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Abstract: Urban green areas have multifunctional benefits that may mitigate unfavorable health and
ecological effects. Green areas represent important biodiversity hideouts in anthropogenic regions.
Lawns are the most common elements of urban greenery, covering a considerable number of green
areas in cities. The aim of this analysis was to gain knowledge on urban greenery and elaborate
recommendations related to management that favors grass lawn biodiversity. The established
working hypothesis is that the limited intensity of management in urban grass areas is reflected
in the modification of their species composition, as well as their potential ecological functions.
An experiment on the management of city lawns was conducted in 2010 (still ongoing). There are
three lawn variants under different management methods: ornamental, city, and permaculture lawns.
Vegetation was assessed using the method of phytocoenological relevés. The coverage values of
the individual plant species were processed using multidimensional analysis of ecological data.
The results showed that human decisions and activities affected the species composition of these
grassy areas. There were 46 plant taxa found during the monitoring: 12 in ornamental lawn variants,
24 in city lawn variants, and 31 in permaculture lawn variants. Permaculture lawns with extensive
management represent the most environmentally friendly variant with respect to biodiversity and
soil moisture content. However, changes in species composition have raised questions regarding
the extent to which they may perform other ecosystem functions. Increasing the intensity of lawn
management has resulted in lower plant diversity. Extensive management alters the aesthetic value
of lawns and creates spaces for species that may spread in urban environments.

Keywords: urban green areas; biodiversity; grass lawns; management methods; species composition

1. Introduction

Cities are responsible for significant negative environmental, economic, and health
issues, but they also hold the key to a greener economy and sustainable future. According
to [1], protecting and restoring urban ecosystems is important for sustainable urbanization.
Cities are key to achieving the Sustainable Development Goals (SDGs), and there is a
specific goal (SDG 11) for cities [2,3]. Urban green areas have multifunctional benefits that
may mitigate unfavorable health and ecological effects [4–6]. They have several ecosystem
functions, such as rainwater retention, urban heat-island effect mitigation, food supply,
and air purification [5,7,8], particularly when they are located in the neighborhood of
communication infrastructure [9]. Green areas are also important biodiversity hideouts in
urban [10–12] and anthropogenic areas [13–17]. At present, lawns are the most common
element of urban greenery, covering a considerable portion of all open green areas in
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cities (up to 70–75%) [18–20]. They have a positive impact on human life in cities [21–24].
However, it is crucial to emphasize that a lawn is a deliberately created plant community
consisting of a variety of grass species, including numerous nonnative species [25,26].
These lawns are meticulously cultivated to attain the visually appealing aesthetic of a
lush green carpet [27]. Lawns are often created in habitats that are strongly affected by
humans; therefore, appropriate species compositions should be selected. Due to their
unique microclimate and urban environment, the conditions in cities often deviate from
natural ecosystems. As a result, it becomes necessary to explore plant species that may not
be typical for the local area but have the ability to thrive and perform the expected functions
within lawns. Moreover, lawn management depends entirely on humans. The presence
of lawns is currently a topic of controversy due to the potential negative environmental
impact caused by the extensive use of pesticides and fertilizers, as well as resource-intensive
maintenance practices like frequent mowing, watering, aeration, and reseeding [28–33].
These anthropogenic factors alter habitat conditions, subsequently influencing the species
composition of lawns. Additionally, lawns have the capacity to modify urban microcli-
mates, facilitate rainfall infiltration, and contribute to increased biodiversity [10,34–36].
Predominantly, lawns play an aesthetic role [37]. Evergreen, dense, and compact lawns
are highly appreciated, particularly in decorative parks, gardens, and flowerbeds [25,38].
Grass lawns are showcases in most Western European cities and are appreciated by most
people in terms of culture and aesthetics [18]. However, these lawns require intense and
expensive management [39]. The high costs of lawn management have raised questions
related to their impact on the environment, particularly the carbon footprint associated with
mowing and water usage [35,40–42]. Therefore, lawns with functions other than aesthetics
represent an alternative. The shift in city lawn management practices, aimed at reducing
their detrimental environmental impact, has given rise to the concept of permaculture [43].
Permaculture lawns or urban meadows are designed to require minimal human inter-
vention while fulfilling various ecosystem functions. Urban meadows, characterized by
natural, non-mowed green areas with or without flowering plants, serve as an alternative
land cover to conventional mowed green areas. Although their establishment in urban
areas is on the rise, they still constitute a small fraction of urban greenery [44].

Exploring polycultures of diverse plant species, including both grasses and dicotyle-
dons, that can thrive and reproduce under traditional lawn management practices, presents
an avenue for grass-lawn alternatives. The long-standing and consistent disturbances in-
flicted on grassland communities by human civilization have resulted in the development
of vegetation specific to certain species. These changes in disturbance, driven by human
activities, are also reflected in the composition of grassland communities [45]. The authors
of [28] propose that polycultures consisting of grasses and native plant species represent
relatively untapped resources with great potential for landscape applications.

Natural-based solutions refer to approaches that integrate green spaces and nature-
based management practices into urban environments to address environmental, economic,
and social challenges. Specifically, the focus is on using natural elements, such as vegetation
and soil, to manage water, enhance biodiversity, mitigate urban heat islands, and improve
air quality [35]. Nature-based management, particularly water management, involves the
utilization of natural ecosystems and processes to regulate water flow, enhance water qual-
ity, and manage stormwater runoff. This can include strategies such as green infrastructure
(e.g., green roofs, rain gardens, and permeable pavements), restoring wetlands and riparian
zones, and promoting the infiltration and retention of rainwater within urban areas [20].

Therefore, understanding the impact of lawn management on urban herbaceous
vegetation is crucial. This study addresses four research questions. First, what is the effect of
lawn management intensity on the species composition of the urban herbaceous vegetation?
We hypothesized that low-intensity lawn management would increase the species diversity
and proportion of native plant species. Second, what is the effect of low-intensity lawn
management on the representation of the sown plant species? We hypothesized that
intentionally sown species can be suppressed by nature-friendly lawn management. Third,
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different lawn management practices alter the representation of plant species, which
is indicative of habitat moisture. We hypothesized that intensive management would
increase evaporation and alter habitat moisture conditions, which would also affect the
representation of moisture-loving plant species and cause them to decline. Fourth, does
lawn management influence the proportion of nonnative species? We hypothesized that
nature-friendly lawn management would reduce the representation of nonnative plants.
By investigating these research questions, we aim to enhance our understanding of the
impact of lawn management in urban environments and its implications for the provision
of ecosystem services within a city’s socio-ecological system.

2. Materials and Methods
2.1. Site Description

The Research and Educational Center—Water Center of the Warsaw University of Life
Sciences (SGGW) is located at the main university campus in the southern part of Warsaw
in the Ursynów district (Figure 1).
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Figure 1. Location of the main campus and Water Center of SGGW.

The total project area is approximately 14,600 m2. The Water Center is comprised of an
educational and research facility with a development area of approximately 2000 m2 and a
total area of approximately 5600 m2 (Figure 2). The Research Center—Water Center has
the dual objective of enhancing the quality of education and promoting ongoing research
and development among academic staff. This includes improving research methods and
techniques and implementing practical experiences in various applications. The Water
Center comprises a model of a watercourse connected with trophic reservoirs, with its outlet
in the ultimate water reservoir. A large area of the Water Center is covered with lawns.

One notable feature of the water center park is a model watercourse interconnected
with trophic reservoirs, ultimately leading to a water reservoir. To complement this design,
a significant portion of the park area is covered with lawns. One of the lawns serves as an
example of natural-based solutions, highlighting the benefits of incorporating green spaces
and nature-based management approaches into urban environments.
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Figure 2. View of the Water Center of SGGW with the water park.

2.2. Characteristics of the Lawns

The experiment on the management of city lawns was initiated in 2010, with three
distinct lawn variants being implemented, each employing different management methods.
The specific management approaches for each lawn variant are as follows: (i) Ornamental
lawn: This variant involves the cultivation of low-growing grass species under intensive
management. Regular cutting is performed every 2–3 weeks during the growing season,
with the cut biomass being removed. The lawn receives regular mineral fertilization and
watering when precipitation is insufficient. (ii) City lawn: A city lawn represents the typical
management approach found in most urban grass areas. It is mowed two to four times per
year, depending on biomass growth. After mowing, the biomass is collected and removed,
and neither fertilization nor watering is applied to the lawn. (iii) Permaculture lawn: This
lawn variant follows a nature-based management approach that promotes semi-natural
succession, with minimal human intervention. The grass stand is irregularly mowed once
a year in the autumn. The cut biomass is left on-site, and the lawn receives no fertilization
or watering. The management practices of permaculture lawns align with the long-term
sustainability principles of the permaculture approach. By implementing these distinct
management methods, this experiment aimed to assess the ecological and biodiversity
outcomes associated with each lawn variant.

2.3. Methods of Vegetation Assessment

Vegetation was assessed using a remote sensor method. The study used the unmanned
aerial vehicle DJI Matrice 600 with the multispectral camera Parrot Sequoia+. The camera
allows images to be recorded in four spectral channels: green (GRE), red (RED), near-
infrared (NIR), redge (REG), and RGB images in visible lights. The data collected allowed a
visual assessment of the plants and an evaluation of plant health based on the chlorophyll
index. The chlorophyll index allows the amount of chlorophyll in the green parts of plants
to be determined. The Normalized Difference Vegetation Index (NDVI), which is the most
commonly used index due to its ease of calculation, was used in the study. The NDVI index
is based on the ratio of the NIR and RED channels and is expressed by the Formula (1) [46]:

NDVI = (NIR − RED)/(NIR + RED) (1)

where:

NIR—near-infrared band
RED—red band
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Vegetation was assessed using phytocoenological relevés with as size of 2 m2. Four
plots were surveyed for each lawn variant, on which vegetation was assessed in July 2020
and 2021. First, all taxa of plants that occurred on the phytocoenological relevés were
identified, and then the aboveground biomass coverage was estimated for the respective
taxa. The scientific names of the individual plant species were obtained from the Pladias
database of flora and vegetation [47]. Based on the data from the Pladias database, plant
species were classified into several groups according to the selected characteristics. The
indicator value for moisture was expressed on an ordinal scale from 1 to 12, as defined
by Ellenberg [48]. The values for the individual taxa were modified and extended by
Chytrý [49].

The coverage values of individual plant species observed at each site were analyzed
using a multidimensional analysis of ecological data. To determine the appropriate analyti-
cal method, the gradient length was assessed using segment Detrended Correspondence
Analysis (DCA). Canonical Correspondence Analysis (CCA) was also performed. To assess
statistical significance, a Monte Carlo test was employed, and 999 permutations were
calculated. Data analysis was performed using Canoco 4.0, a computer program widely
used for ecological data analysis [50].

3. Results and Discussion
3.1. Groups of Plant Species in Grasslands

There were 46 plant taxa found during the monitoring—12 of them in ornamental lawn
variants, 24 in city lawn variants, and 31 in permaculture lawn variants. A representation
of the identified plant taxa is shown in Table 1.

Table 1. The list of identified plant taxa with the average cover and plant species classification
in groups.

Plan Species Abbr.

Lawn Variants (Average Cover %) Classification According to Groups:

Ornamental
Lawn

City
Lawn

Permaculture
Lawn

Species Suitability
for Lawns

Moisture
Content

CCA
Analysis

Achillea millefolium AchMill 7.3 6.3 4.3 3 5 O/C
Armoracia rusticana ArmRust 3.0 4 6 P
Artemisia vulgaris ArtVulg 0.7 3.0 4 5 C/P

Bellis perennis BelPere 6.7 3 5 O
Bidens tripartita BidTrip 0.3 3 9 P

Calamagrostis epigejos CalEpig 5.0 4 5 P
Carex hirta CarHirt 1.3 1.7 3 6 C/P

Centaurea macrocephala CenMacr 3.7 4 not
specified P

Cichorium intybus CicInty 3.3 8.7 2 4 C/P
Cirsium arvense CirArve 6.0 2.3 4 5 C/P

Convolvulus arvensis ConArve 3.3 3 4 C
Conyza canadensis ConCana 0.7 3 4 C
Cornus sanguinea CorSang 0.3 4 5 P

Crepis mollis CreMoll 3.0 0.7 0.7 3 4 O/C
Dactylis glomerata DacGlom 4.3 13.3 1 5 P/O

Daucus carota DauCaro 7.7 5.3 3 4 C/P
Equisetum arvense EquArve 4.3 4 6 P
Erigeron annuus EriAnnu 2.0 5.0 3 5 P/O

Festuca arundinacea FesArun 1.3 1 7 C
Festuca pratensis FesPrat 16.7 1 5 P
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Table 1. Cont.

Plan Species Abbr.

Lawn Variants (Average Cover %) Classification According to Groups:

Ornamental
Lawn

City
Lawn

Permaculture
Lawn

Species Suitability
for Lawns

Moisture
Content

CCA
Analysis

Festuca rubra FesRubr 25.0 58.3 1 5 O/C
Hypericum perforatum HypPerf 1.3 6.0 3 4 C/P

Inula britannica InuBrit 1.3 3 7 P
Lactuca serriola LacSerr 0.3 2.0 4 4 C/P
Lolium perenne LolPere 18.3 16.7 1 5 O/C

Lotus corniculatus LotCorn 7.7 2 4 C
Lythrum salicaria LytSali 1.7 4 9 P
Medicago falcata MedFalc 2.0 2 3 P

Medicago lupulina MedLupu 9.0 15.0 2 4 O/C
Medicago sativa MedSati 4.0 6.7 2 4 C/P

Phalaris arundinacea PhaArun 16.7 4 8 P
Plantago lanceolata PlaLanc 10.7 7.0 3 5 O/C

Poa pratensis PoaPrat 4.7 8.3 1 5 C/P
Potentilla argentea PotArge 3.0 3 2 O
Potentilla reptans PotRept 2.0 3 6 P

Rosa canina RosCani 1.0 4 4 P
Rumex crispus RumCris 0.3 4 6 P
Setaria viridis SetViri 2.3 3 4 O
Silene latifolia SilLati 3.0 4 4 P

Solidago canadensis SolCana 1.8 4 5 P
Sonchus oleraceus SonOler 0.3 3 5 C

Taraxacum sect. Taraxacum TarSect 10.0 4.3 3 5 C/P
Trifolium pratense TriPrat 7.7 2 5 C
Trifolium repens TriRepe 11.7 6.0 2 5 O/C

Veronica maritima VerMari 1.3 3 8 P
Vicia cracca VicCrac 1.3 2 5 C

Legend: Groups according to suitability for lawns: 1—sown species, 2—useful species, 3—less suitable species,
4—undesirable species. Groups according to indicative value for moisture content: 2—transition between values 1
and 3; 3—missing on damp soil; 4—transition between values 3 and 5; 5—indicator of fresh soils, focus on soils
of average moisture content, missing on wet soils and on soils that frequently dry out; 6—transition between
values 5 and 7; 7—humidity indicator, focus on well-moistened, but not wet soils; 8—transition between values 7
and 9; 9—wetness indicator, focus on often soaked, poorly aerated soils. Groups according to CCA analysis:
O—group consists of species which prevailingly occurred as part of the vegetation of ornamental lawns. O/C—
group of species occurring predominantly in ornamental and city lawns. C—group of species which occurred
predominantly in the city lawn variants. C/P—group of plant species recorded particularly in the city and
permaculture lawn variants. P—group of plant species which dominated in permaculture lawns. P/O—group of
plant species recorded in the ornamental and permaculture lawn variants.

Lawns represent a prominent component of green areas worldwide, regardless of
regional climate variations. Despite their prevalence, lawns have not received extensive
research attention [18]. Various definitions of a ‘lawn’ exist, but in this context, they are
defined as an artificially created or modified plant habitat characterized by predominantly
grass species (technically referred to as graminoids). Additionally, lawns may also contain
spontaneous herbaceous species commonly known as ‘weeds of lawn’ [27]. These so-called
‘weeds of lawn’ play a vital role in fulfilling important ecosystem functions that hold
significance for urban greenery as well as the lawn plant community itself. It is essential to
recognize that lawns are dynamic plant communities, with their species composition shaped
by human influence [51,52]. According to a study by Ignatieva [53], Lolium perenne, Festuca
rubra, and Poa pratensis comprise the basic species composition of lawns in central Europe.
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In terms of human intervention, lawn plant species can be classified as (1) sown,
(2) useful, (3) less suitable, and (4) undesirable. We assessed the criteria from a turf
perspective only. Sown species are grasses that create basic and characteristic types of
lawns. Useful species include leguminous plants that enrich the soil with nitrogen [54,55],
thus supporting the growth of grasses and participating in improved rainwater infiltration
into the soil [23,56]. Species that are less suitable for lawns are other dicotyledonous plant
species, but only low-growth ones. Species that are undesirable for lawns are high-growth
herbs or woody plants; that is, species that significantly alter vegetation characteristics [27].
The classification of the plant species in each category is presented in Table 1. Each species
was assigned to only one group according to its predominant importance. The ratios in
the representation of plant species groups based on their suitability for lawns are shown
in Figure 3.
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Sown species have the greatest cover contribution to cities and ornamental lawns. City
lawns create a favorable ratio between sown grasses and useful species (family Fabaceae),
which reduces their fertilization requirements (i.e., nitrogen). A considerably undesirable
perennial species is Cirsium arvense with a sturdy root system, which occurs very unevenly.
Therefore, local and targeted regulation is important.

Ornamental lawns have a lower contribution of useful species and a higher contribu-
tion of less suitable species. Although intensive management eliminates the occurrence of
undesirable species, it also suppresses useful species (Fabaceae) and does not increase the
contribution of the sown (grass) species. Our study indicates that intensive management
significantly reduces plant species diversity and creates a category of species that can be
characterized as ‘turfgrass weeds’. Species that are less suitable for lawns include Achillea
millefolium, Bellis perennis, and Plantago lanceolata. Our results are in accordance with those
of Abu-Dieyeh [57], who confirmed that the occurrence of turfgrass weeds is rare in lawns
mowed to a small height. According to Watson [58], intensive lawn management decreases
plant and insect biodiversity, whereas frequent low mowing decreases plant structure
and composition by favoring low-growth annual plants or grasses and decreases flower
resources for pollinators by removing higher flower structures. Additionally, the results ob-
tained by Watson [58] suggest that frequent mowing resulting from aesthetic requirements
may cause other aesthetic problems by facilitating the increased invasion of weeds and
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pests. Busey [59] and Norton [60] confirmed that intense mowing is an important factor
that contributes to weed invasion in city lawns and meadows.

The studies performed by Chollet [51] indicate that lawns with low mowing frequency
are characterized by higher plant biodiversity than green areas with high mowing frequency
(+15% to 62%). Frequent mowing can only be tolerated by a few plant species, which may
tolerate repeatable perturbations; thus, lawns are favored by ruderal species that are more
tolerant to such perturbations [25].

The results indicate that mowing frequency is a key indicator of plant species diversity
in urban spaces. This is in accordance with studies on semi-natural green areas, such as
the study performed by Socher [61], who showed that mowing intensity had a greater
impact on plant species richness than fertilization intensity in the analyzed green areas
in Germany.

Permaculture lawns create space for the highest species diversity but also for unde-
sirable species. In addition to common meadow plants, the species composition includes
undesirable species of clearly ruderal or invasive character which spread in the landscape,
such as Artemisia vulgaris, Calamagrostis epigejos, Cirsium arvense, Erigeron annuus, Lactuca ser-
riola, and Solidago canadensis. The investigations performed by Bertoncini [62] have shown
that surprisingly, less than 10% of species (seven species) noted on lawns in Paris represent
invasive taxa. This is a relatively low amount, considering the common pattern observed
in cities, which is usually about 15–20% of invasive species in urban and natural habitats.

The occurrence of Centaurea macrocephala (Figure 4) was also remarkable. The species
was formerly cultivated as ornamental and its current potential to further spread in the
built-up areas of towns and cities is high. Naturalized Centaurea macrocephala has been
found in grass communities in the United Kingdom (UK). According to Hitchmough and
Woudstra [63], sites yielding this species represent managed or abandoned gardens. Other
localities where this plant is often naturalized are roadsides and the margins of railway
tracks bordering suburban gardens. Regular botanic monitoring and targeted and local
control would be adequate for the occurrence of these species. Permaculture lawns differ
significantly in character from the aesthetic values of other variants. Therefore, this variant
cannot be used at all sites determined for lawns.
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3.2. Moisture Bioindication Using Dew Species and NDVI in Grasslands

Urban ecosystems present transformed soil conditions as well as a rapidly changing
and often hotter microclimate, generating numerous barriers to fostering native plants,
or even predicting which taxa may survive in such an environment [25]. Based on the
indicative values for soil moisture content, it was found that the species occurring in the
study had values ranging from 2 to 9. Species with an indicative value of 5 (indicator of
fresh soils bound to soils with the average moisture content, missing in moist and frequently
drying out soils) had a dominant share of coverage in all lawn variants. However, the
permaculture lawn variants exhibited species with indicative values ranging from 7 to 9
(7, indicator of moisture content, bound to soils with a good water supply but not wet;
8, transition between 7 and 9; 9, indicator of wet soils, saturated with water and poorly
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aerated). Thus, the permaculture lawn variants indicated a sufficient amount of water in the
soil. In contrast, these species were missing in the ornamental lawn variants where species
occurred with an indicator value of 2; that is, species missing on moist soils up to species
bound to dry soils. As this variant is irrigated, it should have sufficient water. Therefore,
we can assume that intensive management will change the hydrological situation of lawns,
facilitating the occurrence of drought-resistant species and suppressing the occurrence
of moisture-loving species. The indicative values of the individual species are presented
in Table 1. The representation of species groups according to their indicative values for
moisture in the respective lawn variants is shown in Figure 5.
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4—transition between values 3 and 5; 5—indicator of fresh soils, focus on soils of average moisture
content, missing on wet soils and on soils that frequently dry out; 6—transition between values 5 and
7; 7—humidity indicator, focus on well-moistened but not wet soils; 8—transition between values 7
and 9; 9—wetness indicator, focus on often soaked, poorly aerated soils.

The NDVI index is based on the value of the contrast between the largest reflection (in
the NIR band) and the absorption in the red band and contains in a range of values from
−1 to 1. The value of the NDVI index increases as the reflection in the NIR band increases
and the reflection in the red band decreases. A high value of the index corresponds to good
plant health. The results of the analyses are shown in Figures 6 and 7.

The value of the NDVI index visibly differed between the three study areas. Statistical
analysis of the study areas showed that the best condition was found in area (a) and the
worst in area (b) (Figure 8).

According to the NDVI, the best condition for vegetation is the lawn of option a
(ornamental lawn). Lawn vegetation that is frequently and regularly mowed can serve
aesthetic purposes. However, this condition is provided by high external input (irrigation
and fertilization). The species composition of the lawns with a higher proportion of
species that tolerate drought in conjunction with irrigation suggests that water is likely to
evaporate quickly.
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The vegetation in variant b (city lawn) exhibited the worst conditions. Most lawn
species respond to unfavorable conditions (drought and high temperatures) during sum-
mer dormancy. A higher proportion of species tolerating drought point to more intense
evaporation. Vegetation limitations allow plant species to survive adverse summer periods.
City lawns do not require external inputs but lose their aesthetic value in some seasons.

NDVI analysis also showed that the highest heterogeneity in vegetation conditions
was in variant c (permaculture land). The heterogeneity in vegetation conditions is due
to high species diversity and the presence of dead biomass. The low vegetation condition
was found at sites with dead biomass left in place. New biomass grows at sites with
good vegetation conditions. Species composition with a higher proportion of wetland
species indicates conditions with limited water evaporation. The management applied
to permaculture lawns is reflected in the high heterogeneity of conditions and is close to
natural grassland communities.

3.3. Plant Species Diversity in Grasslands

The values of plant taxa cover recorded during monitoring were first processed using
DCA analysis. The calculated gradient length was 3.25. Based on this calculation, the
CCA was used for further processing. CCA defines the spatial arrangement of individual
plant species and the monitored lawn variants. The results of the analysis were graphically
expressed using an ordination diagram (Figure 9).

The results of the CCA analysis which was used to assess the degree of coverage of
individual plant taxa were significant at a level of α = 0.001 for all canonical axes. Based on
the CCA analysis, the found plant taxa can be classified into six groups (Table 1).

The first group (O) consists of species that prevailingly occur as part of the vegetation
of ornamental lawns; that is, either poor competitors or those that are of annual character
and gain ground only in low turfgrass. The second group of species (O/C) is represented
by species occurring predominantly in ornamental and city lawns; that is, species less
assertive against tall plant species and species that cope with regular cutting and removal
of biomass. Plant species in the third group (C) tolerate regular cutting and do well under
the lower competitive pressure of other species. Such species occurred predominantly in
city lawn variants. The fourth group of plant species (C/P) was recorded particularly in
city and permaculture lawn variants. These species were tolerant of regular cutting but
was also capable of winning ground in competition with stronger species. The fifth group
of plant species (P) dominated the permaculture lawns. These species were tolerant to
extensive turfgrass management and were strong competitors. The sixth group of plant
species (P/O) was recorded in ornamental and permaculture lawns. These species were
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tolerant to extreme variants and able to adapt to diverse environments. Different types
of lawns under different management practices create different conditions that show a
conspicuous change in the species spectrum of lawn vegetation. The consequences of
human civilization activities have led to the development of a new plant community that
changes and adapts to these activities [64–69].
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Figure 9. Relationships between the identified plant taxa and monitored lawn types (results of
CCA analysis; F-ratio = 4.4; p-value = 0.001). Species Group O is indicated by purple font color and
purple dots, Species Group O/C is indicated by green font color and purple dots, Species Group C is
indicated by green font color and green dots, Species Group C/P is indicated by brown font color and
green dots, Species Group P is indicated by brown font color and light yellow dots, Species Group
P/O is indicated by brown font color and purple dots.

Increasingly, more studies indicate how aesthetics and ecosystem values influence
landscape management and public policy, especially in urban ecosystems [70,71]. Lawns
are close to everyday human habitats and are thus one of the most affected by human
design. Intensive management is indispensable when the aim is to achieve a uniform
and idealized lawn [62]. However, considering the significance of these green areas to
city residents, it is necessary to find measures that may reconcile the presence of human
societies with biodiversity management. According to Tabassum [4], cities are significant
repositories of biodiversity; therefore, it is imperative to create resilient urban green spaces
in the face of climate and environmental change.

4. Conclusions

The conclusions drawn from this study highlight the dynamic response of urban
grass vegetation to various anthropogenic management practices. This reaction manifests
as altered plant species composition, leading to shifts in the function and perception of
urban grass areas. The trends observed in our study can be regarded as being universally
applicable.

Our results highlight the significant influence of human decisions and activities on the
species composition of urban lawns. First, we found that management intensity directly
affects species richness, with intensive management resulting in lower plant diversity
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compared to less intensive approaches. Second, nature-based management decreases the
representation of intentionally sown plant species, facilitating the proliferation of undesired
species that can alter the aesthetic appeal of lawns and potentially spread in the urban
environment.

Third, intensive management practices exacerbate evaporation and surface drying,
favoring drought-resistant species over moisture-loving ones. This shift in favorability
towards certain plant types, such as grasses and drought-resistant species, comes at the
expense of legumes and other high-growth plants. Notably, our analysis of permaculture
lawns revealed high vegetation heterogeneity, suggesting differences in water regimes and
potential reductions in evapotranspiration owing to the presence of dead biomass.

Furthermore, permaculture lawns managed with a nature-based approach exhibit the
highest species diversity, including undesired species, surpassing the levels reported in the
scientific literature. These undesired species, including neophytes and invasive species,
underscore the complexity of managing urban grassy areas.

Given the pivotal role of lawns in urban ecosystems and their impact on biodiversity,
achieving a balance between aesthetic appeal and ecological value is crucial. Our findings
emphasize the urgency of developing resilient urban green spaces capable of adapting to
climate and environmental changes while safeguarding biodiversity. Integrating nature-
based solutions, such as permaculture lawns, offers sustainable alternatives for lawn
management, and contributes to urban biodiversity conservation. Future research could
delve into understanding human perceptions and preferences in shaping lawn management
decisions and their consequent impact on biodiversity, providing valuable insights for
sustainable urban landscape management.
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Woźniak, G. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps?
Ecol. Eng. 2020, 143, 105685. [CrossRef]
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