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Abstract: The use of cricket protein in emulsions is in line with the growing interest in sustainable
food sources, as crickets require minimal resources and produce lower greenhouse gas emissions
than traditional livestock. Research in this area suggests that incorporating cricket protein into
emulsions not only improves their nutritional value but also contributes to the development of
environmentally friendly and functional food products. This study proposes the use of cricket protein
for the stabilization of emulsions formulated with avocado oil as a dispersed phase. This oil is rich
in monounsaturated fats, particularly oleic acid, and a variety of bioactive compounds. In the first
part of this study, we assessed the influence of the emulsifier concentration and found that 2 wt.%
is the optimum because a depletion flocculation effect was produced. Subsequently, processing
was optimized using ultrasonication so that the higher energy input produced emulsions with a
droplet diameter of less than 700 nm. Finally, rhamsan gum was added to the formulation, producing
emulgels with improved pseudoplastic behavior and physical stability. This study demonstrates
that cricket protein in combination with rhamsan gum is capable of forming stable, low-droplet-size
emulgels with potential applications in encapsulation systems.

Keywords: avocado oil; cricket protein; emulsion; emulgel; rhamsan gum; ultrasonication

1. Introduction

In recent years, the global demand for sustainable and nutritious food sources has
driven innovative research on alternative protein sources. Among these, cricket protein
has emerged as a promising candidate due to its nutritional profile and environmental
sustainability [1]. The development of emulsions using cricket protein represents a new
way of creating functional and sustainable food products.

Cricket flours, derived from edible crickets such as Gryllodes sigillatus and Acheta
domesticus, have attracted attention due to their high protein content, essential amino
acid profile and environmentally friendly production compared to traditional livestock
farming [2]. Emulsions, colloidal systems composed of two immiscible phases stabilized
by an emulsifier, play a crucial role in the formulation of various food products, including
dressings, sauces and beverages [3]. Incorporating cricket protein into emulsions not only
enhances their nutritional value but also contributes to sustainable development goals by
reducing dependence on resource-intensive protein sources [4].

The success of emulsion development with cricket protein lies in understanding its
unique physicochemical properties. Cricket protein contains a diverse range of proteins,
lipids and chitin that impart distinctive functional properties to emulsions. Studies have
shown that cricket protein has emulsifying properties due to the amphiphilic nature of
its proteins, which can adsorb at the oil–water interface and stabilize the emulsion [5].
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Furthermore, the presence of chitin, a polysaccharide in the cricket exoskeleton, may
contribute to the mechanical stability of emulsions through interactions with proteins and
lipids [6]. In addition to its functional properties, the nutritional benefits of cricket protein
in emulsions are noteworthy. Cricket protein is a rich source of essential amino acids,
vitamins and minerals, making it a valuable ingredient in emulsion-based food products
designed to meet consumers’ nutritional needs. In addition, cricket protein has a lower
environmental footprint compared to traditional protein sources, which is in line with
growing consumer demand for sustainable and ethical food choices [7,8].

Avocado oil, derived from the fruit of the Persea americana tree, has gained considerable
attention in recent years for its potential health benefits. This natural oil has been a staple
in traditional diets, especially in regions where avocados are native, and its consumption
is now gaining popularity worldwide. Scientific studies have examined the nutritional
composition of avocado oil and found it to be high in antioxidants such as tocopherols,
carotenoids and polyphenols. These compounds contribute to the oil’s potential anti-
inflammatory and antioxidant properties, which are crucial for maintaining overall health
and preventing chronic disease [9,10]. Avocado oil has also been linked to cardiovascular
health benefits. Research suggests that the monounsaturated fats found in avocado oil
may help improve lipid profiles by reducing LDL cholesterol levels while increasing
HDL cholesterol, ultimately promoting a healthier cardiovascular system [11,12]. The
versatility of avocado oil extends beyond its culinary uses; it is also gaining recognition
for its use in skin care. Studies have demonstrated the oil’s potential to promote skin
health due to its moisturizing properties and ability to enhance the absorption of essential
nutrients [13,14]. In this context, exploring the applications of avocado oil and the scientific
evidence surrounding its benefits is crucial for people looking to optimize their dietary and
skincare routines. This scientific study proposes the use of avocado oil as a dispersed phase
in emulsions and emulgels. Recent studies have already demonstrated the possibility of
using avocado oil in such dispersed systems and with sustainable biological resources as
emulsifying agents [15]. The main novelty of this study lies in the use of cricket protein as
an interface stabilizer.

Rhamsan gum is a polysaccharide derived from the fermentation of Xanthomonas
campestris, a bacterium commonly found in soil. This exopolysaccharide is known for its
remarkable thickening and stabilizing properties, making it a key ingredient in various in-
dustries such as food, pharmaceuticals and cosmetics. With its unique molecular structure
and versatile functionality, rhamsan gum has gained widespread recognition as a valuable
additive in a variety of applications [16]. This biopolymer’s ability to form stable gels and
increase viscosity in aqueous solutions has led to its widespread use in the food industry,
where it contributes to the texture, mouthfeel and stability of a wide range of products [17].
Beyond the culinary sphere, rhamsan gum has also found utility in pharmaceutical formu-
lations, providing controlled release and improved rheological properties. In addition, its
role in personal care products underlines its importance in the cosmetics industry, where it
acts as a reliable thickener and stabilizer in various formulations.

The development of emulsions using high-energy methods has revolutionized the
field of colloidal science and industrial processing. Using techniques such as ultrasoni-
cation, high-pressure homogenization and microfluidization, researchers can efficiently
produce stable emulsions with finely tuned droplet sizes and distributions [18]. Ultrasonic
emulsification, which uses high-frequency sound waves to break immiscible liquids into
tiny droplets, is a powerful technique for developing emulsions. In this process, ultrasonic
energy is applied to a mixture of oil and water, resulting in the formation of stable emul-
sions with uniform droplet sizes. The cavitation phenomenon induced by the ultrasonic
waves creates intense local heating and pressure fluctuations, facilitating the dispersion
of the dispersed phase into the continuous phase. This method offers several advantages,
including improved emulsion stability, reduced droplet size distribution and efficient en-
capsulation of active ingredients, making it a promising approach in various industries,
such as food, pharmaceuticals and cosmetics [19].
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As the food industry continues to explore alternative protein sources, the development
of cricket-protein-based emulsions holds great promise. The main objective of this study
was to develop emulsions and emulgels with cricket flour as an emulsifying agent in
combination with rhamsan gum as a thickener. This study demonstrates the ability of
cricket flour to stabilize avocado oil-in-water emulsions processed using ultrasonication.
These systems could be used as matrices and encapsulation systems for bioactive principles
in the food and cosmetic–dermatological industries.

2. Materials and Methods
2.1. Materials

The continuous phase was formulated using cricket flour (70 wt.% protein) as the
emulsifier, purchased from Origen Farms (Albacete, Spain), and distilled water. The
dispersed phase was formed with avocado oil, supplied by Bidah Chaumel (Murcia, Spain).
Rhamsan gum, kindly supplied by CP Kelco (Atlanta, GA, USA), was used as a rheology
modifier. All compounds were natural products. A certificate of analysis was provided.

2.2. Preparation of Emulgels

The compositions of the emulsions studied in the first part of this research (in the
absence of a biopolymer as a rheology modifier) were formulated with 10 wt.% avocado oil
and different concentrations of cricket flour in the range of 0.5–2.5 wt.%. A total of 250 g
of sample was prepared for each of the batches. First, the continuous phase components,
distilled water and cricket flour, were mixed in a magnetic stirrer for 10 min at 500 rpm.
Subsequently, primary homogenization was carried out by adding the dispersed phase
on top of the continuous phase in an Ultraturrax T25 rotor–stator system (Ika, Staufen,
Germany) at 13,500 rpm for 120 s. In the second part of this research, once the concentration
of cricket flour as the emulsifying agent was optimized, the system with 2 wt.% cricket
flour was selected for secondary homogenization. This process was carried out with a
high-energy Ultrasonic Processor CV334 (Sonics, Newtown, CT, USA) at three different
amplitudes (25%, 50% and 75%). In all cases, the total homogenization time was equal
to 10 min, with intervals of 10 s with energy input and 10 s without energy input. The
temperature was set by means of an external bath at 25 ◦C.

In the second stage of this study, the emulsion with the optimized cricket flour con-
centration and ultrasonication amplitude regarding the secondary homogenization was
used as a basis for the incorporation of the biopolymeric stabilizer (rhamsan gum). First, an
aqueous dispersion of rhamsan gum was prepared with a total concentration of 1 wt.%. The
appropriate amount of biopolymer was added over distilled water and stirred at 600 rpm
for 1 h using an Ikavisc MR-D1 system (IKA, Staufen im Breisgau, Germany). This solution
was then kept at 5 ◦C for 24 h to allow complete hydration of the polysaccharide. The
final emulgels with different concentrations of rhamsan gum (0.1, 0.3 and 0.5 wt.%) were
prepared by mixing the primary dispersion and the optimal emulsion using the Ikavisc
MR-D1 at 400 rpm for 30 min.

2.3. Droplet Size Distributions

Droplet size distributions were determined via static light scattering using a Master-
sizer 2000 (Malvern Instruments, Worcestershire, UK) using refractive indices of 1.335 and
1.472 for the continuous and dispersed phases, respectively. All emulsion samples were
vortexed for 30 s and diluted to 10–15% opacity prior to scattering measurements. The
droplet sizes were recorded as volume mean diameter (D4,3):

D4,3 =
∑N

i=1 nid4
i

∑N
i=1 nid3

i
, (1)
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where di is the droplet diameter, ni is the number of droplets of diameter di and N is
the total number of droplets. In addition, to assess the polydispersity of the target size
distributions, the span parameter was used:

Span =
d(v, 0.9)− d(v, 0.1)

d(v, 0.5)
, (2)

where d(v,0.9), d(v,0.5) and d(v,0.10) are the diameters at 90%, 50% and 10% cumulative volume.

2.4. Rheological Characterization

The rheological behavior of the emulsions and emulgels was analyzed using an
AR2000 controlled stress rotational rheometer (TA Instruments, New Castle, DE, USA)
with a 60 mm serrated plate–plate geometry and a 1 mm gap. All rheological tests were
performed in triplicate at 25 ◦C. Multi-step flow curve tests were first performed to obtain
the flow properties of the different systems. The results were recorded as shear rate and
viscosity at each sampling point. Frequency sweep tests were performed in the limit of the
linear viscoelastic region to determine the frequency dependence of the elastic (G′) and
viscous (G′′) moduli.

2.5. Physical Stability

For the study of the physical stability of the developed emulsions and emulgels, the
samples were monitored using a Turbiscan Lab Expert (Formulaction, Toulouse, France).
The samples were introduced into measuring cells and kept at room temperature. The
Turbiscan uses light scattering technology to monitor changes in the physical properties of
emulsions over time. By analyzing the intensity of the backscattered light, it provides valu-
able insight into the stability and structural evolution of emulsions. The Turbiscan stability
index derived from the collected data provides a quantitative measure of emulsion stability,
allowing researchers and formulators to assess the impact of different formulations, storage
conditions and processing parameters on the long-term stability of emulsified systems.
Higher TSI values indicate poorer physical stability and were calculated as follows:

TSI = ∑
j

∣∣∣scanre f
(
hj
)
− scani

(
hj
) ∣∣∣ (3)

where scanref and scani are the initial value of the backscattering and the value at a given
time, respectively, and hj is the given height of the measuring cell.

2.6. Statistical Analysis

The results obtained via the laser diffraction measurements and rheological tests were
analyzed using one-way analysis of variance (ANOVA) using Microsoft Excel 2016. Every
sample was measured in triplicate for the laser diffraction technique but in duplicate for
the rheological tests. All statistical calculations were carried out at a significance level
of p < 0.05.

3. Results and Discussion

In this section, we present and discuss our results from the three different studies
that were carried out: first, we studied the influence of the cricket flour on the emulsions;
second, we evaluated the influence of the use of ultrasound equipment and different
amplitudes; and finally, we assessed the influence of the addition of a physical stabilizer on
the rheological properties and physical stability of the emulsions.

3.1. Influence of Cricket Flour Concentration

Figure 1 shows the droplet size distributions, where the volume percentage versus
droplet diameter is plotted as a function of the emulsifier concentration.
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Figure 1. Droplet size distribution of all studied emulsions as a function of cricket flour
concentration used.

We observed that as the concentration of cricket flour increases, the droplet size
distributions shift towards smaller sizes. At a concentration equal to or higher than 1 wt.%,
the main peak is around 1–2 microns. Furthermore, it is noteworthy that at a concentration
equal to or higher than 2 wt.%, the peak around one hundred microns disappears. These
results highlight the need for a minimal amount of cricket flour, which acts as an emulsifier
and a stabilizer at the oil–water interface, to obtain small droplet sizes. Finally, it should be
noted that within the range of concentrations studied and with the processing used, all the
distributions are multimodal.

It should be noted that droplet size is a key factor influencing emulsion properties
such as physical stability and rheological properties. Droplet size mainly depends on
formulation and processing conditions. The smaller the droplet size, the less likely the
emulsions are to be destabilized by creaming or coalescence [3]. Figure 2A shows the
values of the volumetric mean diameter of the emulsions studied as a function of cricket
flour concentration. A decrease in mean droplet size is clearly observed as the amount of
emulsifier increases, as mentioned above. However, an optimum (minimum value) of this
parameter is also shown for the 2 wt.% concentration. This could be explained by the fact
that a depletion flocculation effect may be taking place at this concentration [20]. In the case
of the span parameter, the lowest value is observed for the lowest emulsifier concentration.
However, it should be noted that this is because the peak of the largest droplet volume is
located at a large size, so that the lower polydispersity in this case is not an advantage. For
the samples with the highest emulsifier concentration, the lowest value is again obtained
for the 2 wt.% concentration, so this is the concentration that will be used in the following
stages of this study.
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Figure 2. Influence of cricket flour concentration on (A) volumetric mean diameter (D4,3) and
(B) span parameter.

Figure 3 shows the plot of backscattering versus sample height after 24 h of aging
for the emulsion containing 2 wt.% cricket flour as the emulsifier. Firstly, even in the
first 24 h after preparation, there is a clear decrease in backscattering in the lower part of
the emulsion measurement cell. As already mentioned, this fact is directly related to a
mechanism of destabilization by creaming [21]. This mechanism is favored by large droplet
sizes and the low viscosity of the samples. Taking into account the results already shown
in which large droplet sizes were observed, the large degree of destabilization by creaming
could be attributed to this last factor, which even led to the phase separation shown in
Figure 3 that was observable with the naked eye approximately 5–6 h after the separation.
All the emulsions studied showed phase separation by a creaming mechanism in less than
24 h.
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with 2 wt.% of cricket flour and developed using only primary homogenization.

3.2. Influence of Processing

In order to obtain emulsions with better properties, both in terms of droplet size and
physical stability, a study of the influence of sample processing was carried out. The systems
with a fixed concentration of 2 wt.% cricket flour and whose primary homogenization was
carried out with the rotor–stator system were introduced into an ultrasonic system at three
different amplitudes (25%, 50% and 75%).
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Figure 4 shows a clear improvement in results when secondary homogenization is
carried out. As the amplitude (the applied energy) is increased, the droplet size distributions
shifts towards smaller sizes. This shift in the droplet size distributions towards smaller
sizes is reflected in significantly smaller values of the volumetric mean diameter as the
energy input increases (see Table 1). In addition, the polydispersity of the samples is lower,
although there is no clear trend. It is shown that no recoalescence phenomena are observed,
so perhaps increasing the energy input (e.g., by increasing homogenization time) could
lead to better results.
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Table 1. Volumetric mean diameter (D4,3) and span as a function of processing for the
emulsions studied.

Sample D4,3 (µm) Span

Rotor–stator (2 wt.%) 4.083 ± 0.258 3.328 ± 0.311
25% 2.215 ± 0.112 1.759 ± 0.097
50% 0.986 ± 0.075 2.018 ± 0.153
75% 0.688 ± 0.040 1.941 ± 0.121

Figure 5 shows the results of the physical stability of the sample prepared using
ultrasound at 75% amplitude as an example of the emulsions prepared with this emulsi-
fication method. A clear improvement in the stability results is shown for this emulsion
for 98 h of aging time compared to the emulsion processed using only the rotor–stator
device for 24 h (see Figure 3). This improvement must be attributed to the decrease in
droplet diameters (see Table 1). It should be noted that in none of the samples was there
any variation in backscattering in the intermediate zone of the vial, which could rule out
changes in the droplet size or aggregation of the droplets. In any case, a physical stabilizer
was incorporated into the formulation to inhibit this creaming destabilization mechanism.
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3.3. Incorporation of a Physical Stabilizer and Rheology Modifier

Figure 6 shows the flow behavior for the optimized emulsions containing 0.1, 0.3 and
0.5 wt.% rhamsan gum. All the samples studied exhibited shear thinning behavior, which
was also fitted to a Cross model (R2 > 0.99):

η =
η0 − η∞

1 +
(
k

.
γ
)1−n (4)
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The fitting parameters are given in Table 2. The flow curve of the emulsion formulated
without rhamsan gum, not shown in Figure 6, showed a Newtonian behavior with a
constant viscosity of 2.74 mPa·s. In contrast, all the emulsions formulated with rhamsan
gum show a very pseudoplastic behavior. The presence of the food grade biopolymer in
the continuous phase induced a marked increase in viscosity and a pronounced decrease
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in the flow index. In addition, a higher flow resistance is shown, with higher k values as
the concentration of the rubber increases. The results show that these emulsions behave
similarly to other systems containing rhamsan gum as a stabilizer [22].

Table 2. Cross model fitting parameters: η0 is the viscosity at very low shear rates, η∞ is the viscosity
at very high shear rates and k is the inverse of the critical shear rate. The values were obtained using
a nonlinear regression analysis.

Rhamsan Gum
Concentration (wt.%) η0 (Pa·s) η∞ (Pa·s) k (s)

0.1 4.3 <0.001 738.7

0.3 32.4 <0.001 571.1

0.5 280.8 <0.001 354.1

The frequency dependence of the linear viscoelastic functions (the storage modulus, G′,
and the loss modulus, G′′), which illustrates the influence of the biopolymer concentration,
of the samples studied is shown in Figure 7. Samples formulated in the absence of rham-
san gum showed no linear viscoelastic range measurable by stress sweeps, so frequency
sweeps were not carried out for these systems. Two types of behaviors are observed in the
systems formulated with the biopolymer. For the 0.1 wt.% sample, a significant frequency
dependence of the viscoelastic properties is observed, with G′ being higher than G′′ over
almost the whole range. There is therefore a low frequency crossover point where the
viscous component dominates. All samples above 0.3 wt.% yield mechanical spectra of
gel-like materials, with a higher storage modulus than loss modulus and little frequency
dependence for either modulus. These results have previously been found in concentrated
emulsions and seem to indicate the presence of three-dimensional networks similar to those
of strong gels [23]. However, these emulgels formulated with rhamsan gum cannot be
classified as strong gels, as they do not fulfill the criteria proposed by Ross-Murphy [24] for
strong gels.
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Figure 7. Mechanical spectra for all emulsions formulated with different rhamsan gum concentrations.

Finally, to check the effect of the addition of rhamsan gum on the physical stability
of the emulsions, the results of the Turbiscan stability index (TSI) as a function of time
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are shown in Figure 8. Firstly, this parameter shows that the emulsions prepared with
ultrasound (US) are more stable than those prepared only with a rotor–stator system (RS),
confirming what has already been discussed in Figures 3 and 5. On the other hand, the
addition of rhamsan gum significantly improves the physical stability (lower TSI vales) of
the systems, especially in emulsions with concentrations above 0.3 wt.%. This must be asso-
ciated with the increase in viscosity discussed above as well as the viscoelastic properties.
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Therefore, the addition of rhamsan gum as a rheology modifier not only imparts a
gel-like property to the emulsions (i.e., they can be classified as emulgels) but also provides
these systems with greater physical stability. In addition, between no addition of the
biopolymer and obtaining the gel-like character, different behaviors are observed that allow
us to obtain customized rheological properties (“tailored rheology”). The compatibility of
cricket flour with this natural biopolymer is also demonstrated.

4. Conclusions

Our results showed that the optimal droplet sizes were obtained at a concentration
equal to 2 wt.%. At higher concentrations, suboptimal results were observed, probably due
to the phenomenon of depletion flocculation. Therefore, this study adds to the body of
knowledge in the field of these dispersed systems, which are formulated with sustainable
biological resources. The characterization and analysis carried out in this research not
only expand our knowledge of the effect of cricket flour content on the performance of
emulsions and emulgels of environmental friendly origin but also make us aware of the
fact that a determination of the optimal amount of emulsifier is not an easy task from
a technological point of view. Subsequently, the energy applied by ultrasonication was
studied, and the smallest mean diameters were obtained at the largest amplitude (75%).
Therefore, no recoalescence process due to excess mechanical energy input was observed
during the secondary homogenization process. In addition, for each of the amplitudes
studied, the results of this secondary homogenization were better than those obtained with
a rotor–stator system on its own. Finally, rhamsan gum was added to the formulation
in order to improve the physical stability of the emulsions, which were destabilized by a
creaming mechanism. The addition of this food-grade biopolymer resulted in emulgels
with improved physical stability. Thus, rheological characterization showed that they have
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pseudoplastic and gel-like characters, especially at a 0.3 wt.% concentration. The addition
of the bio-based biopolymer allows us to obtain not only tailored rheological behaviors and
properties but also enhanced physical stability. These systems developed with cricket flour,
avocado oil and rhamsan gum could be used as matrices and encapsulation systems for
bioactive principles in the food and cosmetic–dermatological industries.
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