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Featured Application: The developed prototype provides a more efficient and accurate solution
for classifying dynagraph cards, meeting the requirements of oil field operations and enhancing
economic benefits and work efficiency.

Abstract: The dynagraph card plays a crucial role in evaluating oilfield pumping systems’ perfor-
mance. Nevertheless, classifying dynagraph cards can be quite difficult because certain operating
conditions may exhibit similar patterns. Conventional classification approaches mainly involve
labor-intensive manual analysis of these cards, leading to subjectivity, prolonged processing times,
and vulnerability to human prejudices. In response to this challenge, our study introduces a novel
approach that leverages transfer learning and the Swin Transformer model for classifying dynagraph
cards across various operating conditions in rod pumping systems. Initially, the Swin Transformer
model undergoes pre-training using the ImageNet-22k dataset. Subsequently, we fine-tune the
model’s weights using actual dynagraph card datasets, facilitating direct classification analysis with
dynagraph cards as input variables. The adoption of transfer learning significantly reduces the
training time while enhancing the accuracy of condition diagnosis. To assess the effectiveness of
our proposed method, we conducted a comparative evaluation against conventional models like
ResNet50, DenseNet121, LeNet, and ViT. The findings demonstrate that our approach outperforms
other methods, achieving an accuracy of 96%, thereby improving classification accuracy by 3–4%.
Therefore, our approach, based on transfer learning and the Swin Transformer model, provides a
better solution for practical problems involving similar dynagraph cards. It meets the requirements
of oil field operations, enhancing economic benefits and work efficiency.

Keywords: swin transformer; dynagraph card; self-attention; transfer learning; convolutional neural
network; rod pump

1. Introduction

In recent years, as one of the crucial pieces of equipment in the field of oil extraction,
the pumping unit has played a key role in improving oil field recovery rates and enhancing
production efficiency. To ensure the smooth operation of the pumping unit and minimize
the risk of equipment failures, accurate and timely diagnosis is of paramount importance.
Dynagraph cards, as a commonly used diagnostic tool, provide valuable information about
the operating condition and performance of the pumping unit.

However, traditional methods for diagnosing pumping unit dynagraph cards are
limited by manual analysis and domain expertise. Manual analysis requires a significant
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amount of time and effort, and is prone to subjective biases, leading to inconsistent and
inaccurate diagnostic results [1]. In recent years, there have been remarkable advancements
in the field of diagnosing pumping unit dynagraph cards, primarily through the adoption
of machine learning techniques. These methods have been developed to address the
challenges associated with manual analysis and the classification of dynagraph cards. As a
result, machine-learning-based approaches have shown great promise in improving the
accuracy, efficiency, and objectivity of dynagraph card diagnosis.

The development of dynagraph card diagnostic methods can be summarized as fol-
lows. Initially, expert diagnosis played a crucial role in dynagraph card diagnostics, relying
on the extensive work experience and domain knowledge of oilfield engineering experts.
By manually analyzing and interpreting dynagraph cards, experts could diagnose pump
failures and provide corresponding solutions. This method relied on experts’ accurate
understanding of dynagraph card features and patterns to infer pump issues. With the rise
of machine learning, statistical and pattern-recognition-based machine learning methods
were applied to pump failure diagnosis. Tian proposed a fault detection method employing
support vector machines (SVM) and genetic algorithm optimization for accurate fault
diagnosis based on pump fault information in 2007 [2]. Their method demonstrated high
feasibility and effectiveness through experimental results. Li suggested a curve moments
and PSO-SVM method to diagnose downhole conditions of pumping wells, achieving
automated identification, feature parameter extraction, and pattern classification from
dynagraph cards in 2013 [3]. Their approach exhibited excellent classification performance.
With the advancement of deep learning, significant breakthroughs have been made in
dynagraph card diagnostics. He presented a combination of convolutional neural networks
(CNN) and long short-term memory (LSTM) networks for diagnosing gradual faults in
2019 [4]. By extracting multi-level abstract features and employing LSTM for sequence
recognition, the method surpassed traditional mathematical models in diagnostic accuracy.
Furthermore, the application of CNN-based image recognition techniques by Zhou enabled
the diagnosis of oil well pumping unit failures through power card curve analysis [5]. This
method showed high accuracy and practicality, making it a feasible approach for leveraging
oilfield data assets. Despite the improvements in deep learning models, the small sample
characteristics of dynagraph card data presented challenges when using large models like
AlexNet and VGG in 2019. To address this, Cheng proposed an automatic recognition
method based on transfer learning and support vector machines (SVM), utilizing a large
amount of collected dynagraph card data from sensors for more efficient pumping system
operating state recognition in 2020 [6]. Representative features of dynagraph cards were
automatically extracted using transfer learning based on AlexNet. Combined with the
extracted features, an SVM method based on error-correcting output codes (ECOC) was
designed to identify the operating states of the pumping system, enhancing the accuracy
and efficiency of fault diagnosis. Experimental results demonstrated the reduction in
manual labor and improved the identification accuracy achieved by this method. With
the continuous development of deep learning, Wibawa utilized self-supervised learning
methods to classify dynagraph cards and improve the accuracy of performance monitor-
ing for pumping systems by constructing deep learning models using unlabeled data in
2023 [7]. Results showed that, compared to ImageNet models, the AlexNet model based on
pretext-invariant representation learning (PIRL) and jigsaw pre-training methods achieved
a 6% performance improvement when using pre-trained models. Further fine-tuning with
labeled data resulted in a model accuracy of 93%. With the outstanding performance of
vision transformers in computer vision tasks, Zhang proposed a transfer-learning-based
method using the ViT model for diagnosing conditions of rod pumping systems in 2023 [8].
The model showed excellent performance in practical production, achieving a 2% higher
accuracy compared to traditional CNN models.

In the realm of deep learning, the transformer model, originally renowned for its suc-
cess in natural language processing (NLP), has emerged as the preferred standard model.
Additionally, the vision transformer model has exhibited remarkable capabilities in ad-
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dressing computer vision tasks, as demonstrated in the study conducted by Dosovitskiy [9].
Recently, building on the achievements of the vision transformer model, the Swin Trans-
former has emerged as an innovative transformer model that introduces cross-window
interaction and hierarchical feature representation, further improving the effectiveness
of image understanding and analysis in 2021 [10]. This makes the Swin Transformer a
powerful tool for handling dynagraph card diagnostic problems in pumping units.

However, for a pre-trained model, its predictive performance is limited if transfer
learning is not employed. During the pre-training phase, large-scale datasets such as
ImageNet-22k are utilized to provide rich image information, enabling the model to learn
more generalized and abstract feature representations in advance. Subsequently, transfer
learning is applied through fine-tuning on a small dataset (the oilfield dynagraph card
dataset). Results have demonstrated that after pre-training with transfer learning, training
the model with a smaller dataset of dynagraph cards can achieve an accuracy improvement
of 3% to 4% compared to pre-training models such as traditional CNN models and ViT
models. This underscores the feasibility of this approach in dynagraph card diagnostics.

Our research contributes in the following aspects: (1) The study proposes a novel
approach that combines transfer learning with the Swin Transformer model for classifying
dynagraph cards in rod pumping systems. (2) This innovative method addresses chal-
lenges in traditional manual analysis, providing a more efficient and accurate solution
for diagnosing pump conditions. Leveraging transfer learning and the Swin Transformer
model, it outperforms traditional methods such as ResNet50, DenseNet121, LeNet, and
ViT. The research results demonstrate a significant improvement in classification accuracy,
reaching 96%, surpassing other models, and showcasing the effectiveness of the introduced
methodology. (3) The enhanced accuracy is crucial for reliable condition diagnosis in
oilfield operations, contributing to increased economic benefits and overall work efficiency.

This paper aims to address the problem of dynagraph card diagnostics in pumping
units by applying the Swin Transformer and transfer learning methods. Section 2 provides
an introduction to the theoretical knowledge of pumping units and common types of
dynagraph card faults. Section 3 presents a detailed description of the structures and
parameters of two transformer models, namely ViT and Swin Transformer. Section 4 of
the paper encompasses the following aspects: the dataset employed in the experiments,
the experimental procedure, a comparative analysis of the results, and validation of the
experimental findings. Lastly, the paper concludes in Section 5.

2. Materials and Methods
2.1. The Principle of Oil Extraction in a Pumping Unit

The pumping unit achieves oil extraction through the coordinated operation of the
prime mover, sucker rod, and pump [11]. Any malfunction in these components will cause
variations in the dynagraph card curve, making it meaningful to have an understanding of
the working principles of the pumping equipment for dynagraph card classification.

A typical beam pumping system, which is the mainstream sucker rod pumping system,
consists of three main components [12]. Firstly, there is the surface unit of the pumping
unit, which is connected to a high-power prime mover. It includes components such as
a gearbox, electric motor, connecting rod, walking beam, and crank, providing power for
the system [13]. Secondly, there is the sucker rod, which connects to the pumping unit and
the downhole pump, responsible for transmitting power. The sucker rod drives the pump
to perform oil extraction and plays a vital role in the pumping process. Lastly, there is the
downhole pump, which receives power and drives the pump to perform oil extraction. It
mainly consists of components such as a pump barrel, valve, and plunger [14].

Through the power transmitted by the pumping unit, the sucker rod undergoes a
continuous reciprocating motion, creating a stroke that causes the pump barrel to move up
and down. During the upward stroke, the fluid column’s resistance forces the traveling
valve in the pump barrel to close, while the hydraulic pressure of the fluid column opens
the standing valve, allowing crude oil to be collected into the pump barrel [15]. Conversely,
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during the downward stroke, the force on the fluid column reverses, leading to the closure
of the standing valve and the opening of the traveling valve. This allows the crude oil
to be pumped out of the pump barrel and into the production tubing for collection. The
uninterrupted movement of the sucker rod ensures a constant transportation of fluid from
the wellbore into the pump barrel, thus completing the oil extraction process. The structure
of a pumping unit well is depicted in Figure 1.
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Figure 1. Pumping unit well schematic: (a) donkey head; (b) suspension rope device; (c) sucker rod;
(d) smooth rod; (e) traveling valve; (f) plunger; (g) bushing; (h) standing valve.

From the above oil extraction process, it is evident that the pump and sucker rod are
critical components that work underground and are prone to failure. During the pumping
process, the sucker rod is influenced by the up and down loads, which can result in a wavy
pattern in the dynagraph card curve. Additionally, the inertia load can cause a clockwise
rotation in the dynagraph card, and the opening and closing of valves can affect stroke
losses. Therefore, the sucker rod is susceptible to failures such as bending, deformation, or
even fracture under different loads. The traveling valve and standing valve of the pump
constantly open and close to collect crude oil, but they may experience failures due to
impurities in the oil or limitations in the lifespan of valve connections.

To quickly and accurately locate the faults in the pumping unit, it is essential to profes-
sionally collect dynagraph card data [16]. The dynagraph card describes the displacement
and load conditions of the sucker rod, thus assisting in analyzing the working state of the
pumping unit and identifying potential faults. Through an analysis of the dynagraph card,
faults can be promptly identified, and corresponding maintenance measures can be taken
to improve the operational efficiency and reliability of the pumping unit.

2.2. Theoretical Analysis of the Dynagraph Card

Figure 2 illustrates a theoretical pumping unit dynagraph card [17], depicting the
displacement of the smooth rod of the pumping unit along the x-axis and representing the
load on the smooth rod along the y-axis.

In Figure 2, Ssmooth represents the stroke length, Sp denotes the piston stroke, Pr
represents the mass of the sucker rod in the oil, Pl indicates the mass of the fluid column
above the pump, Ps represents the static load borne by the smooth rod, λ1 represents the
elongation or contraction of the sucker rod, λ2 represents the elongation or contraction of
the tubing, and λ represents the stroke loss, which is equal to the sum of λ1 and λ2.
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Figure 2. Theoretical indicator diagram.

In an ideal scenario, the dynagraph card of a pumping unit takes the form of a
parallelogram, ABCD. The ABC segment represents the variation in static load during
the upstroke process of the pump. During this phase, the load gradually transfers from
the fluid column above the pump to the plunger, causing it to remain stationary without
any actual displacement. Consequently, both the traveling valve and the standing valve
remain closed. At point B, all the fluid column loads are transferred to the plunger, and the
extension of the sucker rod and tubing also reaches its limit. Beyond point B, the relative
position between the plunger and the pump barrel begins to change. As the pressure inside
the pump becomes lower than the submergence pressure, the standing valve opens, and
the pump initiates fluid intake. The BC segment on the dynagraph card represents the
process of the pump suctioning well fluid, with the traveling valve remaining closed. The
CDA segment on the card illustrates the variation in static load during the downstroke
process of the pump. During the CD section, the load gradually unloads, and there is
no relative displacement between the plunger and the pump barrel. The traveling valve
remains closed throughout the unloading process, until reaching point D. At this point, the
compression of the sucker rod and tubing also concludes. From point D back to point A,
the plunger undergoes actual displacement, and the standing valve closes. Simultaneously,
the traveling valve opens to discharge the fluid from the pump barrel.

2.3. Analysis of Dynagraph Cards under Different Operating Conditions

The analysis of dynagraph cards under different operating conditions can help us
understand potential issues and faults in the pumping unit system [18]. Here is an analysis
of dynagraph cards under several common operating conditions:

• Normal Pump Operation: The dynagraph card shows a regular pattern without any
anomalies, as depicted in Figure 3a.

• Fluid Pound [19]: Fluid pound refers to the impact force generated during the pump-
ing process due to the interaction between the pump barrel and the gas–liquid drive
system. Fluid pound is characterized by sudden spikes and steep drops in the dyna-
graph card. It is often caused by factors such as the excessive downward speed of the
pump rod, seal failure between the pump rod and the fluid, and unstable motion of
the fluid column (Figure 3b).

• Gas Interference: The presence of gas has a significant impact on pump operation [20].
In the dynagraph card, gas interference is indicated by compression areas during the
upstroke and downstroke of the pump, resulting in relatively smooth curve shapes.
Gas interference is typically caused by factors such as gas production in the well, gas
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accumulation between the pump rod and the fluid, and failure of the gas–liquid drive
system (Figure 3c).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 23 
 

• Normal Pump Operation: The dynagraph card shows a regular pattern without any 
anomalies, as depicted in Figure 3a. 

• Fluid Pound [19]: Fluid pound refers to the impact force generated during the 
pumping process due to the interaction between the pump barrel and the gas–liquid 
drive system. Fluid pound is characterized by sudden spikes and steep drops in the 
dynagraph card. It is often caused by factors such as the excessive downward speed 
of the pump rod, seal failure between the pump rod and the fluid, and unstable 
motion of the fluid column (Figure 3b). 

• Gas Interference: The presence of gas has a significant impact on pump operation 
[20]. In the dynagraph card, gas interference is indicated by compression areas 
during the upstroke and downstroke of the pump, resulting in relatively smooth 
curve shapes. Gas interference is typically caused by factors such as gas production 
in the well, gas accumulation between the pump rod and the fluid, and failure of the 
gas–liquid drive system (Figure 3c). 

• Gas Lock [21]: Gas lock refers to the accumulation of gas in the lower section of the 
pump rod or at the bottom of the well, creating an obstruction that prevents the fluid 
from entering the pump rod completely and hinders the downward motion of the 
pump rod. This condition is identifiable on the dynagraph card by an extended 
compression area during the downward stroke of the pump rod, represented by a 
relatively flat waveform. Gas lock is often caused by factors such as excessive gas 
production in the well, declining fluid level, and poor sealing of the pump rod (Figure 
3d). 

• Delayed Closure of the Traveling Valve [22]: Delayed closure of the traveling valve 
refers to the phenomenon where the traveling valve in the pump closes with a delay 
during the upstroke of the pump rod. In the dynagraph card, the delayed closure of 
the traveling valve results in an increase in the downward speed of the pump rod, 
leading to an accelerated descent and steeper slope during the downward stage 
(Figure 3e). 

• Pump Barrel Slippage: Pump barrel slippage occurs when the pump barrel becomes 
dislodged and separates from the pump rod [23]. In the dynagraph card, pump barrel 
slippage is indicated by a sudden decrease in the slope during the descent stage, 
resulting in a smoother curve waveform. Pump barrel slippage is typically caused by 
factors such as poor installation of the pump barrel and wear of the pump barrel 
(Figure 3f). 

• Fluid Pound and Delayed Closure of the Traveling Valve: The occurrence of both 
fluid pound and delayed closure of the traveling valve has an impact on the normal 
operation of the pump. Fluid pound can lead to damage to the pump rod and other 
components, while the delayed closure of the traveling valve can increase the upward 
speed of the pump rod, resulting in increased friction between the pump rod and the 
wellbore and affecting the stability of the pump rod’s operation (Figure 3g). 

  
(a) (b) 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 23 
 

  
(c) (d) 

  
(e) (f) 

(g) 

Figure 3. Different working conditions of the dynagraph card: (a) Normal Operation; (b) Fluid 
Pound; (c) Gas Interference; (d) Gas Locked Pump; (e) Delayed Closing of Traveling Valve; (f) Pump 
Barrel Split; (g) Fluid Pound and Delayed Closing of Traveling Valve. 

3. Correlation Algorithm 
With the rapid advancements in technology, various convolutional neural network 

(CNN) frameworks [24] have emerged, including ResNet, DenseNet, and LeNet, which 
have become prevalent in the computer vision field, especially for dynagraph card 
diagnostics, showing promising results. 

However, CNNs do have certain limitations [25]. First, they primarily focus on local 
features and typically use a sliding window approach to process images, limiting their 
ability to capture global information. Second, the convolution process may lead to the loss 
of valuable information. Third, due to the encapsulated nature of feature extraction, it 
becomes challenging to enhance the model effectively. Finally, CNNs can act as black 
boxes with limited interpretability. 

In natural language processing (NLP) [26], the transformer model has become the 
preferred choice. Despite this, CNNs continue to dominate the computer vision domain. 
Taking inspiration from the success of transformers in NLP, the Google team made an 
attempt to directly apply the transformer to image analysis with minimal modifications, 
giving rise to the vision transformer (ViT) model [9]. ViT has shown remarkable 
performance in image classification tasks, particularly excelling in handling global context 
and large-scale image datasets and offering improved interpretability [27]. The 
introduction of the self-attention mechanism has brought innovative ideas and methods to 
image classification, opening up new avenues for advancements in computer vision [28]. 

  

Figure 3. Different working conditions of the dynagraph card: (a) Normal Operation; (b) Fluid
Pound; (c) Gas Interference; (d) Gas Locked Pump; (e) Delayed Closing of Traveling Valve; (f) Pump
Barrel Split; (g) Fluid Pound and Delayed Closing of Traveling Valve.

• Gas Lock [21]: Gas lock refers to the accumulation of gas in the lower section of
the pump rod or at the bottom of the well, creating an obstruction that prevents the
fluid from entering the pump rod completely and hinders the downward motion of
the pump rod. This condition is identifiable on the dynagraph card by an extended
compression area during the downward stroke of the pump rod, represented by
a relatively flat waveform. Gas lock is often caused by factors such as excessive
gas production in the well, declining fluid level, and poor sealing of the pump rod
(Figure 3d).

• Delayed Closure of the Traveling Valve [22]: Delayed closure of the traveling valve
refers to the phenomenon where the traveling valve in the pump closes with a delay
during the upstroke of the pump rod. In the dynagraph card, the delayed closure of the
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traveling valve results in an increase in the downward speed of the pump rod, leading
to an accelerated descent and steeper slope during the downward stage (Figure 3e).

• Pump Barrel Slippage: Pump barrel slippage occurs when the pump barrel becomes
dislodged and separates from the pump rod [23]. In the dynagraph card, pump barrel
slippage is indicated by a sudden decrease in the slope during the descent stage,
resulting in a smoother curve waveform. Pump barrel slippage is typically caused
by factors such as poor installation of the pump barrel and wear of the pump barrel
(Figure 3f).

• Fluid Pound and Delayed Closure of the Traveling Valve: The occurrence of both
fluid pound and delayed closure of the traveling valve has an impact on the normal
operation of the pump. Fluid pound can lead to damage to the pump rod and other
components, while the delayed closure of the traveling valve can increase the upward
speed of the pump rod, resulting in increased friction between the pump rod and the
wellbore and affecting the stability of the pump rod’s operation (Figure 3g).

3. Correlation Algorithm

With the rapid advancements in technology, various convolutional neural network
(CNN) frameworks [24] have emerged, including ResNet, DenseNet, and LeNet, which
have become prevalent in the computer vision field, especially for dynagraph card diagnos-
tics, showing promising results.

However, CNNs do have certain limitations [25]. First, they primarily focus on local
features and typically use a sliding window approach to process images, limiting their
ability to capture global information. Second, the convolution process may lead to the loss
of valuable information. Third, due to the encapsulated nature of feature extraction, it
becomes challenging to enhance the model effectively. Finally, CNNs can act as black boxes
with limited interpretability.

In natural language processing (NLP) [26], the transformer model has become the
preferred choice. Despite this, CNNs continue to dominate the computer vision domain.
Taking inspiration from the success of transformers in NLP, the Google team made an
attempt to directly apply the transformer to image analysis with minimal modifications,
giving rise to the vision transformer (ViT) model [9]. ViT has shown remarkable per-
formance in image classification tasks, particularly excelling in handling global context
and large-scale image datasets and offering improved interpretability [27]. The introduc-
tion of the self-attention mechanism has brought innovative ideas and methods to image
classification, opening up new avenues for advancements in computer vision [28].

3.1. Vision Transformer

The Google team introduced the vision transformer (ViT) model in 2021, aiming to
leverage the transformer’s capabilities for image classification tasks [29]. While previous
research had explored applying transformers to visual tasks, ViT stands out as a significant
milestone in the field of computer vision due to its simplicity, impressive performance, and
scalability (larger models lead to better results). The release of ViT has triggered a surge of
interest in transformer-based approaches for various visual tasks, including object detection
and image generation. Figure 4 shows a visual representation of the ViT architecture.

Based on the flowchart of ViT, a ViT block can be partitioned into the following stages:

1. Patch Embedding: The input image is partitioned into fixed-size patches, with
each patch having dimensions of 16 × 16 pixels. Each patch is mapped to a fixed-
dimensional vector using a linear projection layer. This way, the image is represented
as a sequence where each patch becomes a token with a dimension of 768. An ad-
ditional special token called CLS is added as the starting marker of the sequence,
resulting in a final sequence dimension of 197 × 768.

2. Positional Encoding: To capture the positional information of the patches in the image,
ViT introduces positional encoding. Positional encoding is a table with the same
dimension as the input sequence embedding, where each row represents a position’s
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vector. By adding the positional encoding to the input sequence embedding, the
positional information is fused into the sequence. Thus, the sequence’s dimensions
remain 197 × 768.

3. Layer Normalization and Multi-Head Attention: ViT employs a multi-head self-
attention mechanism to process the sequence. First, the input sequence is mapped to
queries (q), keys (k), and values (v). If there is only one attention head, the dimensions
of q, k, and v are all 197 × 768. If there are multiple attention heads (e.g., 12 heads
with each head having a dimension of 64), the dimensions of q, k, and v are 197 × 64,
and there are 12 sets of q, k, and v. These sets of q, k, and v are then concatenated
together, resulting in an output dimension of 197 × 768. The output is then layer-
normalized, ensuring that each feature dimension has a similar distribution across
different positions in the sequence.

4. MLP: The sequence is further processed using a multi-layer perceptron (MLP) [30].
The sequence undergoes a linear transformation layer, expanding the dimension to
197 × 3072. Then, an activation function and another linear transformation layer are
applied to reduce the dimension back to 197 × 768. This MLP structure introduces
non-linear relationships and performs more complex feature transformations.

z0 =
[

Xclass; X1
pE; X2

pE; · · · ; XN
p E

]
+ Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (1)

z′l = MSA(LN(zl−1)) + zl−1, l = 1 . . . L (2)

zl = MLP
(

LN
(
z′l
))

+ z′l , l = 1 . . . L (3)

y = LN
(

z0
L

)
(4)
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The above-described steps are the fundamental procedures outlined in the ViT, where
the dimension after each block remains the same as the input, i.e., 197 × 768. The depth of
the model can be increased by stacking multiple blocks. In ViT, the encoder’s final output,
which corresponds to the special token “CLS”, serves as the image’s representation. For
image classification tasks, this output can be passed to an MLP for further classification.
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While ViT has achieved significant success in image classification, it also has some
limitations [31]: (1) Due to ViT’s design of dividing the image into fixed-sized patches
and processing them as a sequence, large-scale images can lead to an increased number
of patches, resulting in higher computational costs and memory consumption. This poses
challenges for ViT in handling large-scale images. (2) ViT is relatively weak in capturing
local details and spatial structures in images. The fixed patch size and the absence of explicit
convolutional operations may make ViT less effective in capturing local information and
details compared to convolutional neural networks (CNNs). While ViT utilizes multi-
head self-attention mechanisms to learn global relationships, there are still limitations in
modeling local context in certain tasks [32]. (3) ViT has a relatively high model complexity
and hardware requirements. The demanding computational resources and storage space,
especially as the model scale increases, restrict the application of ViT in resource-constrained
environments.

3.2. Swin Transformer

To overcome these limitations, the Microsoft Research Asia team proposed Swin
Transformer (Swin) as an improvement over ViT. Swin introduces a hierarchical window
mechanism that better captures local information and details in images through local
window-level attention. Swin has achieved remarkable performance in image classification
tasks and further advanced the development of transformer-based computer vision research.
The structure of the Swin Transformer is illustrated in Figure 5.
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Swin consists of four stages, and the specific process is as follows:

1. Image Patch Division and Linear Embedding: The original image is divided into
uniform image patches with dimensions of (H/4) × (W/4), where H and W represent
the height and width of the input image, respectively. Each image patch’s feature
dimension is then converted to C dimensions through linear embedding, where C
corresponds to the number of channels in the Swin Transformer module.

2. Image Patch Merging and Convolutional Dimension Reduction: Adjacent image
patches are merged to form larger image patches. This reduces the number of image
patches, and each merged image patch contains more local contextual information.
The merged image patches undergo a convolutional network for dimension reduction,
reducing the feature dimension to half of its original size. This helps to extract more
abstract features.

3. Repeat Stage 2: The process of image patch merging and convolutional dimension
reduction in Stage 2 is repeated multiple times. With each repetition, the number of
image patches is halved, and the feature dimension is also halved, while extracting
higher-level feature representations.

4. Swin Transformer Module: After Stage 3, the input is passed to the Swin Transformer
module for computation. This module is based on the transformer architecture and
processes the input using self-attention mechanisms and feed-forward neural network
layers. It learns global contextual information and feature relationships to improve
the quality of feature representation.
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The Swin Transformer adopts a window-based multi-head self-attention module
called “Windows Multi-Head Self-Attention” (W-MSA) in place of the traditional multi-
head self-attention mechanism (MSA) used in the original transformer module. W-MSA is
a modified version of self-attention specifically designed for attention calculation in the
Swin Transformer. The computational complexities of MSA and W-MSA are as follows:

ΩMSA = 4hwC2 + 2(hw)2C (5)

ΩW−MSA = 4hwC2 + 2M2hwC (6)

where C represents the depth of the image. h and w represent the height and width of the
image. M represents the size of the window.

Figure 6 illustrates two consecutive Swin Transformer modules. The input image
features undergo layer normalization (LN) before being independently processed by the W-
MSA module and the multi-layer perceptron (MLP). Additionally, each module is connected
to the other through a residual connection, and another layer normalization layer follows
this connection.
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The computation process for feature propagation in the W-MSA module can be sum-
marized as follows:

ẑl = fW−MSA

[
fLN

(
zl−1

)]
+ zl−1 (7)

zl = fMLP

[
fLN

(
ẑl
)]

+ ẑl (8)

where ẑl and zl refer to the output features of the W-MSA and MLP modules, respectively.
fW−MSA, fMLP, and fLN represent the output functions of the W-MSA module, MLP module,
and layer normalization, respectively.

Due to the non-overlapping nature of the cropped image patches in the W-MSA
module, there is a lack of effective information interaction between the windows. To
further enhance the model’s performance, the shift window multi-head self-attention
(SW-MSA) module is introduced. Compared to W-MSA, SW-MSA allows the windows to
move. The SW-MSA achieves this by cyclically shifting the image upwards and cyclically
shifting half of the window size to the left. The areas of the image that fall outside the
window are relocated to the bottom and right of the window. Afterwards, the windows
are segmented using the W-MSA method, which leads to a distinct window partitioning
approach compared to traditional W-MSA. The computation formula for SW-MSA is given
as follows:

ẑl+1 = fSW−MSA

[
fLN

(
zl
)]

+ zl (9)

zl+1 = fMLP

[
fLN

(
ẑl+1

)]
+ ẑl+1 (10)
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where ẑl+1 and zl+1 represent the output features of the l + 1 SW-MSA and MLP blocks,
respectively, and fSW−MSA represents the output function of the SW-MSA module.

4. Experimental Design and Results
4.1. Dataset

The research utilized two primary datasets: the ImageNet-22k dataset and the oilfield
dynagraph card dataset. The ImageNet-22k dataset is renowned in the machine learn-
ing domain for its broad applicability and has been extensively employed in previous
studies [33]. Conversely, the oilfield dynagraph card dataset was gathered from real-time
oilfield operations, lending practicality and authenticity to the research.

The ImageNet-22k dataset consists of 22,000 categories and an extended dataset with
over 100 million image samples. Compared to ImageNet-1k, which has 1000 categories,
ImageNet-22k covers a wider range of objects, scenes, and concepts. The image data are
collected through web crawling, crowdsourced annotation, and filtering, encompassing
various scenes, perspectives, and qualities. This dataset is primarily used for training and
evaluating computer vision models, including tasks such as image classification, object
detection, and image generation. With more categories and samples, ImageNet-22k presents
a higher level of challenge for models, requiring better generalization to recognize and
understand a broader range of objects and scenes.

The dynagraph card dataset is derived from real pumping units and contains dyna-
graph card curve data. The acquisition process of these data involves manual measurement
and recording using instruments, which inevitably introduces some errors. These errors can
be attributed to measurement inaccuracies of the instruments, sensor noise, environmental
factors, and human factors. In actual oil pumping processes, there are various pumping
conditions, but the main types include normal operation, fluid pound, gas influence, gas
lock, delayed closing of the traveling valve, pump barrel slippage, and the combination of
fluid pound and delayed closing of the traveling valve. Therefore, the original dynagraph
card dataset was filtered, resulting in a total of 11,928 datasets, with 1704 data points per
category. The splitting of a dataset into training, testing, and validation sets is implemented
to effectively evaluate the model’s performance and enhance its generalization capabilities.
The criterion for partitioning is randomly chosen to ensure that each subset is a repre-
sentative sample of the data. Typically, the split ratios involve allocating a substantial
portion of the data to the training set, a smaller proportion to the testing set, and including
a validation set size that is often comparable to the testing set. In the article, the training
set constitutes 60% of the data, while both the testing and validation sets each account for
20%. These datasets were divided into a training set (7000 data points, 1000 per category), a
test set (2464 data points, 352 per category), and a validation set (2464 data points, 352 per
category). Refer to Figure 7 for an illustration.
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4.2. Experimental Process

In this paper, we conducted experiments in four stages: pre-training, training, testing,
and validation. The experimental workflow is illustrated in Figure 8.
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1. Pre-Training Stage: First, we loaded a pre-trained Swin Transformer model as the
feature extractor. This model consists of multiple layers of transformer structures that
effectively handle image data. We used pre-trained weights obtained through self-
supervised learning on the ImageNet-22k dataset, which provide high-level semantic
feature representations [34]. Next, we added several fully connected layers to map the
extracted features to the target classes. These additional layers were initialized with
random weights and trained using backpropagation. During this process, we kept
the pre-trained feature extractor fixed and only trained the additional layers. This
allowed the model to adapt to our specific task and effectively train on limited labeled
data [35].

2. Training Stage: During the training phase, we used the labeled training dataset of
dynagraph cards to train the model. We employed the stochastic gradient descent
optimization algorithm and utilized the cross-entropy loss function as the optimization
objective for the model. The training dataset was divided into training and test sets,
used for monitoring the training progress and model selection [36]. In each training
batch, we randomly selected a batch of image samples from the training set and fed
them into the model for forward and backward propagation. During the backward
propagation process, the model updated its weight parameters based on the gradient
information of the loss function. We evaluated the model using the test set, monitoring
its accuracy and loss during the training process. We set a total of 10 training epochs,
where each epoch corresponds to a complete traversal of the entire training dataset.
Throughout the training process, we aimed for the model to learn effective feature
representations and exhibit improved accuracy on the test set.

3. Testing Stage: In the testing stage, we input the test set images into the model for
inference, obtaining classification results and evaluating the model’s performance.
The parameters used are consistent with those in the training stage.

4. Validation Stage: In the validation stage, we input the validation set images into
the model for evaluation, obtaining classification results and evaluating the model’s
performance. The parameters used are consistent with those in the training stage.

4.3. Findings and Analysis from the Experiments

In this paper, we will evaluate the model using the test set based on four evaluation
metrics: accuracy, ROC curve, confusion matrix, and P-R curve.
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4.3.1. Accuracy

Throughout the model’s training and testing phases, we conducted 10 iterations and
generated an accuracy curve based on the achieved accuracy in each iteration, as depicted in
Figure 9. The model demonstrated outstanding training performance, with a final training
accuracy of 96.04%.
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4.3.2. ROC Curve

The receiver operating characteristic (ROC) curve is a widely employed tool in ma-
chine learning and statistics for assessing the performance of classification models. It is
constructed by plotting the true positive rate (TPR) on the y-axis against the false positive
rate (FPR) on the x-axis [37].

To generate the ROC curve, the classification model is applied to predict the samples
within the test set, obtaining either predicted probabilities or decision scores for each
sample. These scores are then utilized to arrange the samples in descending order. Starting
from the lowest threshold, all samples are initially labeled as the negative class, and the
TPR and FPR are calculated accordingly.

TPR =
TP

TP + FN
(11)

FPR =
FP

FP + TN
(12)

In this context, TP refers to the count of true positives, which represents the instances
correctly predicted as the positive class and which are actually positive. FN corresponds to
the count of false negatives, indicating the instances that are incorrectly predicted as the
negative class but are actually positive. FP represents the count of false positives, signifying
the instances erroneously predicted as the positive class but which are actually negative.
Lastly, TN denotes the count of true negatives, which indicates the instances correctly
predicted as the negative class and which are actually negative. By gradually decreasing
the threshold, the steps are repeated, and the TPR and FPR are calculated for different
thresholds. All computed TPR and FPR values are plotted to form the ROC curve.

When the model can perfectly distinguish between positive and negative classes,
the curve will pass through the points (0,0) and (1,1), forming a straight line with a unit
slope. When the model cannot distinguish between positive and negative classes, the ROC
curve will approach the diagonal line. By observing the ROC curve, we can choose an
appropriate threshold based on the specific requirements to balance the true positive rate
and false positive rate. In general, the larger the area under the curve (AUC), the better
the model performance. The Area Under the Curve (AUC) varies between 0.5 and 1, with
0.5 representing a model’s performance equivalent to random guessing, and 1 indicating
flawless classification by the model.
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We have generated the ROC curves for each class, as depicted in Figure 10. The
graphs clearly demonstrate that the classification performance for each class is exceptional,
indicating an outstanding model performance.
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4.3.3. Confusion Matrix

The confusion matrix is a tabular representation commonly employed to assess the
performance of a classification model, illustrating the correlation between the model’s
predictions and the actual outcomes on a test dataset [38]. It serves as a valuable tool
in classification problems, providing a detailed evaluation of the model’s behavior and
performance.

The confusion matrix is presented as a two-dimensional table, with rows indicating the
actual classes and columns representing the predicted classes made by the model. Table 1
illustrates an exemplar confusion matrix.

Table 1. Confusion matrix.

Predicted Results

Positive Example Negative Example

Real results
Positive example TP FN

Negative example FP TN

In the confusion matrix, TP represents the correct prediction of positive samples as
positive, indicating that the model correctly identifies the true positives. This means that
the model successfully classifies positive instances as positive. TN represents the correct
prediction of negative samples as negative, indicating that the model correctly identifies
the true negatives. This means that the model successfully classifies negative instances as
negative. FP represents the model’s incorrect prediction of negative samples as positive,
also known as Type I Error, indicating that the model incorrectly identifies actual negatives
as positives. FN represents the model’s incorrect prediction of positive samples as negative,
also known as Type II Error, indicating that the model incorrectly identifies actual positives
as negatives.

Figure 11 displays the confusion matrix for the test dataset, providing a clear depiction
of the classification accuracy performance for each class. The matrix reveals that the
likelihood of misclassification between classes is minimal, indicating a model with excellent
classification capabilities.
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It can be observed that there are some incorrect predictions in the classes of Normal
Operation, Fluid Pound, Gas Interference, and Delayed Closing of Traveling Valve. We
have separately plotted the confusion matrices between these classes, as shown in Figure 12.
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From Figure 12, the model demonstrates a classification accuracy exceeding 0.94 for
the classes of Normal Operation, Fluid Pound, Gas Interference, and Delayed Closing
of Traveling Valve. This indicates that the Swin Transformer model is capable of accu-
rately distinguishing similar waveform patterns under different working conditions, and it
exhibits excellent performance.

When we selected some dynagraph cards and compared them, as shown in Figure 13,
we found that there were some incorrect predictions. Particularly notable is that in the
classes of Normal Operation, Fluid Pound, Gas Interference, and Delayed Closing of
Traveling Valve, the waveform patterns of the dynagraph cards may exhibit similarities,
especially under certain specific operating conditions. This makes it challenging for the
model to accurately differentiate between different classes in these similar waveforms.

The dynagraph card data may contain some noise, which could interfere with the
model’s learning process. This noise can lead to erroneous biases in the model’s predictions
for similar waveforms, consequently affecting its classification performance.
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4.3.4. P-R Curve

The precision–recall (P-R) curve is a widely adopted approach for evaluating the per-
formance of classification models, particularly when dealing with imbalanced datasets [39].
PR represents “Precision” and “Recall”, two essential metrics in classification evaluation.
Precision is the proportion of true positive samples among the samples predicted as pos-
itive by the classifier. In other words, it measures the accuracy of positive predictions
made by the model. Recall, on the other hand, is the proportion of true positive samples
among all the actual positive samples. It gauges the model’s ability to capture all positive
instances correctly, without missing any. The P-R curve offers valuable insights into how
well a classification model performs, especially in scenarios where class distribution is
imbalanced. The calculation formulas are as follows:

Precision =
TP

TP + FP
(13)

Recall =
FP

FP + TN
(14)

In this context, TP represents the count of true positives, which signifies the instances
correctly predicted as the positive class. FP refers to the count of false positives, repre-
senting the instances incorrectly predicted as the positive class. FN represents the count
of false negatives, indicating the instances that were incorrectly predicted as the negative
class. Firstly, the classification model is used to predict the samples in the test set, and
the probabilities or confidences of each sample are calculated based on the predictions.
Secondly, the samples in the test set are sorted based on their probabilities or confidences.
Starting from the sample with the highest probability or confidence, each sample is added
to the positive set one by one, and the precision and recall are calculated at each step.
Finally, the precision and recall values are plotted on a coordinate system to form the PR
curve.

Average precision (AP) is a performance metric utilized to assess information retrieval
systems, object detection, classification models, and various other tasks. It takes values
between 0 and 1, where higher values correspond to superior model performance. A higher
AP means that the model can maintain a higher precision at different recall levels.

AP = ∑
n
(Rn − Rn−1)Pn (15)
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We have generated the PR curves for each class, as illustrated in Figure 14. Observing
the graph, it becomes evident that the curves for each class exhibit a well-balanced nature,
with average precision values exceeding 0.98. This observation indicates that the model
performs exceptionally well in terms of detecting incorrect classes and overall model
performance.
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4.4. Comparative Experimental Analysis
4.4.1. Model Performance Comparison

To establish the superiority of our proposed model, we conducted a comparative anal-
ysis with common image classification models, namely ResNet50 [40], DenseNet121 [41],
LeNet [42], and ViT models. All models were trained and tested on the same schematic
dataset used in this study, using identical model parameters and pre-trained weights
obtained through transfer learning.

The accuracy curves during the training process are illustrated in Figure 15. Upon
completing the final iterations, the training accuracies for each model were as follows:
Swin Transformer = 96.04%, ViT = 92.78%, LeNet = 91.03%, DenseNet121 = 91.96%, and
ResNet50 = 93.02%. Remarkably, the Swin Transformer model exhibited significantly higher
classification accuracy when compared to all other models.
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The performance metrics of all models are compared in Table 2. It can be observed
that the transformer models outperform the CNN models overall. This can be attributed to
the following reasons: The transformer model utilizes self-attention mechanisms to capture
global information in the schematic diagrams and model the relationships between different
parts. This enables the model to better understand the importance and interactions of
different features in the schematic diagrams, thereby improving classification accuracy. The
self-attention mechanism in the transformer model allows the output at each position to be
influenced by other positions, enabling parameter sharing. This characteristic of parameter
sharing allows the transformer model to handle schematic diagram data more efficiently,
reducing the number of model parameters and computational complexity. Transformer
models are typically initialized with parameters from pre-trained models on large-scale
datasets, providing better initial representation capabilities. This allows the transformer
model to converge and adapt to the schematic diagram classification task more quickly,
resulting in improved model performance.

Table 2. Comparison of results of the test sets for each model.

Model Accuracy F1 Score Precision Recall ROC AUC K

Transformer
Swin-T 0.952 0.952 0.954 0.952 0.972 0.923

ViT 0.944 0.944 0.945 0.944 0.957 0.901

CNN
ResNet 0.912 0.906 0.918 0.915 0.937 0.872

DenseNet 0.897 0.896 0.902 0.897 0.940 0.885
LeNet 0.890 0.887 0.898 0.884 0.918 0.862

The proposed Swin Transformer model in this paper performs better in addressing
the recognition problem among similar but distinct categories of schematic diagrams. By
leveraging the influence of self-attention values on image patches, the Swin Transformer
model can focus more on informative features that contribute to classification and avoid
negative effects caused by the similarity between schematic diagrams. As a result, the Swin
Transformer model achieves the best performance in the task of schematic diagram classification.

4.4.2. Model Computational Comparison

When evaluating deep learning models, two important metrics to consider are the
number of parameters (Param) and the computational complexity (FLOPs) [43]. Different
models exhibit distinct differences in terms of parameter count and computational com-
plexity. Generally, a higher parameter count indicates a higher modeling capacity, but it
also increases the computational burden. Similarly, a higher computational complexity
requires more computing resources for training and inference. Therefore, when selecting a
model, it is crucial to balance the number of parameters and computational complexity to
meet the specific requirements of the task while considering the limitations of computing
resources [44]. As shown in Table 3, we can compare the computational aspects of the
given models.

Table 3. Comparison of results for each model.

Model Param (M) FLOPs (G)

Transformer
Swin-T 0.38 8.7

ViT 0.25 743.0

CNN
ResNet 24.5 3.9

DenseNet 6.69 2.91
LeNet 0.06 0.005

As shown in the table above, among the transformer-based models, the Swin Trans-
former model has a parameter count of 0.38 M and a computational complexity of 8.7 G
FLOPs. On the other hand, the ViT model has a lower parameter count of 0.25 M but a
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significantly higher computational complexity of 743.0 G FLOPs. This indicates that the
ViT model is computationally more expensive and requires larger computational resources
compared to the Swin Transformer model.

Among the CNN-based models, the ResNet model has a larger parameter count of
24.51 M but a relatively lower computational complexity of 3.9 G FLOPs. The DenseNet
model has a parameter count of 6.69 M, slightly lower than ResNet, and a computational
complexity of 2.91 G FLOPs. LeNet, being a very simple model, has the smallest parameter
count and computational complexity, with only 0.06 M parameters and 0.005 G FLOPs.

The Swin Transformer has a higher parameter count compared to ViT. This is because
the Swin Transformer employs a block-based strategy, dividing the image into smaller
blocks and then performing self-attention operations on these blocks, reducing the compu-
tational complexity of the model. In contrast, ViT uses a global self-attention mechanism,
requiring self-attention operations across the entire image, resulting in higher computa-
tional complexity. Although the LeNet model is relatively simple, oilfield dynagraph data
typically contain rich information and complex patterns, necessitating a more powerful
model to accurately capture these features for effective fault diagnosis. The Swin Trans-
former offers superior modeling capabilities and performance, contributing to improved
diagnostic accuracy, especially when dealing with large-scale dynagraph cards, whereas
the simplicity of the LeNet model may not fully leverage these data to achieve the same
level of performance. Therefore, for complex tasks like oilfield dynagraph fault diagnosis,
the Swin Transformer is more conducive to enhancing diagnostic efficiency and accuracy.

4.5. Model Validation

To assess the applicability of the Swin Transformer model in real oilfield scenarios, we
can employ the validation set to evaluate the model’s performance on oilfield instances.
Firstly, we preprocess the well test data in the same manner as before and then employ the
trained model to make predictions on the data. By comparing the model’s predicted results
with the ground truth labels, we generate a confusion matrix to illustrate their relationship,
as shown in Figure 16.
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Based on the graph, it is evident that the Swin Transformer model attains a prediction
accuracy of 94.85% on the validation set. This outstanding performance showcases the
model’s robust generalization capability and its excellent suitability for real oilfield field
development applications.
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5. Conclusions

This research introduces a dynagraph card diagnosis approach using the Swin Trans-
former, demonstrating its superior performance compared to traditional convolutional
neural network methods and ViT methods in dynagraph card condition diagnosis. The
experimental results and analysis have led to the following conclusions:

1. To address the classification problem of dynagraph cards in the rod pumping system,
we have developed a neural network model based on attention mechanisms to achieve
the effective identification and classification of Normal Operation, Fluid Pound,
Gas Interference, Gas Locked Pump, Delayed Closing of Traveling Valve, Pump
Barrel Split, and Fluid Pound and Delayed Closing of Traveling Valve. Compared to
previous methods, this approach enables the more efficient and accurate automatic
identification of dynagraph cards.

2. By utilizing the Swin Transformer model and transfer learning, we introduce a hi-
erarchical window mechanism through the Swin Transformer, which captures local
information and details in images more effectively through local window-level at-
tention mechanisms, thus improving the accuracy of condition diagnosis. Transfer
learning allows our model to benefit from the pre-trained Swin Transformer model
parameters, improving training efficiency and saving time. However, the model to
some extent relies on large-scale datasets to achieve better performance.

3. Our method demonstrates high accuracy in pumping unit condition diagnosis and
holds significant research value for intelligent oilfield development.

Although the Swin Transformer model has achieved remarkable results in dynagraph
card diagnostics through transfer learning, its success relies on the support of manually la-
beled dynagraph card data. This process involves investments in both human resources and
finances. In future investigations, we will persist in exploring alternative methodologies
to further improve the accuracy of condition diagnosis. Moreover, our future endeav-
ors involve integrating multimodal techniques with pumping system analysis, aiming to
accomplish real-time condition diagnosis and the intelligent analysis of oilfield well sites.
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