14], thereby reducing systematic uncertainties in optical lattice clocks
(OLCs) [1–4].

Commonly employed methods for atom number measurement include fluorescence
detection and absorption imaging [15–17]. However, the fluorescence detection method
is typically limited by uncertainties arising from the effective solid angle and probe light
intensity, resulting in a measurement uncertainty greater than 15% [15]. On the other hand,
the absorption imaging technique offers a lower measurement uncertainty below 10%,
relying on knowledge of the atomic sample shape and technical noise levels [16]. Recently,
advancements in synchronized frequency comparison based on in situ measurements have
effectively canceled out interrogation laser noise, improving measurement stability [18,19].
The comparison stability is constrained by atomic detection noises, including quantum
projection noise (QPN), photon shot noise, and technical noise [20,21]. This progress has
spurred the development of a new method to measure the atom number based on QPN.
The previous method of measuring atom numbers from atomic detection noise required the
neglect of technical noise [22]. This prerequisite prevented the utilization of atom number
measurement based on the QPN.

In this paper, we present a method to distinguish the QPN noise, photon shot noise,
and technical noise in a Dick-noise-free OLC [18,19,23–25]. By conducting three separate
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stability measurements with modulations of the atom number (N0) or the photon count
(γ0) detected per atom by the photoelectric detector, it becomes possible to extract the
contributions of each noise responsible for clock stability. This method allows us to accu-
rately determine the value of N0 by differentiating QPN from other sources of noise. To
further enhance precision, we use numerical simulations to investigate how modulation
parameters influence the estimated uncertainty of N0 and how measurement precision
evolves as N0 increases.

2. Methods
2.1. Theory

Assuming a transition probability of 0.5 and disregarding the detection laser noise,
which is typically much less significant than other factors in an OLC [21], the clock stability
σa at τ = 1 can be represented by [23,26]

σ2
a = σ2

QPN + σ2
Shot + σ2

Det. (1)

In Equation (1), σ2
QPN = T0/4S2

0N0 corresponds to the variance contributed by the
QPN, with T0 representing the clock cycle time, and S0 = 0.6π × Tp denoting the frequency-
sensitive slope of the spectrum at half-height point, where Tp is the interrogation time for
the clock transition in each clock cycle. σ2

Shot = T0/4S2
0N0γ0 refers to the variance origi-

nating from the photon shot noise, while σ2
Det = T0δ2

N/2S2
0N2

0 represents the contribution
of the technical noise. Here, δN stands for the electronic detection noise, including the
contribution of the amplifier, digitizer, dark current noise, and so on. As the three types of
noise exhibit distinct dependencies on N0 and γ0; it becomes possible to differentiate them
effectively by modulating N0 and γ0.

By controlling the detection laser intensity or its duration (Tdet), γ0 can be manipulated.
Specifically, by adjusting Tdet to Tdet/α while keeping other parameters constant as defined
in Equation (1), the value of γ0 will change to γ0/α. Consequently, the overall clock stability
can be represented as

σ2
b = σ2

QPN + ασ2
Shot + σ2

Det. (2)

In the same manner, by changing N0 to N0/β, we can separate the technical noise from
other noises, and the overall clock stability is denoted by

σ2
c = β(σ2

QPN + σ2
Shot) + β2σ2

Det. (3)

Combining Equations (1)–(3), the contributions of different noise sources can be
determined by solving  1 1 1

1 α 1
β β β2

 σ2
QPN

σ2
Shot

σ2
Det

 =

 σ2
a

σ2
b

σ2
c

. (4)

Once the value of σQPN is obtained using Equation (4), it becomes possible to determine
the absolute atom number in an OLC.

2.2. Numerical Simulation Method

To validate our approach and identify the optimal modulation parameters (α and β) for
minimizing the estimated uncertainty, we employ numerical simulations. The flow chart of
this simulation is shown in Figure 1, which involves three main steps. In step 1, we set the
values of Tp, T0, N0, γ0, δN, α, and β, and calculate S0, σa, σb, and σc. The noise-induced
frequency fluctuation is represented by the discrete normal random numbers with the
standard deviation of σa for case 1, σb for case 2, and σc for case 3. In step 2, the clock
comparison process between two clocks is executed with a simulated time of approximately
2.2 h for each case. The total simulated time is obtained by multiplying the total clock cycle
number by 3T0, where the reason of the use of 3T0 is that three measurements are required
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in real-world scenarios to determine the values of σa, σb, and σc. In this work, the Dick
effect is cancelled by setting the clock laser noise to be zero [27]. The cancellation of the
Dick effect can be realized in experiment by synchronous frequency comparison between
two clocks [23,28], or by using the in situ imaging technique to compare two regions of
cold ensembles in a clock [18,19,22,25]. Regarding the simulation aspect of the in-loop
clock operation, the excitation fractions at half-height points are determined by adjusting
the center frequency of the Rabi spectrum by ±0.4/Tp. Subsequently, the corresponding
generated discrete normal random numbers from step 1 are added to the determined
excitation fraction, and the frequency corrections of each clock are calculated. These
corrections are then utilized to update the center frequency of the Rabi spectrum. In step
3, upon completion of all clock cycles, the comparison stability is derived by computing
the Allan variance of the frequency difference between the two clocks. It is worth noting
that the Allan variance of a single clock should be divided by 2 [28]. Subsequently, the
parameters of σQPN, σShot, and σDet can be determined and the value of N0 is determined
by T0/4S2

0σ2
QPN.
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Figure 1. The flow chart of the numerical simulation.

In this work, we maintain T0 at 1 s and utilize Rabi detection with a fixed interrogation
time of Tp = 0.1 s, which can be easily implemented in the experiment. It is important to
note that the specific choice of Tp has minimal impact on the numerical results obtained.
The collision between atoms influences the atomic-density-dependent S0 [13,14]. However,
in our simulation, where Tp equals 0.1 s and the maximum atom number is lower than
6000, the system operates in the weak interaction region. Consequently, the variation in S0
can be reasonably disregarded as the atom number changes [13,14]. Nevertheless, if the
collision effects become prominent in a regime characterized by high density and strong
interactions, the value of S0 will be reduced due to density broadening. This reduction in
S0 indicates a higher level of instability for the clock.



Appl. Sci. 2024, 14, 1758 4 of 9

3. Results and Discussion

To verify the accuracy of our numerical calculation code, we compare the stabilities
obtained from numerical simulations at three sets of parameters to the theoretical results
shown in Figure 2. The parameters used for this comparison are T0 = 1 s, N0 = 500, γ0 = 1,
δN = 3 [23], α = 0.2, β = 0.1. The excellent agreement observed in Figure 2 between the
numerical and theoretical results confirms the correctness of our code and the validity of
our method.
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Figure 2. Comparisons of numerical and theoretical results of stabilities. The Allan variances of
frequency fluctuations at three-group parameters. The points represent the numerical results and dashed
lines indicate the corresponding theoretical results. All error bars represent the 1σ standard error.

We investigate the influence of α and β on the estimated uncertainty of N0 by studying
the standard deviation of 50 independent simulations at different combinations of α and β,
as shown in Figure 3a for N0 = 500 and Figure 3b for N0 = 2000. The white regions in both
figures indicate errors larger than 500 for Figure 3a and 2000 for Figure 3b, which occurs
when α or β approaches 1. In such cases, the modulation amplitudes of the parameters
become close to zero, indicating that the different noises cannot be distinguished. Similar
uncertainty distributions are observed for both cases. The smallest uncertainty is achieved
at α = 5.71 and β = 0.1 for N0 = 500, and α = 3.84 and β = 0.27 for N0 = 2000.
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Figure 3. Numerical results of estimated uncertainties at different modulation parameters of α and β.
(a) The standard deviation of 50 independent simulations at N0 = 500. (b) The case of N0 = 2000.

We also found that the maximum difference in estimated uncertainty within the ranges
of α = 0.1~0.44 and β = 1.97~6.73 is below 4% at the current total simulated time of 6.7 h.
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Therefore, we choose the parameters of α = 3.84 and β = 0.27 to numerically simulate the
measurements of N0 using our approach. Figure 4 demonstrates good agreement between
numerical and theoretical results, as N0 exceeds approximately 200. However, it should
be noted that larger uncertainties are observed when N0 is lower than 200, due to larger
noise and reduced stability. The larger noise can correspond to stronger excitation fraction
fluctuation, which may cause deviations in the half-height points of the Rabi spectrum
more frequently. Although the frequency–sensitivity slope S0 is not constant for the Rabi
spectrum, we use a constant S0 to infer N0, leading to deviations for small N0.
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Figure 4. Numerical results of the determined atom number as a function of set value. Points are
the results of single simulation, and the relative uncertainties are calculated by dividing error bars
(the standard deviation of 50 numerical simulations) by corresponding set values. The dashed line
indicates the theoretical values. As the atom number is smaller than 40, strong excitation fraction
fluctuation leads to lock-lose, indicating the importance of maintaining a sufficiently high atom
number to ensure stable and accurate measurements.

We verify our inference by conducting a comparison of N0 simulated results using
the Rabi and triangular spectra (shown in Figure 5), respectively. The values of S0 remain
unaffected by the frequency detuning on both the left and right sides in the case of a
triangular spectrum. As a result, the stability calculation utilizing Equation (1) will not be
influenced by fluctuations in the excitation fraction. Figure 4 demonstrates good agreement
between theory and numerical result as the triangular spectrum is used, which is the
powerful evidence of our hypothesis. Nevertheless, to achieve the triangular spectrum is
challenging, this phenomenon suggests that our method can effectively work when N0
exceeds about 200.

Exploring the relationship between total time consumption and estimated uncertainty
using our approach presents an intriguing avenue for further study, given their crucial
role in experiments. Figure 6 shows the relationship between relative uncertainty and total
simulated time. It is evident that as the time increases, the uncertainties decrease following
a slope of −0.5. This observation aligns with the fact that clock-comparison instability
also decreases at the same slope of −0.5 with increasing averaging time. Through linear
regression analysis, we determined that achieving a 1% uncertainty (one order of smaller
than the typical uncertainty of absorption imaging [15–17]), requires a simulated time of
approximately 20 h.
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Figure 5. Numerical results of the determined atom number as a function of set value using the
Rabi spectrum (circles) and triangular spectrum (triangles), respectively. Points are the results of
single simulation, and the error bars indicate the standard deviation of 50 numerical simulations.
The dashed line indicates the theoretical values. The inset shows the spectra of Rabi (solid line)
and triangular spectrum (dotted line), respectively, wherein δF denotes frequency detuning and
Pe represents excitation fraction.
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Figure 6. Relative uncertainty of the atom number measurement as a function of time consumption.
The relative uncertainty is obtained by dividing the standard deviation of 50 numerical simulations by
the atom number set at 2000. The red solid lines indicate the linear fitting with a fixed slope of −0.5.

In the real world, the number of atoms trapped in the lattice may vary from shot-to-
shot clock cycles, making it important to study the relationship between the fluctuation
amplitude of atom number and estimated uncertainty using our method. Both factors are
critical in experiments. To induce atom number fluctuations, we added discrete random
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integers to the set value of N0 in every clock cycle, where the added noise followed a normal
distribution N~(2000, 2000σf), where σf represents the fractional fluctuation of the atom
number and can be ranged from 0 to 1. Figure 7a shows the atom number as a function of
simulated time, while Figure 7b presents the numerical results of the extracted averaging
atom number and corresponding relative uncertainty as a function of σf. Surprisingly, we
found that the estimated uncertainty is almost independent of σf when the value of σf is
smaller than approximately 14%. However, for larger values of σf, the estimated uncertainty
rapidly increases, and the determined atom number deviates from the theoretical value of
2000. Figure 7b indicates that our method is effective, as long as the standard deviation of
atom number fluctuation is controlled below 0.14 times the averaging atom number.
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Figure 7. The atom number fluctuation and estimated uncertainty as a function of σf. (a) The
fluctuation of atom number at σf = 5%, 10% and 20%, respectively. (b) Measurements of the atom
number (averaging value of 50 simulations) and corresponding relative uncertainty (the standard
deviation of 50 simulations) as a function of σf. The dashed line shows the set averaging number of
atom of 2000.

4. Conclusions

In conclusion, our proposed method provides a valuable tool for accurately measuring
the atom number in an OLC system where clock stability is limited by quantum projection
noise, photon shot noise, and technical noise. The numerical results indicate that our
approach can achieve an estimated uncertainty below 4% for atom numbers ranging from
50 to 6000 (the maximum setting value in this study). Furthermore, this level of uncertainty
is achieved with a total simulated time of 6.7 h. It is important to note that by increasing
the simulated time, it is possible to further reduce the uncertainty even more. We also
investigated how the fluctuation of atom number affects the measurement results. The
numerical results indicate that the standard deviation of atom number fluctuation should
be controlled to be below 0.14 times the average atom number. Ensuring a stable atom
number over an extended period is crucial in our proposed method. This can be achieved
by controlling the atom number during the first stage of cooling and trapping, for example,
by providing feedback on the duration of the Zeeman slower or the two-dimensional
collimation light [29]. This work can advance research in many-body interaction [13,14,19],
nondestructive detection [30], and entanglement of atoms [31], as the precise measurement
of atom number enables more precise control and manipulation of atomic systems.
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