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Abstract: Machine- and deep-learning methods are used for industrial applications in prognostics
and health management (PHM) for semiconductor processing and equipment anomaly detection to
achieve proactive equipment maintenance and prevent process interruptions or equipment downtime.
This study proposes a Pruning Quantized Unsupervised Meta-learning DegradingNet Solution
(PQUM-DNS) for the fast training and retraining of new equipment or processes with limited data
for anomaly detection and the prediction of various equipment and process conditions. This study
utilizes real data from a factory chiller host motor, the Paderborn current and vibration open dataset,
and the SECOM semiconductor open dataset to conduct experimental simulations, calculate the
average value, and obtain the results. Compared to conventional deep autoencoders, PQUM-DNS
reduces the average data volume required for rapid training and retraining by about 75% with similar
AUC. The average RMSE of the predictive degradation degree is 0.037 for Holt–Winters, and the
model size is reduced by about 60% through pruning and quantization which can be realized by edge
devices, such as Raspberry Pi. This makes the proposed PQUM-DNS very suitable for intelligent
equipment management and maintenance in industrial applications.

Keywords: anomaly detection; deep learning; prediction; pruning; edge computing; intelligent equipment
management; meta-learning; retraining; semiconductor; unsupervised learning; vibration; quantization

1. Introduction

Research related to prognostics and health management (PHM) indicates that anomaly
detection and prediction are important approaches to monitoring equipment faults and
semiconductor process abnormalities. However, this type of detection often relies on
subjective assessments performed by operators with prior experience. Automating the
detection of equipment faults or semiconductor process anomalies is essential for reliable
predictive maintenance and can potentially eliminate the need for manual monitoring.
Moreover, interconnected intelligent monitoring systems play a crucial role in Industry 4.0,
which focuses on artificial intelligence (AI)-driven factory automation.

In recent years, various deep-learning techniques have been introduced for anomaly
detection and prediction in PHM, focusing on equipment faults (vibration and current
anomalies) and semiconductor processes [1–10].

The related techniques include dense autoencoders (AEs) [11], convolutional AEs [12],
and pretrained convolutional neural networks [13]. Although these deep-learning ap-
proaches exhibit excellent performance in anomaly detection, their widespread adoption in
real factory settings remains limited. One major reason for the slow adoption is the high
computational resource requirements of many deep-learning-driven anomaly detection
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methods. These methods often lack practical considerations and system integration, ignor-
ing factors such as multi-machine or multi-production line deployment, model retraining,
optimization, and systematic integration. Consequently, their applicability in real factory
environments is hindered.

Many studies have been conducted in the field of PHM. Pradeep et al. proposed
that machine-learning techniques could be used to predict wafer defects with a random
forest classifier, achieving an accuracy of over 93.62% [14]. This predictive maintenance
approach enhanced the semiconductor manufacturing productivity. Nuhu et al. introduced
synthetic data generation techniques that combined two missing value imputation methods
and feature selection techniques [15]. This approach achieved an accuracy ranging from
99.5% to 100% when paired with the proposed machine-learning (ML) methods. Mao et al.
introduced a novel deep AE (DAE) method that fused discriminative information with
a gradient descent optimization approach [16]. This technique enhanced the numerical
stability of the model in cases with limited training data. Abbasi et al. presented a series
of highly compact deep convolutional AE network architectures that reduced the model
size while maintaining a detection accuracy comparable to that of structures with over
four million parameters [17]. Givnan et al. proposed an ML method for modeling and
detecting anomalies during the operation of rotating machinery. This ML approach learned
and generalized based on the fault severity to generate threshold values for anomaly
detection [18].

A DAE model specifically designed for factory scenarios involving chillers was intro-
duced that effectively distinguished between normal and abnormal vibration signals based
on reconstruction differences [19]. Additionally, meta-learning was employed to improve
the accuracy of the new sensor models with limited vibration data. For the new sensor
model with fewer vibration data, the accuracy increased by about 33.50%. However, this
method is mainly oriented to anomaly detection; it has not yet considered model retraining,
anomaly prediction, lightweight models, edge computing, and integration with a complete
intelligent management system.

Considering the aforementioned issues, this study proposes a Pruning Quantized
Unsupervised Meta-learning DegradingNet System (PQUM-DNS) to address the real-
world conditions of practical factories. This approach integrates five key features based on
the actual needs of factories as illustrated in Figure 1.

Figure 1. Overview of the proposed Intelligent Equipment Management System with related tech-
niques highlighted in this paper.

(1) Intelligent Equipment Management System (Sections 3.1 and 4.1)

This system includes automated methods for vibration signal sensing, data transmis-
sion, data preprocessing, model training and retraining, anomaly detection, and prediction.
Visual results are presented through dashboards and alert notifications are sent to onsite
personnel and managers to facilitate timely problem solutions.

(2) Meta-learning for Rapid Training of Anomaly Detection and Prediction Models across
Multiple Machines (Sections 3.2 and 4.2)



Appl. Sci. 2024, 14, 1708 3 of 20

This approach rapidly establishes models for new machines or production lines with
limited data by leveraging meta-learning and unsupervised learning through AEs, thereby
achieving anomaly detection and prediction objectives.

(3) Meta-learning Adaptive Model Retraining (Sections 3.3 and 4.3)

Machine-specific models are adaptively retrained by employing meta-learning, quickly
adjusting to the slow-changing characteristics of the machine over time and enabling long-
term anomaly detection and prediction.

(4) Lightweight AI Models (Sections 3.4 and 4.4)

The proposed pruning and quantization compression model significantly reduces
model size and conserves computational resources.

(5) Edge Device Computation (Sections 3.5 and 4.5)

Substituting traditional AI inference engines (IPC) with embedded Raspberry Pi
systems enhances lightweight deployment, resource savings, cost reduction, and large-
scale deployment feasibility.

2. Related Study

The following fundamental hardware, software techniques, and specifications are com-
monly used in semiconductor process and industrial scenarios for intelligent
equipment management.

2.1. Vibration Signal Data Acquisition

(1) Device Sensors

One study collected real-time vibration data from equipment in an actual factory using
an Advantech WISE-2410 LoRaWAN wireless sensor that integrated an ARM™ Cortex-
M4 processor, LoRa transceiver, three-axis accelerometer, and temperature sensor [20]. It
operated within a temperature range of −20 ◦C to 85 ◦C and was powered via USB.

(2) Vibration Data Feature Transformation

The raw vibration signals received from the sensors undergo feature transformation.
The transformed features are critical for determining the vibration state and mainly include
values such as velocity root mean square (RMS), acceleration RMS, acceleration peak,
displacement kurtosis, displacement crest factor, displacement skewness, displacement
peak to peak, and displacement deviation.

2.2. Vibration Signal Data of Chiller

Chillers are primarily utilized to build air conditioning systems. Chiller motors drive
compressors and facilitate the exchange of heat and cold. In this study, vibration sensors
were installed on a chiller motor to detect vibration values, as shown in Figure 2. Key
vibration characteristics representing actual vibration measurements in a factory field were
obtained through feature transformation [19].

Figure 2. Vibration sensor (in the red square) installed on the motor of a chiller machine.
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Machine condition monitoring (MCM) was used to convert vibration signals into
44 key time- and frequency-domain physical and statistical feature values, as listed in
Table 1 [21].

Table 1. Key time- and frequency-domain physical and statistical feature values of vibration signals
transformed by MCM.

Feature Types Feature

Time Domain
(22 Features)

Clearance factor, max, mean, median, min, coefficient of variation, crest factor, local max, local min,
max in range, frequency, impulse factor, kurtosis, percentile, peak to peak, RMS, shape factor,
skewness, standard deviation, variance, X of max, X of min

Frequency Domain
(22 Features)

Clearance factor, coefficient of variation, crest factor, frequency, impulse factor, kurtosis, local max,
local min, max in range, max, mean, median, min, percentile, peak to peak, RMS, shape factor,
skewness, standard deviation, variance, X of max, X of min

This study refers to ISO10816 [22] as shown in Figure 3 to determine the normal and
abnormal vibration data of the chiller host motor. Results may vary depending on the size
of the equipment where the sensor is installed.

Figure 3. Vibration Severity defined in ISO10816 [22].

2.3. Paderborn University Bearing Dataset

A condition-monitoring experimental bearing dataset based on vibration and motor
current signals was used from Germany’s Paderborn University, as shown in Figure 4 [23].
Experimental datasets were generated by installing different types of damaged ball bear-
ings in the bearing test module. The setup consisted of healthy bearings with 1920 and
1600 entries for outer and inner ring damage, respectively. The most common bearing
damage analysis [24] involves using motor current signals (MCSs) to convert time-domain
signals into frequency-domain signals to observe the spectrum differences between normal
and abnormal bearings as shown in Figure 5.

Feature engineering was applied to extract features from raw data, including common
statistical, signal factor-related, fast Fourier transform (FFT), power spectral density (PSD)-
related, and wavelet packet decomposition (WPD)-related features, as listed in Table 2.

Figure 4. Germany’s Paderborn University Bearing Dataset, consisting of: (1) motor, (2) torque
measurement shaft, (3) rolling bearing test module, (4) flywheel, and (5) load motor.



Appl. Sci. 2024, 14, 1708 5 of 20

Figure 5. Frequency spectrum from MCS for (a) healthy bearing, (b) outer ring damage, and (c) inner
ring damage [23].

Table 2. Feature values of vibration and current features after feature extraction.

Feature Types Feature

Statistical feature Mean, median, min, max, peak to peak, Std, variance, RMS, Absmean, Abslogmean, Meanabsdev,
Medianabsdev, coefficient of variance, midrange

Signal factor-related
feature Shape factor, impulse factor, crest factor, clearance factor, skewness, kurtosis, entropy

FFT, PSD-related feature
1. Highest 3 FFT frequencies and values (6)
2. Highest 5 PSD frequencies (5)
3. Energy sum of FFT and PSD (2)

Wavelet packet
decomposition
(WPD)-related feature

Variance of 3 levels of WPD coefficient:
Level 1 (2)
Level 2 (4)
Level 3 (8)

2.4. SECOM Semiconductor Analysis Dataset

The semiconductor manufacturing process utilizes semiconductor wafers as substrates
and processes them through a series of steps. The main steps include: cleaning the wafer,
depositing the film, cleaning after film formation, exposure, development, etching, inserting
impurities, generating semiconductor properties, activation, assembly, and packaging. At
each stage, sensors measure relevant parameters, including film thickness, size, resistance,
temperature, etc. Through data analysis and machine learning, predictive maintenance,
fault detection, process monitoring, and yield improvement are performed. These methods
can also extract useful information from limited event records. Large amounts of data
help solve predictive maintenance issues and build fault detection and diagnosis models.
Through timely fault detection and diagnosis, downtime is reduced, costs are lowered, and
product quality is enhanced [25].

Data were collected from a complex modern SECOM semiconductor manufacturing
process that was under consistent surveillance through the monitoring of signals/variables
collected from sensors or process measurement points. The dataset contained 1567 ex-
amples, 591 features, and 104 failures. Random forests were used to extract the 16 most
important features for subsequent analysis to filter the key features because the SECOM
dataset contained 591 features, as shown in Figure 6 [26–28]. For the SECOM dataset, the
target column “−1” corresponds to a pass and “1” corresponds to a fail.
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Figure 6. Extracting 16 key features from the SECOM dataset’s 591 features using random forests.

2.5. Data Preprocessing

Data often encounter issues in practical scenarios, such as incomplete or missing data,
noise, and outliers. These issues can disrupt the proper functioning of models. Hence, data
preprocessing is essential for adjusting and manipulating data before applying analytical
algorithms and preventing inaccurate judgments owing to flaws in the data. In this context,
missing value deletion and statistical analysis were utilized to identify and eliminate
values exceeding three standard deviations. This resulted in cleaner data, which facilitated
subsequent analyses.

2.6. Equipment Process Degradation Level

The algorithm employed was an AE, which is a technique based on unsupervised
learning. This approach involves computing the root mean square error (RMSE) by com-
paring the reconstructed output values of the model with the numerical input values. The
calculated RMSE serves as an indicator of the equipment process degradation level, where
smaller and larger values indicate healthier and poorer states, respectively [7,8].

2.7. Equipment Process Data Storage

A real-time PostgreSQL database was used to store the data collected from the sensors,
including sensor names, equipment names, sensor registration times, operational data,
and access to AI model training and inference. The inference results were stored and the
database offered interfaces for other platforms to access the required data.

2.8. Area under Curve

Area under curve (AUC) is the area under the receiver operating characteristics (ROC)
curve. AUC is a widely used evaluation metric in ML that assesses the performance of
binary or multi-class classifiers [6,29]. Values range from 0 to 1, with a higher AUC value
indicating better classifier performance. A notable advantage of AUC is its immunity
to threshold variations, providing a comprehensive evaluation across different thresh-
olds. This attribute makes AUC particularly robust in scenarios with imbalanced datasets.
Figure 7 is an introduction to statistical principles related to AUC [30].
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Figure 7. The results obtained from negative sample (left curve) overlap with the results obtained
from positive samples (right curve). By moving (green arrow) the result cutoff value (vertical bar),
the rate of false positives (FP) can be decreased, at the cost of raising the number of false negatives
(FN), or vice versa (TP = True Positives, TPR = True Positive Rate, FPR = False Positive Rate, TN =
True Negatives).

3. Proposed Method
3.1. Intelligent Equipment Management System

The proposed PQUM-DNS was integrated into an intelligent equipment management
system for practical field applications. Signals were initially collected from the device
sensors within the system before feature extraction transformation and data preprocessing,
as shown in Figure 8. The feature extraction transformation involved converting raw
vibration feature values into multiple key parameters related to machine health. Data
preprocessing involved eliminating unnecessary empty and abnormal values to retain only
the normal values required for unsupervised learning. The processed data were stored in
a database (PostgreSQL) until there were sufficient accumulated data (e.g., 3000 records,
adjustable). Subsequently, both AE and Holt–Winters algorithms were used to train the
anomaly detection and prediction models, respectively. An inference was performed using
anomaly detection and prediction models to generate results that indicated the degree of
equipment or process degradation. The inference results were stored in a database and
abnormal detection and prediction outcomes were sent to the visual dashboard of the
intelligent management system, providing users with insights into the machine conditions.
The system issued alert notifications to relevant personnel if the results of the abnormal de-
tection and prediction exceeded the threshold of the AI equipment or process degradation.
When retraining the model with a small amount of data using PQUM-DNS, the anomaly
detection model can adapt after the first training of the Pretrain and Metatrain models, and
then use a small amount of data to fine-tune retraining to obtain the new model.

Figure 8. Flowchart of the proposed intelligent equipment management system.
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3.2. Meta-Learning for Rapid Training of Multi-Machine Models for Anomaly Detection and
Prediction

The rapid training of meta-learning multi-machine models for anomaly detection and
prediction used in the PQUM-DNS was introduced in a previous study [19]. This method
utilizes abundant data from numerous machines, trains the Metatrain model using the AE
+ meta-learning approach, and fine-tunes the Metatrain model with a small amount of data
from new machines. This process yields a model adapted to a new machine, facilitating the
inference for anomaly detection. In this study, the anomaly detection results were combined
with prediction models to forecast future anomalies based on past anomaly detection
outcomes. The following provides a brief introduction to the techniques employed.

(1) Meta-learning

Meta-learning is a technique aimed at enabling machine-learning systems to swiftly
adapt to new tasks or environments [4]. Traditional machine-learning algorithms often
require large amounts of labeled data to train models. In addition, it is necessary to collect
and label substantial data for retraining when faced with new tasks. In contrast, the goal
of meta-learning is to train a “learner” that is capable of rapidly learning new tasks from
a small amount of labeled data. This approach typically relies on prior experience with
numerous similar tasks and applies this experience to new tasks. These tasks can be
expressed as:

Learn θ such that Φi = fθ

(
Dtr

i
)

is good for Dts
i (1)

θ∗= argmax
θ

∑n
i=1 logP

(
ϕi|Dts

i
)

(2)

where
Φi = fθ

(
Dtr

i
)

(3)

Dmeta−train =
{(

Dtr
1 , Dts

1 ),
(

Dtr
n , Dts

n
)
} (4)

Ti
{

Dtr
i =

{(
χi

1, yi
1
)
, · · · ,

(
xi

k, yi
k
)}

Dts
i =

{(
xi

1, yi
1
)
, . . . ,

(
χi

l , yi
l
)} (5)

where Ti is a (meta-learning) task.
An illustration of the meta-learning method is shown in Figure 9 [31].

Figure 9. Illustration of the meta-learning method.

Various meta-learning models have been proposed for deep learning that are generally
categorized as follows: learning good weight initializations, metamodels that generate
the parameters of other models, and learning transferable optimizers. Model-agnostic
meta-learning belongs in the first category and learns a good initial weight initialization
to achieve fast adaptation to new tasks, enabling rapid convergence and fine-tuning of
small-scale training samples [32].

(2) Anomaly Detection
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The AI degradation level index was used to detect anomalies and the model was
established using an unsupervised AE algorithm, as shown in Figure 10. This method
involves constructing a model with normal data and applying an AE to compute the
root mean square error (RMSE) between the input and output data, referred to as the
reconstruction error. Here, the reconstruction error was defined as the AI degradation level
index. A smaller value indicates a closer alignment between the model input and output
values, leading to a better data reconstruction capability and a higher likelihood of normal
equipment or processes.

Figure 10. Structure of the autoencoder.

In practical applications, suitable threshold values are defined based on the conditions
of the equipment or processes used for anomaly determination. These are expressed as:

h = g(W1X + b1) (6)

X′ = f (W2h + b2) (7)

Minimize RMSE
(

X, X
′)

(8)

(3) Anomaly Prediction

Time-series algorithms can use historical data from the past to predict future trends.
In this study, historical records of the health status of semiconductor manufacturing pro-
cesses and machine equipment in the past can be used to predict future health status using
time-series algorithms. The proposed anomaly detection models trained on the anomaly
detection dataset could only detect current and past data anomalies. Therefore, an addi-
tional anomaly prediction model was required for future anomaly states. The historical
data of the AI degradation level index obtained from anomaly detection were compared
with various commonly used prediction models. Finally, the Holt–Winters algorithm was
applied to the anomaly prediction model [7].

Various anomaly prediction algorithms are introduced below and the overview is in
Table 3.

Table 3. Overview of time-series algorithms.

Algorithm Overview (or Main Features)

Simple exponential smoothing (SES) By placing a large weight on the most recent data, only two values and constants are needed
to predict the next period of value

Holt (Holt’s linear trend) Holt’s linear trend, which predicts trends in data, consists of a prediction equation and two
smoothing equations for sequences that have a linear trend and no seasonality

Holt–Winters (Holt–Winters seasonal method) The Holt–Winters method forecasts time series with both trends and seasonality

Autoregressive (AR) The historical data of the variable itself are used to predict its own data, and the
autoregression must meet the requirements of stationarity

Moving Average (MA)
A simple smoothing forecasting technique that calculates the sequence average of a certain
number of items in turn according to the time-series data and the passage of time items to
reflect the long-term trend

Autoregressive integrated moving average
(ARIMA)

In the case analysis of non-stationary time series, the originally non-stationary time series
becomes a stationary time series after many differences

Seasonal ARIMA (SARIMA) ARIMA (differentially integrated moving average autoregressive) time-series-forecasting
method with seasonal periodicity
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(a) Simple Exponential Smoothing (SES)

This algorithm is used when there is no clear trend or seasonal pattern in the predictive
data [33,34]. The prediction is calculated using weighted averages, meaning that the largest
and smallest weights are associated with the most recently and least recently observed
values, respectively. This is expressed as:

ŷT+1|T = αyT + α(1 − α)yT−1 + α(1 − α)2yT−2 + . . . (9)

where ŷT+1|T denotes the one-step-ahead forecast for time T + 1, yT denotes the most recent
observation, and 0 ≤ α ≤ 1 denotes the smoothing parameter.

(b) Holt (Double Exponential Smoothing Method)

The Holt double exponential smoothing method is an extension of the simple expo-
nential smoothing method that predicts trends in data [9]. This method is suitable for
linear trending sequences without seasonal patterns and consists of one prediction and
two smoothing equations that represent the level and trend components (lt, bt), which are
respectively expressed as:

ŷt+h|t = lt + hbt (10)

lt = αyt + (1 − α)(lt−1 + bt−1) (11)

bt = β∗(lt − lt−1) + (1 − β∗)bt−1 (12)

where yt and lt denote the observed value and level at time t, respectively. bt, h, α, and
β∗ denote the trend at time t, weight for the level (0 ≤ α ≤ 1), and weight for the trend
(0 ≤ β∗ ≤ 1), respectively.

(c) Holt–Winters Forecasting (Triple Exponential Smoothing)

Holt–Winters forecasting, also known as triple exponential smoothing, is a method
used to predict the behavior of time-series data that includes trends and seasonality. This
algorithm considers three factors: the level lt, trend bt, and seasonal component st. It is
effective for forecasting time-series data with seasonality patterns. There are two variations
of this method: the additive and multiplicative models.

In the additive model, the components are expressed as:

ŷt+h|t = lt + hbt + st+h−m(k+1) (13)

lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1) (14)

bt = β∗(lt − lt−1) + (1 − β∗)bt−1 (15)

st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m (16)

In the multiplicative model, the components are expressed as:

ŷt+h|t = (l t + hbt

)
st+h−m(k+1) (17)

lt = α
yt

st−m
+ (1 − α)(lt−1 + bt−1) (18)

bt = β∗(lt − lt − 1) + (1 − β∗)bt−1 (19)

st = γ
yt

(lt−1 + bt+1)
+ (1 − γ)st−m (20)

where st, k, m, α, β∗, and y denote the season at time t, integer part of (h − 1)/m, number of
cycles/frequency of seasonality (e.g., four for quarterly data), level smoothing parameter,
trend smoothing parameter, and seasonal smoothing parameters/weight for the season
(0 ≤ γ ≤ 1), respectively.
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In the additive model, the forecast value for each data element is the sum of the
baseline, trend, and seasonality components. However, a multiplicative model is preferred
when seasonal variations change proportionally to the level of the series.

(d) Autoregressive Model

The autoregressive (AR) model is a statistical method used to analyze time-series
data that predict the future value of a variable using its own historical data [35]. AR
is an evolution of linear regression analysis, where it analyzes the relationship between
parameter x and its own past value instead of analyzing the relationship between the
parameter x and dependent variable y. This is expressed as:

yt = C + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕPyt−p + εt (21)

where yt, C, p, ϕi, and εt denote the stationary time series, constant term, autoregressive
order, non-zero autocorrelation coefficients, and independent error term, respectively.

(e) Moving Average

Moving average (MA) is a simple smoothing prediction technique used for time-series
data that calculates a moving average over a certain number of terms to reflect long-term
trends [36]. However, it is difficult to discern the development trend when time-series data
are influenced by periodic and random variations causing large fluctuations. Using MAs
can eliminate these influences and reveal the direction and trend of the events, which is
expressed as:

yt = µ + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (22)

where yt, µ, q, and θi denote the stationary time series, mean of the sequence, moving
average order, and non-zero autocorrelation coefficients, respectively.

(f) Autoregressive Integrated Moving Average

Autoregressive integrated moving average (ARIMA) is an evolution of the AR, MA,
and autoregressive moving average models. This approach is used to analyze non-
stationary time-series data by transforming them into stationary data through differenc-
ing [37]. This method is employed when dealing with non-stationary time-series data
that exhibit a changing mean and variance over time. A new stationary time series can be
obtained by using the differences in the data, and a suitable probabilistic model can be de-
rived from historical data to represent the dependence between time and data. ARIMA can
be expressed as ARIMA (p, d, q), where p, d, and q denote the autoregressive, differencing,
and moving average orders, respectively. Furthermore:

y
′
t = c + ϕ1y

′
t−1 + . . . + ϕPy

′
t−P + θ1εt−1 + . . . + θqεt−q + εt (23)

where ϕi and θi denote non-zero autocorrelation coefficients.

(g) Seasonal Autoregressive Integrated Moving Average

The seasonal autoregressive integrated moving average (SARIMA) model incorporates
seasonal factors into the ARIMA model [38]. Generally, the SARIMA model is denoted
as SARIMA (p, q, d)(P, Q, D)s, where s, P, Q, D denote the seasonal period and seasonal
autoregressive, seasonal moving average, and seasonal differencing orders, respectively.
This is expressed as:(

1 −
p
∑

i=1
φiBi

)(
1 −

p
∑

i=1
ΦiBim

)
(1 − B)d(1 − BDm)yt =(

1 + ∑
q
i=1 θiBi

)(
1 + ∑

q
i=1 ΘiBim

)
ϵt

(24)

where B denotes the lag operator, and Φi and Θi denote non-zero constants.
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3.3. Meta-Learning Adaptive Model Retraining

Meta-learning was employed to develop an adaptive method for retraining machine-
specific models [4]. This approach enables models to quickly adjust to the slow changes
observed in each machine over time, thereby achieving prolonged anomaly detection. The
concept of rapid training models for different machine devices was extended to different
time segments by combining the background technique of AEs with meta-learning.

The data were segmented into three intervals based on chronological order: Pretrain
(older and long-running machine data), Metatrain (newer and long-running machine
data), and Fine-tune (latest operational data). Leveraging the principles of meta-learning,
Pretrain and Metatrain data were used to train a generalized anomaly detection model,
whereas Fine-tune adapted the model to the most recent machine conditions. This approach
automatically trains models that adapt to data changes over time.

Model retraining was based on the operational conditions of the factory to maintain
the effectiveness of the anomaly detection model. The historical data were also divided into
Pretrain, Metatrain, and Fine-tune segments by utilizing seven days of equipment operation
data, as shown in Figure 11. This process led to the training of an anomaly detection model
that could assess the degree of equipment degradation, as shown in Figure 12. Additionally,
predictive algorithms were applied to forecast equipment degradation over the next seven
days. The ultimate goal was to achieve continuous automatic updates for anomaly detection
and prediction.

Figure 11. Historical data of seven days segmented into Pretrain, Metatrain, and Fine-tune for
training an anomaly detection model to detect equipment degradation.

Figure 12. Automatic model retraining based on time intervals, with the retrained model used for
predicting anomalies in the next seven days.

3.4. Lightweight AI Model

A pruning and quantization-based meta-learning anomaly detection model was intro-
duced owing to the possibility of certain neural neuron weights being small or negligible
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during the retraining process of the neural network of the proposed model. This approach
significantly reduced the model size and enhanced the computational speed.

(1) Model Pruning

Deep-learning neural network models often contain redundant parameters, with many
neuron weights approaching zero. Model pruning involves removing these neurons while
preserving the same model expressive capability. Model pruning retains the essential
weights and parameters, reducing the number of connections between the neural network
layers, as shown in Figure 13 [39]. This reduction helps to decrease the number of param-
eters involved in the calculations, thereby lowering the computation requirements. By
maintaining the performance of the model, this approach reduces the storage space, lowers
computational costs, and accelerates the training process.

Figure 13. Model pruning retains important weights and parameters while reducing the number of
connections between neural network layers.

Pruning algorithms typically employ a three-stage pipeline: training, pruning, and
fine-tuning. The weight adjustment process in the three-step training pipeline for pruning
is shown in Figure 14. The model’s weights are trained, pruning techniques are applied to
remove neurons with weights approaching zero, and the model is fine-tuned to adjust the
remaining weights to approximate the performance of the original model. This iterative
process helps align the performance of the model with that of the original model.

Figure 14. Weight adjustment process in the three-step training pipeline for pruning.

(2) Model Quantization

The principle of quantization involves reducing the precision of the bits used to
represent model parameters (typically 32-bit floating-point (float32) numbers) [40]. This
approach results in smaller model sizes and faster computations. Model quantization
involves approximating the continuous values (or a large number of possible discrete
values) of the floating-point model weights with a limited set of discrete values (usually
8-bit integer (int8) numbers) at a lower inference accuracy loss, as shown in Figure 15 [40].
A lower-bit data type is used to approximate the finite-range floating-point data, which
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leads to a reduced model size, decreased memory consumption, and faster inference speed.
The calculations are expressed as:

Q =
R
s
+ z (25)

s = (Rmax − Rmin)/(Smax − Smin) (26)

where R, Q, z, and s denote the real floating-point value, fixed-point value after quantization,
fixed-point value after quantization of the 0 floating-point value, and minimum scale that
can be represented after fixed-point quantization, respectively.

Figure 15. Model quantization: conversion from float32 to int8.

The model-pruning approach is applied using weight sparsity, where weights close
to zero are removed from the original model. Subsequently, the model is retrained to
adjust its performance. Additionally, quantization techniques are combined to convert the
weights from float32 to int8, thereby significantly reducing the model size and enhancing
the computational speed.

3.5. Edge Device Computing

The pruned and quantized models are deployed on embedded systems, such as a
Raspberry Pi, replacing traditional IPCs. This lightweight approach conserves resources,
reduces costs, and facilitates a large-scale deployment. Edge devices can analyze data and
promptly alert onsite maintenance personnel in industrial scenarios where certain equip-
ment is located in hard-to-reach locations [10,18]. This enables real-time responsiveness to
the equipment conditions, allowing immediate intervention and preventing downtime.

Benefits of edge computing are as follows:

• Provides rapid real-time reflection of situations, enabling onsite personnel to detect
anomalies promptly and take immediate action.

• Solves bandwidth issues in cloud and edge transmissions because edge devices only
need to send inference results back to the control centers.

• Addresses cybersecurity concerns, protecting against network attacks that could lead
to factory shutdowns.

• Reduces energy consumption because lightweight edge-computing models
conserve power.

4. Results and Discussion
4.1. Intelligent Equipment Management System

Automated methods are used for vibration signal sensing, data transmission, data
preprocessing, model training, and retraining. The results are visually presented through
dashboards. The system utilizes AI degradation level values to detect anomalies and sends
warning notifications for timely handling by managers and onsite personnel. A comparison
between this system and traditional methods is presented in Table 4.
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Table 4. Comparison of intelligent equipment management system and traditional approaches.

Issue Intelligent Management System Traditional Management System

Intelligent
management

Integrate and automate equipment alarms, display
visualization results in a Kanban style, and send
warning notices to facilitate timely handling of
problems by managers on site.

A manager will only be notified of a situation by
onsite personnel when an abnormality occurs in
the equipment or the production line stops, thus
not dealing with the situation in a more timely
manner.

Meta-learning
anomaly detection and
prediction

Apply meta-learning to quickly train AI models
for automatic detection and prediction of new
equipment anomalies for preventive
equipment maintenance.

New machine models require a great deal of data
to train, personnel need to confirm the condition of
the equipment from time to time, and preventative
maintenance cannot be performed in advance.

Meta-learning
adaptive modeling
with retraining

Meta-learning can be used to quickly adapt to the
characteristics of machines that change slowly over
time, thus realizing the purpose of model updating
over a long period of time.

The model is retrained by AI analysts when an
abnormality occurs in the model, which is
labor-intensive and increases risk to
the equipment.

Lightweight
quantitative AI models

Dramatically reduces the size of the model and
increases the speed of the operation.

Larger models consume more hardware space for
storage and run more slowly.

Edge computing It can be lightweight, save resources, reduce cost,
and achieve the purpose of large-scale parts.

Larger PC computing devices are bulky, heavy,
costly, energy-intensive, lack mobility, and are
difficult to deploy on a large scale.

4.2. Meta-Learning for Rapid Training of Multi-Machine Models for Anomaly Detection
and Prediction

For the sake of versatility, meta-learning is applied to multi-machine anomaly detection
and prediction models with different datasets, such as factory chiller vibration data, publicly
available datasets for analyzing the vibration and current of Paderborn bearings, and
SECOM semiconductor analysis.

(1) Rapid Training of Multi-Machine Models for Anomaly Detection

The proposed PQUM-DNS method is compared with the general DAE method.
PQUM-DNS achieves similar AUC values with minimal data compared to those of the
DAE method when used to train models for new machines. This is because PQUM-DNS
used meta-learning to train a versatile model applicable to various conditions (Metatrain
model). Therefore, training a new machine model only requires a small amount of data
for fine-tuning, resulting in a rapidly adaptable anomaly detection model. Test results for
different data types, such as chiller vibration, SECOM, and Paderborn current and vibration
datasets are presented in Table 5 and Figure 16. Compared with the DAE, PQUM-DNS
reduces the required data for training new machine models on average by approximately
75%, with a decrease in AUC performance of only 0.35%, which is a very close AUC value.

Figure 16. Comparison of PQUM-DNS and DAE training data.
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Table 5. Comparison of PQUM-DNS and DAE training performance for different data types.

Training

Chiller Vibration
Data

Paderborn Open
Dataset Current

Paderborn Open
Dataset

Vibration

SECOM Open
Dataset Average

PQUM-DNS

AUC (%) 99.99 92.73 99.81 68.97 90.38
Data quantity 392 113 293 248 262

DAE

AUC (%) 99.99 97.03 99.73 66.14 90.73
Data quantity 1569 452 1172 993 1047

Improvement

AUC
Increase (%) 0.00 −4.3 0.07 2.83 −0.35

Data quantity
Decrease (%) 75.02 75 75 75.03 75.01

(2) Anomaly Prediction:

PQUM-DNS detects machine degradation levels through anomaly detection and
evaluated these levels using various prediction algorithms. Seven prediction algorithms
are compared and one based on RMSE calculations is selected based on the predicted and
actual values. The performances of these algorithms on different datasets are presented
in Table 6 and Figure 17. The Holt–Winters algorithm demonstrates the best performance,
with the lowest RMSE value of approximately 0.037, making it the chosen algorithm for
anomaly prediction in the PQUM-DNS.

Table 6. Comparison of PQUM-DNS prediction algorithm performance on different datasets.

RMSE

Algorithm Chiller
Vibration Data

Paderborn
Open Dataset

Current

Paderborn
Open Dataset

Vibration

SECOM Open
Dataset Average

SES 0.03350 0.05153 0.02934 0.03547 0.03746

Holt 0.03330 0.05824 0.03348 0.07614 0.05029

Holt–Winters 0.03315 0.05161 0.02928 0.03395 0.03700

AR 0.03855 0.06250 0.03052 0.03500 0.04164

MA 0.03853 0.06289 0.03057 0.03505 0.04176

ARIMA 0.03349 0.05062 0.02933 0.03606 0.03737

SARIMA 0.03347 0.05088 0.02932 0.03626 0.03748

Figure 17. Comparison of PQUM-DNS prediction algorithm performance on different datasets.
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4.3. Meta-Learning Adaptive Model Retraining

An adaptive method is employed for retraining the machine model using meta-
learning. This enabled the model to adapt quickly to gradual changes over time, thereby
facilitating long-term anomaly detection. PQUM-DNS chronologically segments data from
the same machine and fine-tunes the model using the latest data, thereby achieving a model
suited to the machine’s latest condition. Unlike the general DAE method that requires
retraining with all data, PQUM-DNS significantly reduces the amount of data needed for
retraining, as shown in Table 7. This is because PQUM-DNS already trains a versatile
meta-learning model using past data (a meta-trained model), enabling efficient fine-tuning
with a small amount of new machine data.

Table 7. Comparison of PQUM-DNS and DAE retraining performance for different data types.

Retraining

Chiller Vibration
Data

Paderborn Open
Dataset Current

Paderborn Open
Dataset Vibration

SECOM Open
Dataset Average

PQUM-DNS

Retraining data
quantity (fine-tune) 586 54 50 248 235

AUC 99.99 94.68 99.99 62.6 89.32

DAE

Retraining data
quantity 2346 219 204 993 941

AUC 99.99 96.17 99.99 66 90.54

Improvement

Retraining data
quantity decrease 75.02 75.34 75.49 75.03 75.07

AUC increase 0.00 −1.49 0.00 5.15 1.35

4.4. Lightweight AI Model

PQUM-DNS drastically reduces the model size while maintaining a similar AUC
performance to that of the non-lightweight DAE model. This is achieved by removing the
near-zero weights from the original DAE-trained model and compressing the model data
format from float32 to int8. Consequently, the model size is significantly reduced. The
application of PQUM-DNS to various datasets demonstrates that the lightweight model
size is reduced by approximately 60% with AUC performance maintained at similar levels,
as shown in Table 8 and Figure 18.

Table 8. Comparison of PQUM-DNS and DAE model sizes for different data types.

Model Size

Chiller Vibration
Data

Paderborn Open
Dataset Current

Paderborn Open
Dataset Vibration

SECOM Open
Dataset Average

PQUM-DNS

Model size (bytes) 5776 6969 5973 5866 6146
AUC 99.31 93.16 99.34 69.69 90.38

DAE

Model size (bytes) 18767 14765 19466 11866 16216
AUC 99.31 93.16 99.34 69.69 90.38

Improvement

Model size
decrease 69 53 69 51 60

AUC increase 0.00 0.00 0.00 0.00 0.00
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Figure 18. Comparison of PQUM-DNS and DAE model sizes for different data types.

4.5. Edge Device Computing

The PQUM-DNS, with its reduced and compressed model size, is well suited for
lightweight edge-computing devices. Therefore, it is applied to replace traditional IPCs
with embedded systems, such as a Raspberry Pi. This substitution reduces the size and
weight, conserves resources, lowers costs, and supports large-scale deployments.

5. Conclusions

This study proposes a new PQUM-DNS model, which is an intelligent device man-
agement system that combines pruning, quantization, meta-learning, anomaly detection,
prediction using AEs, adaptive model retraining, and edge inference. This system ef-
fectively reduces the manual labor, provides fault notifications, prevents downtime, de-
creases model computational resources, accelerates the model inference speed, and enables
edge inference.

The system is suitable for various factory scenarios and types of machine equipment
and process states. Compared with general DAEs, the system achieves a similar AUC while
reducing the training data by approximately 75%. The average RMSE of the predictive
degradation degree is 0.037 for Holt–Winters, retraining is conducted using 75% fewer
data with similar AUC performance, and the model size is reduced by approximately 60%
through pruning and quantization. The proposed system can be deployed on lightweight
edge devices, such as a Raspberry Pi, enabling real-time anomaly detection and prediction.
The system demonstrates superior performance, thereby realizing intelligent equipment
management and maintenance.
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Nomenclature

AE Autoencoder
AI Artificial Intelligence
AR Autoregressive
ARIMA Autoregressive Integrated Moving Average
AUC Area under Curve
DAE Deep AE
FFT Fast Fourier Transform
IPC Industrial Personal Computer
LoRaWAN Long-Range Wide-Area Network
MA Moving Average
MCM Machine Condition Monitoring
MCS Motor Current Signal
ML Machine Learning
PHM Prognostics and Health Management
PQUM-DNS Pruning Quantized Unsupervised Meta-learning DegradingNet Solution
PSD Power Spectral Density
RMS Root Mean Square
RMSE Root Mean Square Error
ROC Receiver Operating Characteristics
SARIMA Seasonal Autoregressive Integrated Moving Average
USB Universal Serial Bus
WPD Wavelet Packet Decomposition
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