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Abstract: Railroads play a pivotal role in the Korean national economy, necessitating a thorough
understanding of factors influencing accidents for effective mitigation strategies. Unlike prior research
focused on accident frequency and severity, this study delves into the often-overlooked aspect of
time delays resulting from railroad accidents. Analyzing 15 years of nationwide data (2008–2022),
encompassing 3244 human-related and 3350 technical events, this research identifies key factors
influencing delay likelihood and duration. Factors considered include event type, season, train type,
location, operator size, person type involved, facility type, and causes. Despite an overall decrease in
events, variable delay times highlight the need to comprehend specific contributing factors. To address
excess zeros, the study employs a two-stage model and a zero-inflated negative binomial (ZINB)
model, alongside artificial neural networks (ANNs) for non-linear pattern recognition. Human-related
delays are influenced by event types, seasons, and passenger categories, exhibit nuanced impacts.
Technical-related delays are influenced by incident types and facility involvement. Regarding model
performance, the ANN models outperform regression-based models consistently in all cases. This
study emphasizes the importance of considering both human and technical factors in predicting
and understanding railroad accident delays, offering valuable insights for formulating strategies to
mitigate service disruptions associated with these incidents.

Keywords: railroad accidents; time delays; human-related; technical-related; zero-inflated
negative binomial

1. Introduction

Railroads have consistently been identified as crucial components of the transportation
infrastructure underpinning the Korean national economy. Over the preceding decade
(2010–2019, excluding the period of 2020~2022 due to the impact of COVID) in Korea,
an examination of travel patterns reveals an average daily volume of approximately
21 million regional trips [1]. Notably, the share of rail transport escalated to 20% in 2019,
marking a discernible increase from the 16.3% recorded in 2010. Concurrently, the share of
road transport experienced a decline, decreasing to 80% in 2019 from 83.7% in 2010. This
pronounced shift in modal distribution is a direct outcome of the sustained governmental
commitment to the railway sector, evident through investments in both novel infrastruc-
tural undertakings and the modernization of existing systems. A pivotal development
occurred in 2020 when, for the first time, the cumulative government investment in the
railroad sector surpassed that allocated to the roadway sector. This milestone under-
scores a strategic reconfiguration in the prioritization and reinforcement of the railroad
infrastructure within the transportation investment.

While society reaps considerable benefits from railroad transportation, persisting
safety concerns necessitate concerted efforts to mitigate the frequency and impact of rail-
road accidents. In the context of rail transportation, incidents bear the potential for produc-
ing adverse outcomes, including casualties, infrastructural and rolling stock impairment,

Appl. Sci. 2024, 14, 1697. https://doi.org/10.3390/app14051697 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14051697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1907-4291
https://doi.org/10.3390/app14051697
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14051697?type=check_update&version=1


Appl. Sci. 2024, 14, 1697 2 of 19

service interruptions, and environmental damage. The Railroad Safety Act in Korea de-
fines “Railroad safety” as the ongoing process wherein railroad operators and managers of
railroad facilities consistently identify and mitigate risk factors associated with the opera-
tion of railroads or the management of railroad facilities, which could lead to casualties
or property damage. It signifies a condition where the level of risk remains within an
acceptable range. Therefore, railroad safety involves safeguarding both lives and property
by overseeing, administering, and advancing technological innovations across all modes
of rail transport. Particularly significant are accidents with multiple fatalities, prompting
profound inquiries into railroad safety within the realms of media and public discourse.
These accidents not only bring pertinent issues to the forefront and initiate discussions,
but also catalyze actionable measures, serving as pivotal junctures for the enhancement of
railroad safety. Within the regulatory framework of the Railroad Safety Act, the Ministry
of Land, Infrastructure and Transport (MOLIT) in Korea periodically releases a structured
Railroad Safety Master Plan (RSMP) at five-year intervals. This comprehensive strategy
encompasses quantifiable safety objectives, encompassing accident rates and associated
fatality figures. As a result, the precise forecasting of railroad accident frequencies and
their consequential implications for stakeholders emerges as an essential prerequisite for
advancing railroad safety. Such foresight significantly contributes to the overarching goal
of advancing safety standards within the domain of railroad transportation.

Understanding the key factors influencing the occurrence and consequences of railroad
accidents is crucial for developing effective strategies to mitigate casualties, infrastructure
and rolling stock damage, service disruptions, and environmental harm. However, numer-
ous researchers have dedicated their efforts to examining the frequency and severity of
railroad accidents, with a particular emphasis on fatal train incidents and railroad grade
crossing accidents. Most of the research has concentrated on analyzing the frequency and
impact of fatal train accidents, primarily in terms of casualties. Notably, there is a dearth
of studies focused on accurately predicting the duration of time delays resulting from
railroad accidents, particularly utilizing comprehensive historical data on railroad incidents
in Korea, as far as the author is aware.

This study aims to identify the key factors influencing the likelihood and duration
of time delays in railroad events, encompassing incidents and accidents by utilizing a
comprehensive set of factors, such as event type, season, train type, location, operator
size, person type involved, facility type, causes and so on. Also, in predicting time delays,
comparing model performance by employing conventional statistical models and artificial
neural network (ANN) models is another purpose of this study.

The paper commences with a literature review encompassing prior research endeav-
ors related to modeling accident severities (including time delay related), subsequently
introducing the dataset employed. The ensuing sections expound upon the methodological
framework employed for model estimation and furnish insights into the outcomes of the es-
timation process. Lastly, a summative discussion is presented, along with recommendations
for further research.

2. Literature Review

Railroad safety studies have seen the emergence of numerous predictive models de-
signed to evaluate both the frequency and severity of accidents. A predominant approach
in these models involves the analysis of mean count response data, establishing relation-
ships between independent and dependent variables under specific statistical distribution
assumptions. Notably, Evans [2–4] conducted an in-depth examination of fatal train acci-
dents on Britain’s mainline railways, leveraging 31 years of historical data. His analysis
encompassed the study of trends in accident frequencies and fatalities arising from 75 fatal
collisions, derailments, and buffer stop overruns, totaling 273 fatalities among passengers,
employees, and the public. In addressing annual accident frequencies, Evans employed
a Poisson distribution model to account for and estimate the mean number of accidents
per billion train kilometers. Similarly, Miwa et al. [5] investigated train accidents within
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the Japanese railroad system. They adopted an exponential regression model to scrutinize
71 serious train accidents occurring between 1987 and 2003, employing the time interval
between consecutive accidents as a predictor variable. Their findings indicated that the ex-
ponential distribution aptly characterized the number of days between successive accidents,
the log-normal distribution fitted the train suspension time (using the factors of accident
types, causes and years), and a Poisson distribution aligned with the number of casualties.
When estimating the total annual accident count, the exponential function emerged as the
preferred model for representing the relationship between annual accident frequency and
the time period. In terms of predicting train delay time, Park et al. [6] revealed that the
length of duration of delayed time due to railway accidents is dependent on the factors
such as train types (express train vs. metro), causes (human-related vs. non-human-related),
and magnitude of occurrence (i.e., number of casualties, number of derailed trains).

In the realm of railway accident severity assessment, Liu et al. [7] investigated cargo-
train derailments, scrutinizing the relationship between the number of derailed cabins and
severity. They employed a zero-truncated negative binomial (ZTNB) regression model
along with a quantile regression model. Their analysis was grounded in a dataset compris-
ing 458 cargo-train derailments attributed to brake-rail causes in the United States spanning
the years 2001 to 2010. Lim [8], in a distinct context, applied modeling techniques, includ-
ing zero-truncated negative binomial (ZTNB) regression and Artificial Neural Networks
(ANNs), to predict railway accidents on South Korea’s National Railroad. This inquiry
leveraged historical accident data to assess the effectiveness of the models in accurately
forecasting accidents, thereby offering valuable insights for accident prevention.

In the domain of train accident rate calculation, Evans [9] determined the fatal train
accident rate per billion train kilometers for Europe’s mainline railways spanning the years
1990 to 2019. This estimation relied on the assumption of accidents following a Poisson
distribution within specified time periods and train kilometers per year. Employing a
similar methodology, Zhang et al. [10] analyzed the frequency of derailments and collisions
in freight train accidents in the United States, attributed to human factors. Their model in-
corporated yearly train miles and the occurrence of train accidents as explanatory variables,
deploying a Negative Binomial (NB) model.

Numerous prior studies in the field of highway-rail crossing analysis have employed
the Generalized Linear Model (GLM) approach and its extensions, which make assump-
tions about specific statistical distributions, as mentioned earlier. For instance, Austin and
Carson [11] delved into the analysis of accident frequency data related to highway-rail
crossings, highlighting the superior performance of the negative binomial distribution
model over the Poisson model and conventional multiple linear regression techniques.
Concurrently, several scholars have explored the realm of collision severity analysis, span-
ning from fatal to non-injury outcomes. Notable researchers such as Lu and Tolliver [12],
Hu et al. [13], Oh et al. [14], Raub [15], Ma et al. [16], Kang and Khattak [17], Ghomi
et al. [18], Hao and Daniel [19–21], Haleem and Gan [22], Fan et al. [23], Eluru et al. [24],
and Savolainen et al. [25] have employed various GLM models to investigate these aspects.

In response to the prevalence of zero values in railroad accident data, where instances
of zero-time delays are observed, several studies have advocated for the application of mod-
els such as the zero-inflated negative binomial and zero-inflated Poisson models [26–28].
For instance, Lambert [29] employed the zero-inflated Poisson (ZIP) model to predict
manufacturing defects. Ridout et al. [30] conducted an extensive review of contemporary
statistical models tailored for count data characterized by an overabundance of zero values.
Joe and Zhu [31] conducted a comparative analysis between generalized Poisson models
and zero-inflated negative binomial (ZINB) models. In the domain of caries research,
Mwalili et al. [32] made substantial contributions by utilizing the zero-inflated negative
binomial model to rectify misclassifications. Neelon et al. [33] proposed a Bayesian model
specifically designed for zero-inflated count data, focusing on the analysis of psychiatric
outpatient service utilization.
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In addition to the conventional approaches, Artificial Neural Network (ANN) models
have garnered popularity in both practical applications and research, offering enhanced
predictive accuracy and surmounting limitations associated with statistical prediction mod-
els in transportation studies, particularly within the domain of vehicle accidents. Notably,
Zeng and Huang [34] employed an ANN model for predicting the severity of highway
collisions, surpassing the performance of a statistical ordered logit model. Abdelwahab
and Abdel-Aty [35] determined that multilayer neural networks provided more accurate
classifications of severity outcomes compared to ordered logit models. Codur and Tor-
tum [36] demonstrated the applicability of ANN models in the analysis of traffic accident
frequency. While there is a considerable focus on the implementation of ANN models in
roadway accident prediction studies, a limited number of researchers have leveraged ANNs
to forecast accident frequency and severity within the railway sector. Zheng et al. [37]
explored the likelihood of train–vehicle crashes at highway-rail grade crossings (HRGC)
and illustrated the superior performance of ANN models compared to the decision tree
approach in predictive and descriptive capabilities using public HRGC case studies in
North Dakota spanning the years 1996 to 2014. Gao et al. [38] investigated the utility of a
convolutional neural network (CNN), a deep learning-based approach, on the same dataset
employed by Zheng et al. [37], conducting a comparative analysis of various machine
learning and deep learning methods. For the Canadian HRGC database spanning from
2004 to 2013, Yang et al. [39] proposed a machine learning-based methodology, utilizing the
RandomForest algorithm to effectively examine the relationships between accident rates
and contributing factors.

3. Data Descriptions
3.1. Overview of Railroad Accidents in Korea

This section commences with a concise overview of railroad accident statistics. The
investigation employed a dataset encompassing 22 years of railway accident data, culled from
the Railroad Safety Information System (RSIS) spanning the timeframe of 2001 to 2022. The
RSIS database features comprehensive historical records of accidents, including temporal
specifics, causative factors, duration of train suspensions, fatalities, injuries, geographic
coordinates, meteorological conditions, and other pertinent details. The dataset is classified
into two distinct categories. The first category pertains to accidents primarily characterized
by their detrimental impact on either human life or property and encompasses occurrences
such as fatal train accidents (involving train-to-train collisions, derailments, or fires on trains),
ground-level crossing accidents (involving train-to-human or train-to-vehicle collisions at
ground-level crossings), and human-involved accidents (involving deaths or injuries resulting
from train operations or other factors). The second category encompasses incidents that gave
rise to perilous situations, exemplified by near misses, as well as events leading to time delays,
such as those caused by train malfunctions or facility failures.

Figure 1 presents the RSIS dataset, offering a comparative analysis of “Incidents”
and “Accidents” during the years 2001 and 2022. Herein, “Fatality” encompasses the
total number of deaths and/or injuries resulting from any railway accident. In 2001, the
dataset records 498 “Incidents”, a number that exhibited a noteworthy reduction to 227 in
2022. This reduction in “Incidents” is reflected in an annual growth rate (AGR) of −3.7%.
Similarly, the data indicates a decline in “Accidents” from 710 instances in 2001 to a mere
80 occurrences in 2022. This remarkable decrease in “Accidents” corresponds to an AGR of
approximately −9.9%. The negative AGR values underscore a substantial decline in both
“Incidents” and “Accidents”, with “Accidents” displaying a more pronounced reduction
over the specified period. It is worth noting that, aside from an anomaly in the year 2014,
where a train collision resulted in 477 injuries (based on the statement of accident overview
in the data field of RSIS dataset, following a rear-end collision of a departing train from
Sangwangsimni station with an incoming train on 2 May 2014), the number of fatalities
per accident has remained relatively stable. The rationale for this development lies in the
widespread adoption of state-of-the-art technological innovations, including advanced
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safety systems such as automatic train control, train radio communications, various grade
level crossing solutions, and passenger safety doors. Notably, this period has witnessed the
extensive implementation of these technologies by numerous railroad operators, coupled
with the strategic repositioning of level-crossings to subterranean or elevated positions [8].
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Figure 1. Trends in the number of accidents, incidents, and fatalities per accident.

This study seeks to measure time delays caused by various accidents or incidents by
analyzing the impact between time delays and factors such as season, size of train operators,
type of railroad, accident cause, accident location, etc. Figure 2 represents the ratio of the
number of accidents and incidents with time delay records. A total of 14,771 accidents
and incidents occurred, and only 38.3% of them had a time delay record of 22 years on
average. In detail, the proportion was only a small portion of 0.9% in 2001 and 2007, but
increased noticeably to an average of 78.8% in the remaining years. In general, reporting of
train accidents and incidents follows the guidelines on railway accident and investigation
reporting. This guideline was established under the Railway Safety Act in November 2007,
and serves to define the specific procedures and methods for reporting railway accidents.
It aims to ensure the timely and accurate reporting of such incidents. Therefore, this
study used the data for the analysis starting from 2008. This is because it was recorded in
accordance with appropriate methods and procedures of subsequent guidelines.
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Figure 2. Ratio of railroad accidents and incidents with time delay records.

Table 1 is a brief summary of railroad accident statistics divided into before and after
periods since 2008, when the guidelines were implemented. Although the period since 2008
has more than doubled compared to the previous period, the total number of accidents has
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decreased significantly compared to before. Specifically, train-related passenger accidents
decreased significantly by 54%, and ground crossing (GC) accidents also decreased by about
38%. This is because many of the existing GCs were demolished, as they were relocated
up or down the road and, as a result, the number decreased by more than half from 1744
in 2001 to 808 in 2021 [1]. The delayed operation means that high-speed trains and metro
trains are delayed by 10 min, conventional passenger trains are delayed by 20 min, and
freight trains and other trains are delayed by more than 40 min. Railroad events tended
to decrease on a yearly basis since 2008. However, no decreasing trend was found in the
number of fatal train accidents (train fires, collisions, derailments).

Table 1. Comparison of the number of railroad events by type in two different periods.

Types of Railroad Events Numbers in
Year 2001–2007

Numbers in
Year 2008–2022 Total

Accidents Train fire 2 3 5
Crash 6 17 23
Derailment 24 85 109
Ground-level crossing accidents 304 188 492
Facility breaks 28 20 48
Facility fire 16 22 38
Other facility-related accidents 0 2 2
An accident involving passengers related to the train 1724 792 2516

involving staff related to the train 130 131 261
involving public related to the train 1126 763 1889

An accident involving passengers not related to the train 310 196 506
involving staff not related to the train 781 537 1318
involving public not related to the train 51 58 109

Incidents A high potential to develop into a railroad accident 60 22 82
Delayed operation 3120 4253 7373

Total 7682 7089 14,771

Table 2 shows the number of railroad accidents categorized by their causes and the
average train delay time attributed to since 2008. Human factors include people such
as field workers, staffs, route controllers, train drivers, crew, and passengers. Technical
factors are mainly related to malfunctions, failures, and incorrect installation of equipment,
devices, and interfaces between systems. Lastly, external factors are completely influenced
by environmental conditions such as bad weather. The numbers of occurrences in human
and technical factors both tended to decrease over the past 15 years and, further, both factors
are main causes. For a comparison of accident occurrences to other countries, International
Union of Railways (UIC) Safety Report has been referred to. The UIC publishes safety
report every year by collecting and analyzing significant accident data from 32 different
countries (see the list of countries on pg. 5 of the UIC Safety Report 2023 [40]). According
to the UIC report, the annual count of significant accidents decreased by approximately
25% in 2014 compared to 2006. The period of 2017–2020 sees a slow decrease in significant
accidents, with its lowest level in 2020. 2020 was an exceptional year due to COVID-19
restrictions, and significant accidents slowly increased in 2021 with 1712 records, which
is comparable to the pre-COVID-19 year 2019 (−1%). An increase in significant accidents
for the established members in 2022 can be explained by a significant rise in traffic (see
Figure 3).

Further, the report presented the distribution by accident causes as shown in Figure 4.
The number of accidents with external causes decreased by 12% between 2018 and 2019,
and again by 12% between 2019 and 2020, but increased 8% in 2021 and 6% in 2022. Overall,
a consistent decreasing trend is observed in many countries, regardless of the steepness of
the trend.
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Table 2. Number of events (incident, accident) and time delayed.

Year
Number of Events by Causes Delay Time in Average (Minute)

Human Technical External Total Human Technical External

2008 447 257 0 704 48.0 36.4 0.0
2009 419 286 1 706 26.3 30.1 83.0
2010 353 248 31 632 24.8 37.0 47.5
2011 292 306 29 627 20.6 34.1 24.5
2012 277 289 23 589 21.0 31.7 30.7
2013 258 267 29 554 17.0 34.7 29.0
2014 233 206 49 488 26.1 34.0 31.5
2015 166 187 40 393 34.0 28.9 32.5
2016 168 160 42 370 23.8 33.9 43.0
2017 127 195 40 362 28.3 31.8 31.6
2018 112 173 46 331 26.7 32.5 49.7
2019 100 265 56 421 24.1 32.6 28.8
2020 71 194 40 305 25.5 32.8 33.6
2021 96 163 41 300 14.8 38.3 41.0
2022 125 154 28 307 23.0 51.0 87.4

Total 3244 3350 495 7089 Avg. 27.2 Avg. 34.3 Avg. 38.6Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 20 
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The second part of Table 2 shows the average time delayed by three factors. The length
of delay time appears in the following order: human factors, technical factors, and external
factors. In the case of a fatal accident, the possibility of recovering from a breakdown
or damage to facilities or equipment is relatively low compared to an accident caused
by technical factors, so the time it takes for the train to operate normally is inevitably
relatively small. However, in the case of accidents caused by environmental factors, it
causes breakdown and damage to railway facilities such as tracks, structures, and vehicles.
Therefore, it is estimated that accidents caused by environmental factors require more time
to recover from, compared to accidents caused by technical factors, resulting in relatively
longer train operation delays. Interestingly, average latency has not shown any significant
decrease in length over the past 15 years. This means that, regardless of the development
of railway technology, an almost certain amount of delay time will inevitably occur.
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3.2. Details of Human- and Technical-Involved Events

As mentioned above, because there is sufficient amount of data on human and tech-
nical factors since 2008, this study limited these two factors for the time delay estimation.
Figure 5 presents the distribution of accident delay times by human and technical factors.
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The percentage of accident delays recorded as zeros was 41.4% for human factors
and 9.1% for technical factors, showing a very large difference. This is the reason why the
average delay time due to human factors is lower than that due to technical factors, as
shown in Table 2 above. In other words, this means that in the case of an accident caused
by human factors, it is much more likely that a delay time of zero will be recorded than an
accident caused by technical factors. Then, records with excessively large delay times were
defined as outliers and excluded from the analysis. The cutoff for outliers was defined as
twice the interval between the 1st and 3rd quartiles, added to the 2nd quartile. As a result,
the baseline for outliers for human factors was calculated to be 93 min, and for technical
factors to be 96 min. However, in this study, the baseline for all outliers was set at 100 min.
Outliers exceeding 100 min were 83 cases for the human factors and 104 cases for the
technical factors, respectively. After excluding these outliers, the final data to be used for
analysis was 3161 cases for the human factors and 3246 cases for the technical factors. The
mean and variance of cases where time delay occurred (excluding cases without time delay)
were 30.6 and 347.4 for human factors and 31.9 and 347.9 for technical factors, respectively.
Table 3 identifies the explanatory variables used in modeling and presents the descriptive
statistics for the human and technical factors.

The statistics reveal that approximately 75% of accidents can be attributed to factors
associated with human involvement, within the category of human factors, while roughly
96.5% of incidents are linked to delays in operations, categorized under technical factors. This
observation shows the higher likelihood of events arising from human factors evolving into
accidents, whereas those originating from technical factors are more inclined to manifest as



Appl. Sci. 2024, 14, 1697 9 of 19

incidents. In terms of seasonal distribution, the number of occurrences related to human
factors does not exhibit clear patterns. From the technical factors, however, there is a noticeable
decrease in occurrences during the spring and fall seasons compared to other periods. This
phenomenon can be attributed to the climatic conditions in Korea, with hot and humid
summers featuring numerous rainy days, and cold, dry winters. Consequently, technical
factors are more likely to result in accidents and incidents during these weather seasons.

Table 3. Summary statistics for explanatory variables.

Category Variables
Proportion

Human Factor Technical Factor

Types of event (incident or accident) Train fire 0.000 0.001
Crash 0.004 0.001
Derailment 0.010 0.013
Ground-level crossing (GL) 0.056 0.001
Facility involved 0.005 0.006
Human involved (related to trains) 0.511 0.005
Human involved (not related to trains) 0.242 0.006
High potential to develop into an event 0.012 0.002
Delayed operation 0.159 0.965

Year occurred Year (2008~2012) - -
Season occurred Spring 0.260 0.227

Summer 0.265 0.284
Fall 0.239 0.224
Winter 0.235 0.264

Types of train Express 0.079 0.282
Conventional 0.518 0.469
Metro 0.403 0.250

Size of train operator Large 0.946 0.910
Middle 0.014 0.013
Small 0.040 0.077

Location occurred Crossing 0.026 0.001
In station building 0.405 0.419
Railroad within station 0.043 0.044
Railroad outside station 0.291 0.392
In cabin 0.002 0.000
Train depot 0.008 0.004
Others 0.225 0.140

Person type directly related to accidents Public 0.326 -
Passenger 0.297 -
Crew member 0.110 -
Control member 0.016 -
Other staffs 0.251 -

Cause directly related to human involved
Disobeying rules 0.060 -
Carelessness or errors 0.420 -
Illegal act 0.255 -
Suicide 0.239 -
Other causes 0.026 -

Facility type directly related to accident Rail or structures - 0.039
Signal or telecommunication - 0.135
Electric power - 0.047
Train - 0.728
Interface between facilities - 0.017
Others - 0.034

Cause directly related to facility involved
Old parts and defects - 0.356
Installation related - 0.024
Design or production related - 0.093
Operation related - 0.009
Maintenance issues - 0.330
Other causes - 0.188
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Concerning the type of railways, conventional trains play a predominant role in the
occurrence of both accidents and incidents. Express trains, characterized by their relatively
modern design and the presence of safety fences along their tracks, maintain a higher level
of safety. Furthermore, most metro routes are situated underground, offering protection
against adverse weather conditions and public intrusion. In contrast, conventional trains,
employing relatively older vehicles and operating on ground sections without safety fences,
are inherently more prone to experiencing a higher accident rate than the other train types.
In the classification of train operators based on the number of routes they manage, operators
overseeing two or three routes are categorized as ‘Middle,’ while those managing four or
more routes fall into the ‘Large’ category. This categorization aids in understanding the
scale and scope of train operations. Many accidents and incidents occur within station
locations, particularly on concourses or platforms, with approximately 40% attributed to
human factors and 42% linked to technical factors. In the domain of human factors, 42% of
accidents can be attributed to carelessness or errors, such as careless behavior, unauthorized
track crossings, close proximity to tracks, incorrect driving procedures, disregard for safety
stops, and errors in track switching, among others. Conversely, in the domain of technical
factors, approximately 69% of accidents are associated with aging or defects in specific
parts themselves, or inadequate maintenance practices.

4. Methodology
4.1. Regression Methods

The magnitude of time delay, a non-negative continuous measurement characterized
by a prevalence of zeros as depicted in Figure 5, can be quantified through regression
techniques. Poisson and Negative Binomial (NB) regression models have emerged as
widely employed tools in accident analysis. The Poisson model is well-suited for datasets
exhibiting variance approximately equal to the mean, whereas the NB model is aptly suited
for datasets with pronounced over-dispersion, where the variance significantly exceeds
the mean. Consequently, the NB model is deemed appropriate for predicting time delays
due to the substantial disparity between the variance and mean within both datasets, as
elucidated in the data description. However, the data on time delay has two heterogeneous
measurement distributions (e.g., zero or positive), which are not well described by these
classical models. To deal with the excess frequencies of zero, two approaches have been
adopted. One is the two-stage model. In the first stage of the model, a binary logit model
was applied to the distribution of whether delay time occurred. And, when the delay time
occurred from the model, the delay time was measured using the NB model. Another is the
ZINB model, which analyzes data with excess zeros and over-dispersion, providing a more
accurate representation of the underlying processes. The dependent variable, delay time
was converted into a categorical variable with 5 min intervals, expressed as 0 to 21 (e.g.,
‘1′ if the delay time is greater than 0 and less than or equal to 5), and then applied to the
models. The NB model postulates that the Poisson means conform to a gamma distribution,
and the probability mass function is expressed as follows: [see Cameron et al. [41] (p. 100)
for details]:

Pr(yi) =
Γ
(
α−1 + yi

)
Γ(α−1)Γ(yi + 1)

(
1

µiα + 1

)α−1(
µiα

µiα + 1

)yi

(1)

where
E(yi) = µi = exp(β0 + β1x1i + · · ·+ βmxmi + εi) (2)

Var(yi) = µi + αµ2
i (3)

L = ∏N
i=1 Pr(yi) (4)

Let i = 1, 2, 3, . . ., n represent the observation index; m denotes the index for explana-
tory variables; yi signify the observed delayed time amount for observation i; xmi represent
the value of explanatory variable m for observation i; and βm denote the coefficients to
be estimated corresponding to xmi. The estimated outcome for delayed time for the ith
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observation, denoted as µi, is derived. The overdispersion parameter is represented as α.
When α→0, it implies equivalence between the conditional mean and conditional vari-
ance (eliminating unobserved heterogeneity), effectively collapsing the NB model into the
Poisson model. The likelihood function is denoted as L.

To model overdispersion in the presence of excessive zeros, the ZINB distribution is
employed. For yi, the value 0 manifests in two distinct states. The first state is the zero
state, occurring with a probability of pi, resulting exclusively in observations with a value
of 0. The second state is the negative binomial state, occurring with a probability of (1 − pi)
and characterized by a negative binomial distribution [42].

Pr(yi) =


pi + (1 − pi)

(
1

µiα+1

)α−1

, for yi = 0

(1 − pi)

(
Γ(α−1+yi)

Γ(α−1)Γ(yi+1)

)(
1

µiα+1

)α−1(
µiα

µiα+1

)yi
, for yi > 0

(5)

The means and their variances are defined E(yi) = (1 − pi)µi and
Var(yi) = (1 − pi)µi(1 + µiα + piµi), and the log-likelihood function,

L = ∏N
i=1

[
pi + (1 − pi)

(
1

µiα + 1

)α−1]
+ ∏N

i=1

[
(1 − pi)

(
Γ
(
α−1 + yi

)
Γ(α−1)Γ(yi + 1)

)(
1

µiα + 1

)α−1(
µiα

µiα + 1

)yi
]

(6)

4.2. Artificial Neural Network Method

Artificial neural networks emulate the functionality of the human brain and facilitate
progressive learning through a series of algorithmic operations. Within ANNs, information
is processed via interconnected nodes, known as neurons, situated within the ANN frame-
work. The standard ANN architecture, depicted in Figure 6, comprises three fundamental
components: the input layer, hidden layer, and output layer. Each neuron in the input layer
serves as a data aggregator, collecting information from external sources and performing
a role akin to that of a predictor or contributor in a regression model. In the context of
artificial neural networks, the hidden layer resides between the input and output layers.
To discern non-linear patterns, it is commonly recommended to employ a single hidden
layer in most applications [37,43–45]. Augmenting the number of hidden layers introduces
greater complexity and prolonged processing times, often without a proportional enhance-
ment in model performance, as noted by Nielsen [46]. Concerning the number of neurons
within a hidden layer, Nielsen [46] advises that it should be fewer than the neurons in the
input layer.
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Figure 7 illustrates a structure comprising a solitary node. This node receives inputs
from either the data within the input layer or the outputs of other nodes, referred to as
activations. Each input to the node is associated with a weight (notated as ‘w’) and a bias
(notated as ‘b’) or a threshold. The weight characterizes the influence of the input on the
node’s response. The node computes the weighted sum of inputs and subsequently applies
an activation function, which may include threshold functions, Sigmoid functions, Rectified
Linear Unit functions (ReLU), Hyperbolic Tangent functions, and Softmax functions, among
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others, to determine the node’s output. Training the neural network can be accomplished
using various training algorithms, with the Backpropagation (BP) algorithm being one of
the most widely adopted choices. The BP algorithm is employed to adjust the weights of
neural network nodes, with the objective of minimizing the sum of squared errors during
the training phase.
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5. Analysis Results

To evaluate the time delay associated with both human-related and technical factors,
the dataset underwent partitioning, allocating 80% of the data for model estimation and
reserving the remaining 20% for testing purposes. The application of a Chi-squared test
reveals that no statistically significant difference exists in the frequency distribution of time
delay between these two subsets.

5.1. Human-Related Time Delays

Table 4 represents the modeling outputs for the delayed time caused by human-related
factors with some of the explanatory variables shown in Table 3. In general, the direction of
estimates indicates a certain trend. For instance, in the outputs of the negative binomial part,
a positive estimate suggests a higher likelihood of an increase in the delayed time, especially
when associated with a p-value equal to or greater than 0.05. Similarly, in the logit part outputs,
a positive estimate signifies a greater probability of occurrence of time delays. These trends
remain consistent across various models, except for estimates in the type of event within the
negative binomial part. Nevertheless, the likelihood of delayed time occurrence is notably
higher when the type of event is linked to high-potential events (2.708 in Two-stage; 2.980 in
ZINB) or ground-level crossing accidents (0.931 in Two-stage; 2.980 in ZINB), as opposed to
events related to humans (−2.867 in Two-stage; −2.865 in ZINB).

However, the duration of delayed time for human-involved (−0.357 in ZINB) or
ground-level crossing accidents (−0.234 in ZINB) tends to be less than that for other types
of events such as crashes, derailments, facility-involved accidents, and so on. The likelihood
of a time delay occurring is not only higher during the fall season, but is also associated with
a longer duration of delayed time, and this is statistically significant only at the negative
binomial part of Two-stage model. When railroad accidents involve the public (2.215 and
1.513 in Tow-stage, respectively) or passengers (2.382 and 1.645 in ZINB, respectively), the
likelihood of a time delay is higher compared to other person types. However, during the
duration of the delay, events related to ‘passengers’ are likely to experience a reduction.
The categorization of train operators into three groups based on the number of operating
routes did not yield statistically significant explanations for time delays.

In cases involving conventional trains in railroad accidents, there is a diminished
likelihood of time delays; however, the temporal duration of the delay shows a statistically
significant likelihood of increase (0.189 in Two-stage; 0.243 in ZINB). Conventional trains,
operated exclusively by ‘KORAIL’ across the country, generally have time headways
at least exceeding 20~30 min—a notable contrast to express trains and metros, which
operate with headways of 5 min or less. Constituting a mere 1.8% of the total passenger
volume, compared to 95.5% for metros and 2.6% for express trains (as of Aug. 2023 in
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KOSIS), conventional trains are allocated a comparatively smaller share of resources by
KORAIL. Consequently, accidents involving conventional trains result in inevitably longer
delay times, given the relatively sluggish response attributed to their diminished strategic
importance. The analysis indicates that when an incident occurs on the main line, between
railroad stations, both models consistently show an increase in the probability of a delay
occurring (positive signs in the logit part) as well as an extension in the length of the delay
time (positive signs in the negative binomial part). Similarly, accidents related to suicide
are associated with an elevated likelihood of delays and an extended duration of time.

Table 4. Modeling outputs (delayed time) for the human-related factors.

Parameter
Two-Stage Model ZINB Model

Estimate S.E. p-Value Estimate S.E. p-Value

Negative Binomial Part
Intercept 1.589 0.099 0.000 1.767 0.068 0.000
Type of event
High potential event 0.011 0.088 0.897 −0.044 0.061 0.478
Human involved 0.053 0.177 0.763 −0.357 0.133 0.007

GL −0.098 0.097 0.312 −0.234 0.072 0.001
Season occurred

Fall 0.092 0.046 0.044 0.043 0.033 0.188
Person type

Public −0.174 0.095 0.066 −0.104 0.066 0.114
Passenger −0.507 0.101 0.000 −0.229 0.072 0.001
Crew −0.136 0.088 0.123 −0.123 0.063 0.051

Size of train operator
Middle −0.165 0.177 0.350 −0.357 0.132 0.007

Type of train
Conventional 0.189 0.047 0.000 0.243 0.034 0.000

Cause directly related to
Suicide 0.405 0.049 0.000 0.187 0.037 0.000

Location occurred
Level crossing 0.032 0.135 0.812 0.169 0.101 0.094

Between stations 0.219 0.045 0.000 0.110 0.036 0.003
α (overdispersion) 1.949 0.049 0.000 1.942 0.083 0.000

Logit Part
Intercept 1.170 0.199 0.000 1.202 0.210 0.000
Type of event
High potential event 2.708 0.225 0.000 2.980 0.258 0.000
Human involved −2.867 0.224 0.000 −2.865 0.228 0.000

GL 0.931 0.357 0.009 1.043 0.411 0.011
Season occurred

Fall 0.281 0.138 0.042 0.294 0.148 0.047
Person type

Public 2.215 0.203 0.000 2.382 0.216 0.000
Passenger 1.513 0.208 0.000 1.645 0.220 0.000
Crew −0.076 0.235 0.745 −0.124 0.256 0.627

Size of train operator
middle 0.331 0.534 0.535 0.634 0.633 0.317

Type of train
Conventional −0.279 0.135 0.039 −0.359 0.144 0.013

Cause directly related to
Suicide 1.143 0.157 0.000 1.137 0.168 0.000

Location occurred
Level crossing −0.718 0.436 0.099 −0.845 0.483 0.081
Between stations 0.817 0.156 0.000 0.842 0.169 0.000

LL at constant only −5606 −5606
LL at convergence −4864 −4757
ρ2 0.132 0.151
AIC 9755 9568

To configure the ANN model, the input layer is designed to incorporate the same
independent variables as detailed in Table 4. The input layer comprises two variables, each
accommodating 12 neurons, representing predictive factors related to the duration of time
delays. During the development of the ANN model, the sigmoid activation function was
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selected in conjunction with the BP algorithm, as the application of the ReLU activation
function failed to converge to optimal values. Throughout the course of this ANN study,
an interesting observation emerges, indicating a consensus on the limited performance
improvement attained by introducing additional hidden layers. In many instances, a single
hidden layer is deemed sufficient to address many problems. However, this study explores
the introduction of hidden layers ranging from 1 to 3, revealing that optimal convergence
was not achieved with three hidden layers. Given that the efficacy of the BP training
algorithm is contingent on the number of neurons within the hidden layer, various neuron
counts ranging from 1 to 12 were systematically examined. The investigation concludes
that the optimal number of neurons in the hidden layer is eight, resulting in the lowest
values for Mean Square Error (MSE) and Root Mean Square Error (RMSE) for the training
data. The analysis was conducted using the R 4.3.1 software package. The primary criteria
employed to compare the performance superiority among the Two-stage model, ZINB
model, and ANN model encompass the coefficients of determination (R2), MSE, and RMSE.
These criteria are defined as follows:

R2 = r2, r =
n(∑ y × ŷ)− (∑ y)(∑ ŷ)√[

n∑ y2 −
(

∑ y)2
]
×
[
n∑ ŷ2−

(
∑ ŷ)2

] (7)

MSE =
1
n∑n

i=(yi − ŷi)
2 (8)

RMSE =

√
1
n

MSE (9)

Within the framework of this analysis, we define yi as the i-th observed value, ŷi as
the i-th predicted value generated by the model, and n as the total available dataset size.

Table 5 presents a concise overview of the comparative predictions derived from the
three estimated models for the human-related factors. The R2 serves as a metric assessing
the proximity of model-fit data, ranging from 0 to 1, where higher values indicate a more
comprehensive explanation of dependent variables by independent variables. In the
training dataset, the R2 values are 0.355 for the Two-stage model, 0.389 for the ZINB model,
and 0.446 for the ANN model. Notably, the ANN model exhibits a 7.2% improvement in
model fit compared to the Two-stage model and a 4.7% enhancement compared to the ZINB
model. Similar trends are observed in the testing data, with an 8.8% and 3.1% improvement
associated with the ANN model. Furthermore, upon examining the results of MSE and
RMSE, the ANN model demonstrates relatively lower prediction error rates compared to
the other two regression models.

Table 5. Model performance comparison for the human-related factors.

Model
Training Data Testing Data

R2 MSE RMSE R2 MSE RMSE

Two-stage 0.355 12.114 3.481 0.311 13.012 3.607
ZINB 0.389 11.478 3.388 0.342 11.503 3.392
ANN 0.446 10.426 3.229 0.373 10.808 3.288

ANN/TWO 25.6% −13.9% −7.2% 19.9% −16.9% −8.8%
ANN/ZINB 14.7% −9.2% −4.7% 9.1% −6.0% −3.1%

5.2. Technical-Related Time Delays

Table 6 presents the results of the regression analysis concerning both the occurrence
and the duration of delayed time attributed to technical factors. Similar to the findings
for human-related factors, the coefficient estimates in both models exhibit considerable
similarity. The probability of delayed time occurrence is elevated when events are associated
with high-potential incidents (3.848 in the Two-stage model; 3.969 in the ZINB model).
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However, the duration of time delay was not found to be statistically significant in the
negative binomial part. In instances of derailment accidents, there is an increased likelihood
of prolonged delayed time (0.021 in ZINB). Additionally, when the accident involves fire,
the duration of delayed time tends to increase. The analysis reveals that accidents associated
with signal, telecommunication, rail, or structural facilities are less likely to experience
time delays, as evidenced by the negative signs of all coefficient estimates in the logit part.
Furthermore, the duration of time delay is less likely to be prolonged in cases involving
signal or communication facilities (−0.290 in the Two-stage model and −0.236 in the
ZINB model) and rail or structural facilities (−0.166 in the Two-stage model). Conversely,
accidents linked to electric power facilities tend to exhibit an increase in the duration of time
delay (0.151 in the Two-stage model and 0.185 in the ZINB model). Accidents involving
personnel other than crew and control staff tend to decrease the likelihood of prolonged
time delays. Specifically, in incidents related to conventional trains in railroad accidents,
there is a statistically significant likelihood of an increase in the temporal duration of
delay (0.422 in the Two-stage model and 0.441 in the ZINB model). This aligns with the
interpretation of the model output for human-related factors. The analysis also indicates
that incidents occurring on the main line, between railroad stations, consistently result in
an elevated probability of extending the duration of time delay, as evidenced by positive
signs in the negative binomial part on both models.

Table 6. Modeling outputs (delayed time) for the technical-related factors.

Parameter
Two-Stage Model ZINB Model

Estimate S.E. p-Value Estimate S.E. p-Value

Negative Binomial Part
Intercept 1.548 0.170 0.000 1.485 0.148 0.000
Type of event
High potential event 0.090 0.160 0.592 0.189 0.147 0.198

Train fire 1.037 0.400 0.009 1.076 0.321 0.001
Derailment 0.067 0.210 0.748 0.427 0.185 0.021

Facility type related to
Signal (or telecom.) −0.290 0.036 0.005 −0.236 0.033 0.000
Electric power 0.151 0.057 0.008 0.185 0.049 0.000
Rail (or structures) −0.166 0.065 0.010 −0.082 0.058 0.158

Cause directly related to
Others −0.114 0.030 0.000 −0.089 0.026 0.001

Type of train
Conventional 0.422 0.023 0.000 0.441 0.021 0.000

Location occurred
Between stations 0.091 0.023 0.000 0.092 0.020 0.000
α (overdispersion) 5.521 0.039 0.000 2.491 0.081 0.000

Logit Part
Intercept 1.005 0.342 0.000 0.907 0.348 0.000
Type of event
High potential event 3.848 0.342 0.000 3.969 0.350 0.000
Train fire 14.794 378.292 0.968 14.794 656.015 0.982
Derailment 1.310 0.505 0.009 1.349 0.509 0.008
Facility type related to

Signal (or telecom.) −0.731 0.196 0.000 −0.751 0.223 0.001
Electric power −0.449 0.357 0.208 − 0.513 0.385 0.183
Rail (or structures) −1.089 0.289 0.000 −1.183 0.305 0.000

Cause directly related to
Others −0.321 0.179 0.072 −0.307 0.198 0.121

Type of train
Conventional −0.021 0.156 0.892 −0.180 0.175 0.301

Location occurred
Between stations 0.204 0.161 0.205 0.1179 0.176 0.311

LL at constant only −6965 −6965
LL at convergence −6740 −6558
ρ2 0.032 0.058
AIC 13522 13158
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Table 7 provides a succinct summary of the comparative predictive performance
among the three models concerning technical-related factors. The model-fit R2 values are
recorded as 0.197 for the Two-stage model, 0.209 for the ZINB model, and 0.300 for the ANN
model. Noteworthy is the ANN model’s outperformance, displaying a 6.6% improvement
in model fit compared to the Two-stage model and a 5.9% enhancement compared to the
ZINB model. These trends persist in the testing data, with a 10.6% and 6.0% improvement
associated with the ANN model. Additionally, upon scrutiny of the MSE and RMSE results,
the ANN model exhibits comparatively lower prediction error rates in contrast to the other
two regression models.

Table 7. Model performance comparison for the technical-related factors.

Model
Training Data Testing Data

R2 MSE RMSE R2 MSE RMSE

Two-stage 0.197 13.338 3.652 0.101 15.522 3.940
ZINB 0.209 13.140 3.625 0.124 14.048 3.748
ANN 0.300 11.626 3.410 0.183 12.416 3.524

ANN/TWO 52.3% −12.8% −6.6% 81.2% −20.0% −10.6%
ANN/ZINB 43.5% −11.5% −5.9% 47.6% −11.6% −6.0%

6. Discussion

This study focuses on identifying key factors influencing the likelihood of time delays
in railroad events, utilizing comprehensive historical data from 2001 to 2022 in Korea.
The dataset is divided into two categories: accidents with a significant impact on human
life or property and incidents leading to time delays. Over the years (2001–2022), there
is a substantial decline in both accidents and incidents, with an AGR of approximately
−9.9% for accidents and −3.7% for incidents. Adoption of advanced safety systems and
technological innovations, such as automatic train control, contributes to the reduction
in accidents. The study aims to measure time delays caused by accidents or incidents,
considering factors like season, train operator size, railroad type, accident cause, and
location. A total of 14,771 accidents and incidents occurred, with only 38.3% having time
delay records on average over 22 years.

Reporting of accidents and incidents aligns with guidelines established under the
Railway Safety Act from November 2007; therefore, the study used the data for the analysis
starting from 2008. The total number of events used for human factors is 3244, and
is 3350 for technical factors. The average delay time due to human factors ranges from
14.8 to 48.0 min, with an overall average of 27.2 min, while the average delay time due to
technical factors ranges from 28.9 to 51.0 min, with an overall average of 34.3 min. There
are variations in the annual average delay times, emphasizing the need for a dynamic
and context-specific approach to address the causes of delays in the railway system. The
overall decrease in the total number of events indicates positive trends in railway safety,
but the varying delay times highlight the importance of understanding the specific factors
contributing to delays for effective mitigation strategies.

To address excess zeros in the data, two approaches are employed: a two-stage
model involving binary logit and NB models, and a ZINB model, offering a more accurate
representation. The article further introduces the mathematical formulations of these
models and their parameters. Additionally, ANNs are explored as an alternative method,
mimicking human brain processes for non-linear pattern recognition. The structure and
components of ANNs, along with the backpropagation algorithm for training, are explained.
The study aims to provide insights into predicting delayed time in railway accidents,
considering both traditional regression models and advanced ANN methods.

The study investigates time delays resulting from human-related and technical fac-
tors by dividing the dataset for model estimation and testing. Statistical tests indicate
no significant difference in the frequency distribution of time delays between the two
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subsets. Modeling outputs, particularly from the Two-stage and ZINB models, consistently
demonstrate trends in the likelihood and duration of delays associated with various fac-
tors. Human-related delays, influenced by event types, seasons, and passenger categories,
show nuanced impacts. An ANN model is configured with optimal parameters, and its
performance is compared to regression models, indicating that the ANN model provides
superior predictions for human-related factors. Technical-related delays, influenced by
incident types and facility involvement, are also analyzed, with the ANN model again
showing enhanced predictive performance compared to regression models.

While the current dataset offers detailed information on delayed times based on factors
like railway type, operator, accident cause and accident type, the author points out the
need for more comprehensive data to assess the full impact of accidents. Suggestions
include incorporating information such as the speed at the time of an accident, detailed
breakdown of total delay time, including time affected by the main line, time required for
recovery, time of occurrence and location of the route where the accident occurred. Despite
these limitations, the study is considered instructive for transit agencies in assessing
the repercussions of railway accidents and elevating service quality. The article also
acknowledges the predictive superiority of the ANN model, but emphasizes that there
are still shortcomings to address, such as the consideration of additional factors that have
not statistically affected the dependent variable. Ultimately, the study provides valuable
insights, but for policymakers seeking specific areas to focus resources for reducing the
impact on rail accidents, further enhancements in data and analysis are necessary.

7. Conclusions

The study emphasizes the importance of considering both human and technical factors
in predicting and understanding delays in railroad accidents. The primary conclusions
drawn from analyzing factors impacting time delays in railroad accidents are as follows:

For the human-related factors:

• Delayed time for human-involved or ground-level crossing accidents is typically
shorter compared to other events.

• Time delays are more likely in the fall season and tend to be longer.
• Accidents involving the public or passengers on railroads have a higher likelihood of

time delays, with shorter durations for passenger-related incidents.
• Conventional train accidents have lower likelihoods of time delays, but longer delays

when they occur.
• Incidents on the main line, between stations, increase the probability and duration of

time delays.
• Suicide-related accidents lead to increased likelihood and duration of delays.

For the technical-related factors:

• High-potential incidents increase delay likelihood.
• Derailments or fires result in prolonged delays.
• Signal, telecommunication, rail, or structural facility accidents have minimal delays

and shorter delay durations.
• Electric power accidents lengthen delays, while those involving non-crew personnel

decrease delay likelihood.
• Conventional train incidents extend delay durations.
• Incidents on the main line, particularly between stations, lead to extended delays.
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