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Abstract: Plantar pressure distribution is a thoroughly recognized parameter for evaluating foot
structure and biomechanical behavior, as it is utilized to determine musculoskeletal conditions and
diagnose foot abnormalities. Experimental testing is currently being utilized to investigate static
foot conditions using invasive and noninvasive techniques. These methods are usually expensive
and laborious, and they lack valuable data since they only evaluate compressive forces, missing
the complex stress combinations the foot undergoes while standing. The present investigation
applied medical and engineering methods to predict pressure points in a healthy foot soft tissue
during normal standing conditions. Thus, a well-defined three-dimensional foot biomodel was
constructed to be numerically analyzed through medical imaging. Two study cases were developed
through a structural finite element analysis. The first study was developed to evaluate barefoot
behavior deformation and stresses occurring in the plantar region. The results from this analysis were
validated through baropodometric testing. Subsequently, a customized 3D model total-contact foot
orthosis was designed to redistribute peak pressures appropriately, relieving the plantar region from
excessive stress. The results in the first study case successfully demonstrated the prediction of the
foot sole regions more prone to suffer a pressure concentration since the values are in good agreement
with experimental testing. Employing a customized insole proved to be highly advantageous in
fulfilling its primary function, reducing peak pressure points substantially. The main aim of this
paper was to provide more precise insights into the biomechanical behavior of foot pressure points
through engineering methods oriented towards innovative assessment for absolute customization for
orthotic devices.

Keywords: plantar pressure; foot soft tissue; finite element analysis; medical imaging; 3D foot
orthosis; orthotic devices; baropodometric testing

1. Introduction

Over recent years, there has been an increasing trend in the medical scientific commu-
nity of studying and analyzing the print of plantar pressure distribution for an optimal
understanding of the biomechanics of the foot relying on its load distribution. It is a reliable
parameter for analyzing foot functions and provides further insights into the studies of
the etiology of several lower limb musculoskeletal problems. Within the medical field, the
measurement of these loads through footprints has been used from the oldest and most
traditional methods, up until the development of computerized equipment specialized
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in this task, for accurately acquiring the pressure points on the foot externally [1–4]. The
oldest tracing and sketching of footprint techniques, whether using any medical device
or only paper and ink, has been established as a standard for the structural evaluation of
the foot and body balance [5]. Innovative force platforms and pressure-sensing insoles are
cutting-edge technologies for standing and dynamic pressure calculations [6–8].

Highly invasive and painful procedures are required to comprehend how these forces
affect internal foot tissues. Thus, experimental tests (similar to compression tests) are
usually performed on cadaveric feet, simulating their behavior under various amounts of
load [9,10]. Obtaining the pressure points in the foot is considered one of the guidelines
for understanding its normal and pathological function and determining stress behaviors,
total displacements, total strains, and contact areas. These tests are remarkable approaches
to understanding the complex foot mechanism of distributing loads within its unique
capability of adapting to different ground geometries. Furthermore, pressure distribution
varies from subject to subject since it is influenced by particular factors such as gender, age,
race, and weight, to mention a few [11,12].

As it can be inferred from the above, a common problem for the multidisciplinary
science of biomechanics is the professional equipment needed to perform studies and the
fact that typically, to obtain better results, it is required to perform in vivo tests on the
subject under investigation [13,14]. Employing a highly detailed segmented biomodel
through medical imaging can provide an essential tool to assist the healthcare sector and
biomechanics professionals and can partially replace and complement experimental testing.

Due to the increasing computational development, it has been possible to perform
numerical analysis and obtain accurate and reliable estimates for various parts of the
body, specifically through the finite element method (FEM) [15–17]. A 3D biological model
is constructed by implementing the medical branch of imaging, which is considered a
standard for obtaining complex geometries of human biological systems [18,19]. Numerical
analyses are close estimations that solve complex problems utilizing partial differential
equations. Such methods are forms of numerical–computational analysis, where these
mathematical models are represented by a discretization of connected nodes, where a
mesh-like layer covers the geometry analyzed, and the nodes are points joining the mesh.
The discretization’s complexity and finesse help obtain more accurate approximations of
the problem’s solution. Nonetheless, this requires high computational resources [20,21].

This research aims to deepen the knowledge and current perceptions of this lower
extremity’s biomechanical behavior to enhance the design of personalized plantar orthoses.
Thus, the following research focuses on analyzing foot soft tissue behavior during normal
standing conditions, obtaining the pressure points on the plantar surface, and designing
a customized 3D model foot orthosis to re-evaluate pressure distributions. Likewise,
this research also aims to provide relevant data on the intrinsic muscles of the foot and
skin behavior under pressure and the direct effect of wearing a personalized 3D model
total-contact foot orthosis.

2. Materials and Methods
2.1. Footprint Sketching

Before numerically analyzing foot soft tissue behavior to develop a 3D model insole, it
is relevant to rely on sketching techniques to determine whether the foot of the participant
can be considered a foot in normal conditions. Thus, it is possible to evaluate the state
of the foot. Various static methods for obtaining such a footprint and analyzing foot
structure exist. Indeed, these methods are advantageous due to their low cost, lack of
specialized or sophisticated equipment, and ease of application. The method selected for
its popularity and high reliability in foot classification criteria among biomechanical and
medical researchers was the Hernández Corvo method [22]. Usually, this methodology uses
sketching techniques using the photopodogram or the pedigraph. The photopodogram
technique uses ink or paint to obtain the footprint when the subject steps on thermographic
paper over a flat surface. Whereas the pedigraph method is very similar to the previous
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one, it differs in the subject stepping on a soft, foamy rubber surface filled with ink with
a sheet placed underneath it. Subsequently, to analyze the results, perpendicular lines
are drawn in different coincident sections along the length and width of the rearfoot and
forefoot. The distance from the metatarsal area is X, and the site from the outer arch to
the midfoot bearing surface is Y. When the measured lengths are obtained, an equation
is applied that yields a result in the form of a percentage, which is further weighted in a
broad and complete classification of foot types (Table 1) [23].

H.C. (%) =
(X − Y)

X
∗ 100 (1)

Table 1. Foot classification according to the Hernández Corvo method [22,23].

H. C. (%) Foot Type

0–34 Flatfoot
35–39 Flatfoot–Normal
40–54 Normal
55–59 Normal–Cavus
60–74 Cavus Foot
75–84 Severe Cavus Foot

85–100 Extreme Cavus Foot

2.2. Biomodeling Methodology

The process by which 2D images are processed and converted to 3D matrices that
generate models is known as segmentation, transforming the pixels of 2D visualizations
into volumetric pixels, isovoxels, or simply voxels, in 3D [24].

Among the various programs, Simpleware ScanIP® 3.2 Build 1 and Materialise
MIMICS® Research 21.0 stand out from the rest because of their advanced tools for generat-
ing 3D models. Specifically, to obtain the model of the foot, a computed tomography (CT)
scan was used on a 30-year-old Mexican young adult in apparently healthy condition with
a height of 1.80 m and a weight of 80 kg who usually exercises, having a regular complexion
with a 24.7 kg/m2 normal-range body mass index (BMI) and a foot in normal conditions
(foot length of 256 mm and forefoot width of 137 mm). The described medical imaging
study was conducted utilizing a high-resolution SIEMENS SOMATOM Emotion 16-slice
configuration CT scan, which provided 16 images per second with a 0.6 mm distance
between slices. Once the imaging study was performed, the visualization of the DICOM
images and segmentation for constructing the 3D model were performed in Simpleware
ScanIP® 3.2 Build 1. The reading of the tomographic study images in the program yielded a
total number of slices in the transverse (axial) plane of 357, 260 in the sagittal plane, and 454
in the coronal (frontal) plane. A total of 1071 slices in all anatomical planes were obtained.
Thus, it was possible to construct a well-defined model of the foot of the participant.

The methodology employed to reconstruct the foot biomodel has been recognized as
setting the guidelines in 3D biological tissue reconstruction [17,25]. The methods mentioned
can be briefly described in the following points:

• Development of the medical imaging study (foot and ankle).
• Acquisition of images in DICOM format.
• Image importation into the Simpleware ScanIP® 3.2 Build 1 software.
• Determination of regions and tissues of interest (foot muscle and skin).
• Segmentation of soft tissue areas of interest through different masks.
• Implementation of smoothing tools to refine the 3D biomodel.
• Exportation of the biomodel to Materialise 3-Matic® Research 13.0 to fix any segmen-

tation process error.
• In Materialise 3-Matic® Research 13.0, solidification of the model and application of a

re-mesh to acquire uniform-size elements.
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• Biological model exportation to a finite element method software to implement a
numerical analysis.

With the particular research purpose of analyzing the pressure points on the sole,
two soft tissue structures in the foot, skin, and muscle were modeled. There are 22 intrinsic
muscles distributed in 4 different layers or volumes in a concentration of various tissues,
mainly fatty tissue. Intrinsic muscles provide support and stability in the foot, in contrast
to the extrinsic muscles responsible for movement and forces in the foot [26]. Therefore, it
was decided to represent them as a solid encapsulated body of the total muscles. On the
other hand, skin segmentation was defined as shown in the images of the imaging study.

As shown in Figure 1, the model is wholly segmented, avoiding empty pixels that
could cause a subsequent failure due to a missing element. Likewise, the model is smoothed
or rounded along its contour to prevent any peak or excess pixel from causing problems.
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Figure 1. Plane views during the segmentation process. Axial plane section location corresponds to
21% of total slices. Frontal plane section location corresponds to 48.8% of total slices. Sagittal plane
section location corresponds to 76.43% of total slices.

Once the model was wholly segmented and well defined, a rendering of the model
was generated to smooth it and obtain more refined elements (Figure 2a). The product
developed in the Simpleware ScanIP® 3.2 Build 1 software is considered a point cloud since
it is hollow as a structure and not solid. Solidifying the obtained structure is mandatory to
conduct a numerical analysis of the developed model. Therefore, the model generated from
Simpleware ScanIP® 3.2 Build 1 was exported in an STL file extension to a computer-aided
design (CAD) software capable of working with surfaces. A solidified realistic model can
be achieved by refining the segmented model and closing gaps from the previous process.
Notably, the design optimization software Materialise 3-Matic® Research 13.0 was used for
this study to refine the surfaces to complete the model. Edges in the model were refined by
using a smoothing tool. The assembly of the two solid elements (skin and muscles) and a
re-meshing were added to the model to optimize its handling when numerically analyzing
it (Figure 2b). Re-meshing provided uniform elements all over the complex foot geometry,
allowing nodes to create a better connection among elements. This process increased the
total number of nodes from 58,605 in elements with very different sizes to homogeneous
elements with a total of 196,576 nodes.
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2.3. Numerical Analysis of the Foot Biomodel
2.3.1. First Case Study

This first numerical analysis focused on studying the pressure points in the foot sole
during standing, where the foot is considered in a neutral or medium support position
since it is the most fundamental anatomical position of the foot to evaluate. Thus, in this
position, the foot is structurally analyzed with an external agent in compression towards
the plantar surface. The upper regions of the soft tissues were represented as fixed in all
degrees of freedom, embedded, to simulate the effects of the supinator tissue constraints
of the ankle. Likewise, all degrees of freedom were constrained at the top of the forefoot,
instep, toes, and around the foot due to the softness of the tissues. In addition, a concrete
plate with a vertical displacement was used as an external agent to simulate the impact
produced on the sole by ground reaction forces. A 0.6 coefficient of friction between the
foot and the ground was also set [27]. Figure 3 shows the representation of a free-body
diagram for the loading and boundary conditions.
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Soft tissues have extremely complex characteristics, being multilayer structures rein-
forced with collagen and with a nonlinear and anisotropic behavior, in addition to being
considered hyperelastic and viscoelastic materials. For this study, the characteristics of
the skin and muscle were simplified and considered with linear-elastic, continuous, ho-
mogeneous, and isotropic behavior, taking the values provided in the literature on foot
biomechanical models by Luboz and Wu [28,29]. The assignment of two different mechani-
cal properties for the muscle relied on developing an analysis with a partially conservative
approach. In addition, the mechanical properties of the plate representing the ground were
selected from the literature [30]. The mechanical property values can be seen in Table 2.
Once the mechanical properties were assigned, the discretization process was developed
using high-order 3D solid elements and generating 20 nodes per element. The analysis
had three parts: skin, muscle encapsulation, and plate. A total of 371,120 elements and
196 576 nodes were obtained by fine and semi-controlled discretization (Figure 4). The
discretization of the ground support was much less refined than that of the biomodel to
save computational resources.

Table 2. Mechanical properties of the elements [28–30].

Material Young’s Modulus (MPa) Poisson’s Ratio

Foot skin 0.2 0.485
Foot muscles (Luboz) 0.06 0.495

Foot muscles (Wu) 1.08 0.49
Ground support 210,000 0.3
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Based on the established loading and boundary conditions, the upper area of the model,
the forefoot, and the medial and lateral zones of the foot are also embedded. The constraint
regions around the foot consist of a tape with a width of 2 mm relative to the dimensions
of the modeled foot, avoiding an unreal lateral displacement when the load is applied.
Likewise, the constraint in the instep and toe area has the same intention of controlling
excessive vertical displacement. The external agent is assumed to be the plate, performing
a vertical indentation to produce a displacement of 5 mm towards the plantar surface of the
model to generate vertical loads. Since the weight of the person´s foot analyzed is 80 kg, an
exerting force of 400 N is produced in each foot (Figure 5). According to experimental bases,
there is a strong relationship when a force of 400 N produces a displacement magnitude
of approximately 5 mm. Similarly, the foot has a constant displacement of between 4.8
and 5.6 mm while maintaining the anatomical position of balanced standing. In addition,
evidence considers the application of an external agent within a displacement acting as a
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pressure rather than a load since it generates estimations closer to the natural behavior of
the biomechanical characteristics of the plantar surface [29–33].
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2.3.2. Second Case Study

The second case study aimed to numerically evaluate the foot sole within the same
anatomical position and mechanical principles, normal standing conditions. Nonetheless, a
3D personalized full-length total contact thermoplastic polyurethane (TPU) insole model
was implemented between the foot sole contact points with the ground support to reduce
pressure peaks. When an orthotic device is used, the insole cushioning effects absorb most
ground reaction forces, and its performance is visualized in the biomechanical behavior
results of the plantar region.

The employment of TPU as the insole material was due to several recent studies
demonstrating its highly impressive characteristics; it has the qualities for use as an addi-
tively manufacturable material capable of being physically manufactured via fused filament
fabrication (FFF), not requiring a high cost to produce and being suitable for 3D printing.
Moreover, it has ideal mechanical properties for stress redistribution, compression strength
support, and pain relief; in addition, it is biocompatible and sustainably advantageous for
3D printing manufacturing [34–41].

Many methodologies were reviewed to design an optimal biomodel closest to the spe-
cific right foot morphology of the participant. The refined 3D biological model developed
for the numerical analysis was employed to obtain a positive foot impression from a box
made in SpaceClaim® 2021 R2 CAD software, simulating a cast physically taken from an
orthopedist (Figure 6a) [42,43]. The foot silhouette was sketched from the impression taken
to generate the insole contour (Figure 6b). The 3D biomodel was placed right above the
insole, using Boolean operations and working with surfaces to create a customized insole
based on parametric designs set by specialized insole design software [44–47]. Working
with surface modeling for the insole design allowed certain regions to be smoothed and
the orthosis to be adjusted to foot morphology (Figure 6c). Factors such as total length,
heel and toe thickness, width, and draft angle were considered. The insole has a 3 mm
thickness, which is not a crucial factor for this case study evaluating the force distributions
during regular standing since loads below 800 N are unimportant for 3D-printed devices
made from TPU [48].
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To successfully import and numerically analyze the foot sole behavior within a cus-
tomized full-contact insole under the same loading and boundary conditions, a new co-
efficient of friction of 0.5 was employed for foot–insole contact [34], and the same coeffi-
cient was used for plate–foot contact [27]. High-order 3D elements were established in
the foot insole. From a high-order and semi-controlled discretization, 62,065 nodes and
34,816 elements were obtained (Figure 7). Furthermore, TPU mechanical properties were
assigned to the designed orthotic device. These values were taken from previous research
and literature (Table 3) [49,50].
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Table 3. Mechanical properties of TPU foot orthosis [49,50].

Material Young´s Modulus (MPa) Poisson’s Ratio

TPU 11 0.45

2.4. Experimental Baropodometric Testing

A baropodometric study was performed to validate the reliability of the assumptions
and the biofidelity of the model. The medical software FreeSTEP® v.1.4.01 was employed
along with the professional equipment from Sensor Medica®, and the foot was evaluated
statically (Figure 8a). The contact surface, percentage, and geometric values of the load ap-
plied on the foot were measured. Likewise, the study obtained results from a stabilometric
analysis and a 3D scan of the foot. Once the calibration and adjustment of the equipment
were completed, the pressure between the ground and the plantar surface of the foot was
measured when the participant was standing barefoot on the platform, the distribution
of the plantar pressure, the maximum plantar pressure, and the center of pressure were
recorded. To more precisely determine the distributed load along the sole, the foot was
divided into six parts automatically by the software (Figure 8b). Figure 8c shows the
anthropometric measurements of both feet. Using the values and sections provided by the
software, the experimental results obtained were compared with the model’s predictions
solved by numerical analysis.
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Figure 8. Baropodometric study. (a) Participant under experimental testing. (b) Sectioned regions
of plantar pressure distribution. The abbreviation Surf in the tables refers to surface. (c) Three-
dimensional anthropometric scanning.
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3. Results
3.1. Footsketching Study Results

Several footprint sketches of the right foot of the participant were taken with different
amounts of ink on the sole. These footprints were taken from a male young adult in his 30s.
Using variations in the quantity of ink on the plantar surface allowed the observation of
subtle changes in the plantar print that slightly changed the results. Despite slight variations
in the percentages, they were very similar, resulting in the foot being classified as a normal
foot type, as there was no tendency to fall into a Flatfoot–Normal or Normal–Cavus Foot
classification. The results can be observed in Table 4 and Figure 9.

Table 4. Footprint results implementing the Hernández Corvo method.

Footprint Percentage % Foot Type

a 43.65 Normal
b 43.13 Normal
c 44.94 Normal
d 40.81 Normal
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3.2. First Case Study Results

Once the numerical analysis equations converged, results were obtained, mainly focus-
ing on total deformation and von Mises stress due to representing a more precise behavior
of the foot sole in both study cases. The visualization of the initial results corresponds
to the less conservative model, corresponding to the mechanical properties proposed by
Luboz (Figures 10 and 11), which has a lower Young’s modulus value. The results obtained
with the property defined by Wu are then shown (Figures 12 and 13).
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Results of Baropodometric Testing, Validation, and Comparison to First Case Study Results

A comparison of the plantar pressure points in the right foot sole between the experi-
mental and numerical analysis proved the results to be extremely close for both mechanical
properties for the encapsulating muscles, those proposed by Luboz and Wu. To compare
and evaluate the stress concentration in these foot regions, von Mises stress theory values
were considered; this theory is based on the difference in principal stresses. Therefore, this
theory is optimal for the recreation of biological tissues since complex stress conditions and
combinations of nominal and shear stresses are experienced in the plantar region under bal-
anced standing. Furthermore, other researchers have widely used von Mises stress theory
to measure and analyze the stress in the foot’s plantar surface and soft tissues. The highest
plantar pressure values obtained in the numerical analysis are around 0.050–0.063 MPa
for the model with Luboz properties and 0.0856–0.1712 MPa for that with Wu properties.
In comparison, the value registered in the baropodometric study yielded a 700 gr/cm2

result, which is 0.0686 MPa (Figure 14). Thus, the numerical analysis predicted both highly
trustworthy and precise results.
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3.3. Second Case Study Results

The results corresponding to the numerical evaluation employing the customized
orthosis are presented for Luboz (Figures 15 and 16) and Wu (Figures 17 and 18), showing
the cushioning effects redistributing pressure on the foot sole. All the maximum and
minimum values obtained as results for both study cases can be found in Appendix A,
Tables A1 and A2.
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Figure 16. Von Mises stress with implementation of customized foot insole (Luboz). (a) Left side
view. (b) Plantar region. (c) Right side view.
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Figure 17. Total deformation with implementation of customized foot insole (Wu). (a) Left side view.
(b) Plantar region. (c) Right side view.
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4. Discussion

The human foot is among the most complex biological structures due to its remarkable
functions, from locomotion to providing stability and support to the body, as it is the only
human lower limb part having direct contact with the ground. Among these impressive
functions, shock absorption is one of the most studied functionalities in medical and
research fields, as it enables many functions, such as stabilization, body weight support,
and surface adaptation.

A combination of experimental and numerical analyses allowed the acquisition of
valuable data for analyzing the plantar foot region pressure points under normal standing
conditions and providing a proper assessment in developing a personalized total-contact
foot orthosis 3D model. This sophisticated methodology introduces segmentation proce-
dures for reconstructing a three-dimensional foot model, representing an approach for
feasibly reproducing different biological tissues. Despite representing foot muscles as an
encapsulated element, the computational resource approach and intricateness set it apart
as a highly elaborate three-dimensional biomodel construction.
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In this research, mechanically recreating a static structural analysis in the standing
condition predicted the appropriate behavior of the foot sole soft tissues, foot skin, and
muscles. According to the medical literature, normal foot conditions present peak pressure
points in the forefoot under the metatarsal heads, usually in the first or fifth, and the
rearfoot in the heel while balanced standing is maintained. Numerical analysis showed a
higher stress concentration in the forefoot region than in the rearfoot; mainly, the highest
pressure was under the fifth metatarsal head. Thus, an equivalent representation in the
plantar foot region for standard peak pressure values was obtained. In a validation of the
finite element analysis, the pressure distributions were similar in the color scale depicted
for both analyses. Thus, it was demonstrated that the participant tends to generate a
higher pressure in the forefoot during balanced standing in normal conditions. Total elastic
deformation results represent how the foot sole skin moves once it is in contact with the
ground reaction force, having considerable values in regions with higher stress fields.
Likewise, total elastic strain predicts the load tendency for the peak plantar pressure zones.
The results for both models are in good agreement, adequately functioning when analyzed
barefoot and within foot orthosis, employing the mechanical properties provided by Luboz
and Wu. All the assumptions and considerations developed in the 3D modeling and finite
element analysis for these foot soft tissues are considered precise. Since results are in good
agreement and vary by very little, there is a standard error range between numerical and
experimental testing.

The presented investigation stands out because it provides an innovative approach
to analyzing the foot or any other biological tissue through finite element analysis since
only soft tissues are considered. It is in contrast to most biological numerical analyses that
require the reconstruction of bone tissue to analyze soft tissue shock absorption behavior. In
addition, the detailed model developed and the fine discretization provide closer estimates
as more differential partial equations converge into a solution.

Furthermore, both the material selection and geometry design of the customized 3D
model insole were suitable because of the numerical prediction of lower peak pressure
values and a uniform pressure redistribution along the foot sole, mainly reducing stress
concentrations in most plantar regions where peak pressure points occurred when this
anatomical position was maintained without the employment of any orthotic device. Foot
sole regions presented a minor pressure increment, resulting in foot–insole contact. The
initial numerical analysis utilizing the finite element method provides an appropriate
assessment for the geometric design of a 3D model customized insole evaluation, firstly
relying on analyzing the foot by itself (barefoot) and then considering both morphological
and anthropometrical aspects to comprehend where there is a higher likelihood of peak
pressure points occurring. The plantar orthosis material also has a significant role in
the correct performance, commonly based on controlling foot functions or providing
cushioning effects. TPU was ideal for relieving peak pressure points on tender spots, giving
additional support, enhancing stability, and adding an extra layer to the plantar region.

Numerically analyzing pressure points in a foot, apparently under normal conditions,
promotes a more thorough comprehension of real-life behavior under the simulated anatom-
ical position. Deepening current knowledge about this subject could better implement
numerical approaches for pathological foot analysis, giving proper medical evaluation
towards rehabilitation. In addition to experimental validation, the present study closely
aligns with extant investigations in foot finite element analysis modeling. Notably, whereas
prior published studies predominantly focused on incorporating bony elements within
their models, this work presents a unique aspect by exclusively considering the foot’s soft
tissues. This methodological distinction deviates from established approaches and thus rep-
resents a novel contribution to the existing body of literature. Numerical simulations’ stress
distribution results are in solid concordance with previous finite element analyses when
evaluating barefoot balanced standing, reinforcing the observations reported regarding
peak pressure values and the distribution of stress patterns in the plantar region [51–53],
specifically when utilizing the muscles’ mechanical properties provided by Luboz. At



Appl. Sci. 2024, 14, 1650 17 of 21

the same time, results obtained in the plantar surface, including the customized insole,
correlate highly with other research papers that optimize insole design through numerical
analyses [54–58]. Moreover, the plantar peak pressure values for the utilization of the
personalized orthotic device are in substantial consensus with recent literature in insole
construction combining additive manufacturing materials and traditional materials [49,59].
Nonetheless, the specific reconstructed model features differ from most foot finite element
models in the literature; the results are in accordance due to two main reasons: utilizing a
similar methodology to analyze balanced standing and the reconstruction of healthy foot
models in similar patient populations in healthy conditions without foot pathology issues.

Despite this study demonstrating feasible results to be established as a solid methodol-
ogy for numerical analyses in biological tissues, it is relevant to point out certain limitations
of this research. While it is not a significant issue in employing this methodology, it is
relevant to account for proper computational equipment to develop the numerical analyses
quickly. Another issue that may compromise the reproducibility of this paper relies on the
need for medical data to assign displacement magnitude, taking into account that defining
the displacement value has a relationship with body weight but does not have a direct con-
version. A fundamental limitation of this study is the use of data from a single, young, and
healthy subject. This consideration restricts the generalizability of our findings to broader
populations with diverse health conditions. While the proposed approach demonstrates
promise in this specific case, further research is necessary to validate its efficacy and appli-
cability in individuals with various health profiles. Future studies should include more
extensive and diverse participant pools, incorporating individuals with various medical
conditions and demographic characteristics.

5. Conclusions

Finite element analyses have been established as a powerful tool for evaluating biolog-
ical tissues, providing valuable insights into understanding their complex behavior. This
numerical engineering technique has the ambition to generate an even higher impact on the
medical field. Notably, in the presented research, a proper assessment for creating a refined
personalized 3D model orthotic device was employed through a numerical evaluation.
Nonetheless, to use the described technique, it is mandatory to have strong mechanical
knowledge and a high degree of expertise in segmentation and numerical analysis software
in addition to having powerful computational equipment so that the methodology will not
be time-consuming since biomodel refinement (biofidelity) and finite element analysis are
directly related to computational features.

Numerical analysis can be applied to numerous approaches that, along with medical
supervision, can trigger more sophisticated techniques when evaluating the outstanding but
always complicated human body. It is relevant to mention that numerical analysis cannot
replace experimental testing but results in an advantageous methodology complementing
existing medical procedures predicting when the body may be susceptible to injuries and
taking action when they occur. Furthermore, the interdisciplinary approaches from the
union of medicine and engineering, biomechanics, and biomedicine, to mention a few,
have facilitated the enhancement of current prostheses, orthoses, pre-surgical assistance
and planning, and rehabilitation therapies. Moreover, the accelerated growth of additive
manufacturing technologies has enabled new findings regarding new materials in assistive
devices, with particular advantages such as easy access, affordability, and time efficiency.

Considering everything, the finite element analysis employed in this research can
obtain estimations close to reality, validating engineering and mathematical methods as
a reliable complementary tool regarding complex clinical assessment. Thus, the methods
applied in the present work can change how traditional customization procedures in the
medical field are currently carried out, with the concrete aim of creating personalized
prosthetic and orthotic devices since the results obtained substantiate the utilization of
numerical analysis in biological tissues, accurately predicting the behavior of these tissues
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under concrete circumstances. These methods provide an alternative to standard clinical
procedures that are often time-consuming and expensive.
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Appendix A

Table A1. First case study summary of numerical evaluation results.

Type of Analysis
Luboz Properties Wu Properties

Maximum Minimum Maximum Minimum

Total deformation (mm) 5.1707 0 5.5826 0
Deformation X axis (mm) 2.4654 −1.403 1.7405 −1.2755
Deformation Y axis (mm) 5.1707 −0.7618 5.5737 −0.5247
Deformation Z axis (mm) 1.8151 −1.6289 1.5674 −1.5781

Total elastic strain (mm/mm) 0.6602 4.5741 × 10−16 1.6765 4.4235 × 10−16

Elastic strain X axis (mm/mm) 0.3623 −0.3095 0.9604 −0.6028
Elastic strain Y axis (mm/mm) 0.5329 −0.5899 0.7187 −1.4239
Elastic strain Z axis (mm/mm) 0.3541 −0.2437 0.6552 −0.5808

Nominal stress X axis (MPa) 0.1058 −0.1357 0.3503 −1.6429
Nominal stress Y axis (MPa) 0.1201 −0.179 0.3885 −1.8739
Nominal stress Z axis (MPa) 0.1014 −0.1526 0.2811 −1.6988
Shear stress XY plane (MPa) 0.0430 −0.038 0.2995 −0.2955
Shear stress YZ plane (MPa) 0.0357 −0.0373 0.1983 −0.2349
Shear stress XZ plane (MPa) 0.0217 −0.0203 0.1292 −0.1208

von Mises stress (MPa) 0.1145 4.9672 × 10−15 0.7705 2.1435 × 10−13

Maximum principal stress (MPa) 0.1222 −0.1313 0.4689 −1.5912
Minimum principal stress (MPa) 0.1010 −0.19 0.1887 −1.9227
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Table A2. Second case study summary of numerical evaluation results.

Type of Analysis
Luboz Properties Wu Properties

Maximum Minimum Maximum Minimum

Total deformation (mm) 4.4642 0 5.0986 0
Deformation X axis (mm) 1.9254 −1.1515 1.9025 −1.2693
Deformation Y axis (mm) 4.4627 −0.5956 5.0832 −0.4367
Deformation Z axis (mm) 1.29 −1.3982 1.5646 −1.8064

Total elastic strain (mm/mm) 0.9865 7.3806 × 10−14 2.6486 3.5677 × 10−16

Elastic strain X axis (mm/mm) 0.5086 −0.2228 1.034 −0.6846
Elastic strain Y axis (mm/mm) 0.4684 −0.8719 0.8662 −2.0931
Elastic strain Z axis (mm/mm) 0.3331 −0.3519 1.1336 −0.6302

Nominal stress X axis (MPa) 0.0759 −0.2348 0.4053 −1.5162
Nominal stress Y axis (MPa) 0.0975 −0.4690 0.3665 −2.2535
Nominal stress Z axis (MPa) 0.0858 −0.3110 0.3382 −1.8223
Shear stress XY plane (MPa) 0.0585 −0.0548 0.4901 −0.3188
Shear stress YZ plane (MPa) 0.0529 −0.0417 0.3888 −0.3655
Shear stress XZ plane (MPa) 0.0240 −0.0173 0.1382 −0.1987

von Mises stress (MPa) 0.1749 4.0477 × 10−15 0.7528 1.758 × 10−13

Maximum principal stress (MPa) 0.1262 −0.2298 0.5284 −1.4975
Minimum principal stress (MPa) 0.0646 −0.4761 0.3214 −2.4995
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