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Abstract: Given a set of data objects, the fuzzy c-means (FCM) partitional clustering algorithm is
favored due to easy implementation, rapid response, and feasible optimization. However, FCM fails
to reflect either the importance degree of the individual data objects or that of the clusters. Numerous
variants of FCM have been proposed to address these issues. However, most of them cannot effectively
apply the available information on data objects or clusters. In this paper, a double-constraint fuzzy
clustering algorithm is proposed to reflect the importance degrees of both individual data objects and
clusters. By incorporating double constraints into each data object and cluster, the objective function
of FCM is reformulated and its realization equation is mathematically conducted. Consequently, the
clustering accuracy of FCM is improved by applying the available information on both data objects
and clusters. Especially, the proposed algorithm effectively addresses the limitations inherent in the
existing variants of FCM. The experimental results validate the effectiveness, implementation, and
robustness of the new fuzzy clustering algorithm.

Keywords: fuzzy clustering; c-means algorithm; data constraint; cluster constraint

1. Introduction

The c-means (CM) algorithm proposed by MacQueen [1] is the most commonly used
clustering algorithm over various research fields, but it cannot accurately partition data
objects in which the membership to any specific cluster is uncertain [2]. As a general exten-
sion of CM, fuzzy clustering has been proposed to address this problem [3]. Most fuzzy
clustering algorithms originate from Bezdek’s fuzzy c-means (FCM) algorithm [4], which
has been successfully applied in numerous applications including image segmentation [5],
feature extraction [6], pattern recognition [7,8], etc.

However, the computed membership degrees in FCM are relative numbers. For
a given data object, its membership degrees corresponding to all clusters in the fuzzy
partition matrix must sum to 1 to avoid a trivial solution. The sum makes FCM noise-
sensitive and unsuitable for applications in which membership degrees show a typicality
or compatibility of data points with clusters under flexible constraints [9,10]. Consequently,
the clustering results of FCM are often inaccurate. To address these problems, various
variants of FCM have been developed. Krishnapuran et al. [11] proposed a possibilistic
c-means method by giving up relative number constraints in FCM and thus presented the
typicality or compatibility from data objects to clusters. Pedrycz et al. [12] assigned an
importance degree to individual data points, thereby significantly mitigating the influence
of relative numbers in FCM. More recently, numerous FCM-type algorithms have been
proposed. Yu [13] proposed a general c-means algorithm by extending the definition of
means from statistical analysis. This algorithm generalized most variants of the fuzzy
clustering method to a common model. Huang et al. [14] proposed a feature-weighted
c-means algorithm to address the difficulty that FCM faces in detecting clusters distributed
across various subspaces.

Despite progress, these algorithms mainly focus on finding clusters by the inherent
distribution and distance among data objects [15,16], but they cannot provide an assessment
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utilizing the information on each data object and cluster. Especially, in various clustering
applications, the number of data points in specific cluster is a mandatory constraint that the
clustering results of any clustering algorithm must obey. If these constraints cannot be met,
the clustering results may be unacceptable [17,18]. To address this problem, Ng et al. [19]
proposed a constrained c-means (CCM) algorithm that assigns a fixed number of data
points to each cluster, which means that each column in the partition matrix is constrained
by an equation. Nevertheless, there are at least three unsolved problems in CCM. First,
CCM must apply the solution of the transportation problem as a practical form, but this
approach is not feasible for large-scale datasets due to high computational complexity.
Secondly, CCM is a CM-type clustering algorithm, rather than a fuzzy clustering algorithm,
and thus the issues that can be solved by FCM are not addressed by CCM. Finally, CCM
cannot combine the importance degree of both clusters and data objects [20,21]. More
recently, efforts have been made to determine the number of clusters in the fuzzy clustering
process. There are two approaches to determine the optimal number of clusters. One
utilizes one or several clustering indices to determine the optimal number through a trial-
and-error method across all possible numbers of clusters [22,23]. The other attempts to solve
the number of clusters in the iterative process of fuzzy clustering, such as the proposed
Bayesian probabilistic model and inference algorithm for fuzzy clustering [24], which
provides expanded capabilities compared to traditional FCM. However, these algorithms
fail to address the problem of typicality or compatibility inherent in FCM.

In this study, to address the typicality or compatibility of both data points and clusters,
we incorporate dual constraints into each data point and cluster. Therefore, the objective
function of FCM is reformulated and then its realization equation is mathematically con-
ducted. The proposed method is easily operated as FCM and requires minimal additional
parameters. We discuss the theoretical framework of the algorithm and analyze the cluster-
ing effectiveness of representative patterns in each cluster. In the proposed method, we
enhance clustering qualities by satisfying the mandatory constraints on data objects and
clusters. Our experimental results validate the effectiveness of the proposed algorithm and
demonstrate its applicability and limitations.

2. Related Work

Let X = {xi|i = 1, 2, . . ., n} be a dataset with n data objects distributed in c clusters,
xi∈Rd in a d-dimensional data space. Four typical fuzzy clustering algorithms are reviewed
as follows.

(1) Bezdek’s FCM: The objective function in FCM can be stated as

minJ(U, V) = ∑c
i=1 ∑n

j=1 um
ij d2

ij, s.t. ∑c
i=1 uij = 1, j = 1, 2, . . . , n, 0 < ∑n

j=1 uij ≤ n, (1)

where dij =
∣∣∣∣xj − vi

∣∣∣∣, vi is the prototype (center) of ith cluster, uij the membership
degree of jth point to ith cluster, m a fuzziness exponent, ranging in the interval [1, 3].
By the Lagrange multiplier optimization algorithm [25], the optimal membership and
prototype functions of (1) is

uij = (∑c
r=1 d2/(m−1)

ij /d2/(m−1)
rj )

−1
and vi = ∑n

j=1 um
ijxj/∑n

j=1 um
ij. (2)

All fuzzy membership degrees consist of a n × c fuzzy partition matrix U = [uij].
FCM has frequently been criticized as it cannot show the typicality (importance)
or compatibility of points with clusters [6,12], and thus the following algorithm
was proposed.

(2) Pedrycz’s conditional FCM (CFCM): Let wj be the importance degree of jth point,
Equation (1) in CFCM turns into

minJ(U, V) = ∑c
i=1 ∑n

j=1 um
ij d2

ij, s.t. ∑c
i=1 uij = wj, j = 1, 2, . . . , n, 0 < ∑n

j=1 uij ≤ n. (3)
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The membership degree of jth point to ith cluster in FCM is conducted as

uij = wj/(∑c
r=1 d2/(m−1)

ij /d2/(m−1)
rj ). (4)

The computation equation of the center vi in CFCM is the same as in the case of FCM,
i = 1, 2, . . ., c. The use of CFCM can enhance the typicality of different clusters and
increase the accuracy of FCM. But CFCM only focuses on the typicality of points
rather than clusters.

(3) Krishnapuran et al.’s possibilistic c-means (PCM): Along the objective function of
FCM, PCM is formulated as

minJ(U, V) = ∑c
i=1 ∑n

j=1

{
um

ij d2
ij + (1 − uij)

mηi) , s.t. 0 < ∑n
j=1 uij ≤ n. (5)

From (5), the optimal membership function is

uij =

{
1 +

(
dij

2/ηi

)1/(m−1)
}−1

, i = 1, 2, . . . , c (6)

where ηi is associated with the size of each cluster, it is computed as

ηi = ∑n
j=1 um

ij d2
ij/∑n

j=1 um
ij . (7)

PCM can effectively stress the typicality of points but must strongly depend on an
initialization procedure. In practice, FCM can realize this purpose [12].

(4) Ng et al.’s constrained CM (CCM): Equation (1) in FCM is turned into

minJ(U, V) = ∑c
i=1 ∑n

j=1 um
ij d2

ij, s.t. ∑n
j=1 uij = wi, i = 1, 2, . . . , c, uij = 0 or 1. (8)

From (8), the clustering center is

vi = ∑n
j=1 uijxj/∑n

j=1 uij, i = 1, 2, . . . , c. (9)

The optimal membership function uij in CCM turns into the typical transportation
problem (see [19]) that can be solved by a set of existing algorithms. But the computational
complexity of these algorithms is too large to be applied in large dataset.

These algorithms have their own applicable ranges and limitations but cannot provide
an assessment that utilizes the information on both data objects and clusters. Nevertheless,
these constraints are not only helpful to boost clustering quality but also meet mandatory
application requirements. In this paper, we propose a new method to solve these problems
after conducting the iterative equation along a solid mathematical optimization process.

3. Double-Constraint Fuzzy Clustering

Let X = {xj} be a dataset with n data objects that are distributed in c clusters in a
d-dimensional data space, xj∈Rd. According to the fuzzy partition matrix U in FCM, we
define two symbols as follows:

pi = ∑n
j=1 uij and qj = ∑c

i=1 uij, i = 1, 2, . . . , c; j = 1, 2, . . . , n (10)

The value of pi is the constraint for the ith cluster if the constraint can be known a
priori, whereas the value of qj is the constraint for jth data object.

The meaning of qj in PFCM is illustrated as follows:

1. qj < 1, the jth data object is under sparse distribution, likely being a noisy point
or outlier;

2. qj = 1, the jth data object does not have an additional importance degree, and thus the
point has the same membership degree value as it has in FCM;
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3. qj > 1, the jth cluster may be an aggregation of data with high density such as a
clustering center and so on; these points act as the main structure of various clusters.

Alternatively, the meaning of pi in CCM is defined as the number of data points in
the ith cluster, and it is usually a mandatory requirement of the clustering results of any
clustering algorithm. To date, no existing fuzzy clustering algorithm can combine the
constraints of both data objects and clusters to enhance clustering quality.

Since qj reflects the importance of each point whereas pi reflects that of each point,
they can represent the typicality or compatibility of points and clusters together. According
to the constraints on both point and cluster importance degrees, a double-constraint fuzzy
clustering algorithm is proposed, abbreviated as DFCM. The objective function of DFCM is
formulated as

minJ(U, V) = ∑c
i=1 ∑n

j=1 um
ij d2

ij, s.t. ∑n
j=1 uij = pi, ∑c

i=1 uij = qj, i = 1, 2, . . . , c; j = 1, 2, . . . , n (11)

Taking n + c Lagrange multipliers: λj, j = 1, 2,. . ., n; ui, i = 1, 2, . . ., c, the typical
alternative optimization way [25] is used to solve (11). And the Lagrange function is
formulated as

Fm = ∑c
i=1 ∑n

j=1 um
ij (xj − vi)

2+∑n
j=1 λj(∑c

i=1 uij − qj) + ∑c
i=1 µi(∑n

j=1 uij − pi), (12)

Equation (12) is solved by the following two alternative optimization problems.

Problem P1:

Fix uij: solve the kth cluster center vk. The derivative of Fm on vk is

∂Jm
∂vk

= ∑c
i=1 ∑n

j=1
∂um

ij d2
ij

∂vk
− ∂

∂vk
(∑n

j=1 λj(∑c
i=1 uij − qj))− ∂

∂vk
(∑c

i=1 µi(∑n
j=1 uij − pi))

= ∑c
i=1 ∑n

j=1
∂um

ij (xj−ci)
2

∂vk
= −2∑n

j=1 um
kj(xj − vk) = 0

,

Thus
vk = ∑n

j=1 ukjxj/∑n
j=1 ukj, s.t., k = 1, 2, . . . , c, (13)

Problem P2:

Fix vk, solve ukg from the gth data vector to vk. The derivative of Fm on ukg yields

∂Fm/∂ukg = mum−1
kg (xj − vi)

2 + λg + µk = 0,

it is
µm−1

kg = (−λg − µk)/(m(xg − vk)
2). (14)

Taking it into ∑n
j=1 uij = pi, ∑c

i=1 uij = qj, they are
c
∑

i=1
uig =

c
∑

i=1
(

−λg−µk

m(xg−vi)
2 )

1/(m−1) =qg, g = 1, 2, . . . , n
n
∑

j=1
ukj =

c
∑

i=1
(

−λj−µk

m(xj−vk)
2 )

1/(m−1) =pk, k = 1, 2, . . . , c
. (15)

Since the number of equations in (15) is (n + c) and is equal to the number of both
variables µk and λg, its solution is thus uniformly determined. But the power of 1/(m − 1)
limits its analytic solution. We turn to solve it iteratively using an iteratively numerical
optimization process. Note that

∂
∂λg

c
∑

k=1
(

−λg−µk

m(xg−vi)
2 )

1/(m−1) = −
c
∑

k=1

1
m−1 (

−λg−µk

m(xg−vk)
2 )

2−m
m−1 1

m(xg−vk)
2

∂
∂µg

n
∑

g=1
(

−λg−µk

m(xg−vk)
2 )

1/(m−1) = −
n
∑

g=1

1
m−1 (

−λg−µk

m(xg−vk)
2 )

2−m
m−1 1

m(xg−vk)
2

.
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According to the Newton iteration method [25], ukg is iteratively solved as
λt+1

g = λt
g − (

c
∑

k=1
(

−λg−µk

m(xg−vk)
2 )

1/(m−1)
− qg)/(−

c
∑

k=1

1
m−1 (

−λg−µk

m(xg−vk)
2 )

2−m
m−1 1

m(xg−vk)
2 )

µt+1
k = µt

k − (
n
∑

g=1
(

−λg−µk

m(xg−vi)
2 )

1/(m−1)
− pk)/(−

n
∑

g=1

1
m−1 (

−λg−µk

m(xg−vk)
2 )

2−m
m−1 1

m(xg−vk)
2 )

, (16)

where t is the iteration time. In this way, DFCM is alternatively optimized as follows. Given
the initial (v0, λ0, µ0), (λ1, µ1) can be calculated by (16); then, u1 is calculated by (14); v1 is
obtained by (13). Then, (v1, λ1, µ1) is used to calculate (λ2, µ2), and the above process is
repeated until a stop criterion is met.

Especially, when m = 2, (15) reduces to the following form:
λg = −(

c
∑

k=1

µk
(xg−vk)

2 + qg)/
c
∑

k=1

1
(xg−vk)

2 , g = 1, 2, . . . , n

µk = −(
n
∑

g=1

λg

(xg−vi)
2 + pk)/

n
∑

g=1

1
(xg−vk)

2 , k = 1, 2, . . . , c
. (17)

According to (17), DFCM can be iteratively solved as follows. Given the initial v0, both
λ0 and µ0 are solved. Subsequently, v1 is determined using (13), followed by the computa-
tion of λ1 and µ1, and this sequence continues iteratively. The process is repeated until a
stop criterion is met. According to the algorithm optimization principle, the convergence
of this process is guaranteed.

In practice, the weighting value of each point qj can be evaluated by the importance
degree of each point. However, the weighting value pi cannot be directly associated with
any cluster since these clusters are unknown before the clustering process is completed.

To settle this problem, we implement DFCM in two steps: coarse partitioning and
fine partitioning. In the first step, the use of FCM can obtain c clusters, C1, C2, . . ., and Cc,
subject to |C1| < |C2| <. . .<|Cc|.

In the second step, p1, p2, . . ., pc are actually the number of data vectors in all clusters
such that p1 < p2 < . . . < pc. We add these constraints of p1, p2, . . ., pc to their corresponding c
clusters in FCM. Beginning with these clustering centers in FCM, DFCM is used to partition
C1, C2, . . ., Cc and obtain the final clustering results.

The computational time of DFCM includes the computation of the weighting value of
pi as well as the coarse-tuning and fine-tuning steps. However, these two steps account
for the majority of the runtime in the entire clustering process. But DFCM begins with
the clustering results (centers) derived from FCM, enabling it to reach an optimal solution
more rapidly and effectively.

Algorithm 1. DFCM algorithm

Input: Dataset X, number of clusters c, exponent indexes m, and acceptable error ε

Output: Partitioned clusters from X

Method:
(1) Determine p1, p2, . . ., pc and q1, q2, . . ., qn;
(2) Partition X to C1, C2, . . ., Cc by FCM;
(3) Determine p1, p2, . . ., pc from |C1|, |C2|, . . ., |Cc|;
(4) Initialize the clustering center in DFCM by v1, v2, . . ., vc from FCM;
(5) Solve uij of jth point to cluster by (16) or (17), i = 1~c, j = 1~n;
(6) Solve vi by (13), i = 1~c;
(7) Stop if

∥∥Us+1 − Us
∥∥ ≤ ε,otherwise go to step (5);

(8) Partition X to C1, C2, . . ., Cc by their final membership degrees.
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4. Experiment

Four synthetic low-dimensional datasets with different clustering features (e.g., den-
sity, size, and overlap) and eight actual datasets from UCI were used to assess the effective-
ness and efficiency of DFCM. We applied DFCM to partition all data in these datasets and
compared the results with three typical clustering algorithms: FCM, PCM, and CFCM.

4.1. Four Synthetic Datasets

Each cluster in the four synthetic datasets is generated by “randn()” in the Matlab®

toolbox. Thus, each cluster is regular and is centralized on the center of the related function.
As a result, after labeling the above “randn()” functions, the correct cluster label of any
data point is just the label of the function that generates these data. These original cluster
labels in the above datasets do not take part in any clustering process but are just used to
examine the accuracy of these algorithms after the clustering process is completed. The
four synthetic datasets are indicated as Set 1–Set 4.

The effectiveness of a clustering algorithm is typically assessed using datasets charac-
terized by various features such as density difference, size difference, and noise effects. And
Sets 1~4 are constructed along these features. Set 1 contains 1300 data points distributed
across three clusters: a high-density cluster with 1000 data points and two low-density
clusters with 100 and 200 data points each (see Figure 1a). These clusters exhibit diversity
in terms of density. Set 2 contains 1200 data points distributed across slightly overlapping
clusters (see Figure 1b). Set 3 contains 1900 data points distributed across three size-diverse
clusters, where the largest cluster possesses a diameter twice that of the two smaller clusters
(see Figure 1c). In Set 4, there are 1500 data points distributed across spherical clusters that
partially overlap (see Figure 1d). In these figures, the centers derived from FCM and DFCM
are marked by small green and red circles, respectively.
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4.2. Eight Real Datasets from UCI

Eight actual datasets from UCI [26] were used to assess the clustering accuracy and the
mandatory constraint on the volume of data in each cluster. These datasets were selected
due to their representativeness of different clustering structures and characteristics. Other
datasets from UCI have similar features to these eight datasets. The correct clustering labels
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and the volume of data in each cluster are known a priori. These labels remain separate
from the clustering process and are only used to evaluate the accuracy of various clustering
results. Table 1 shows the number of clusters, the volume of data in each cluster, and the
dimensionality of each dataset.

Table 1. Characteristics of 8 actual datasets from UCI.

No. Dataset n dim c

1 Iris 3 4 150 50/50/50
2 Seeds 3 7 210 70/70/70
3 Tea 3 5 151 49/50/52
4 Breast 6 9 106 21/15/18/16/14/22
5 Cancer 2 9 683 444/239
6 Wholesale 2 7 440 298/142
7 Appendicitis 2 7 106 21/85
8 Wisconsin 2 9 699 444/239

Notes: The symbols “n”, “dim”, and “c” are the number of data points, dimension, and the number of clusters in
each dataset, respectively.

The Iris dataset contains 150 data points, each characterized by four attributes and
distributed across three clusters. Each cluster contains 50 data vectors. Two clusters overlap,
while the third cluster is linearly separable from those two clusters. In the past decades,
this dataset has frequently been used to assess the clustering results of different clustering
algorithms. The, Tea, and Breast datasets exhibit characteristics similar to those of Iris. The
Wisconsin dataset is high-dimensional, containing 683 instances after removing 16 instances
due to missing values. Each instance has nine attributes. This dataset contains two clusters:
444 samples are categorized as “Benign” and 239 as “Malignant”. These two clusters are
mainly in two different hyperplanes that respond to different components (attributes). The
Cancer, Appendicitis, and Wisconsin datasets have similar characteristics.

4.3. Clustering Results

The clustering results were assessed using three indices: accuracy, the number of data
points in each cluster, and runtime. Accuracy was determined by the percentage of correctly
partitioned data points in each dataset. The total number of incorrectly partitioned data
points in each cluster was determined using the following index:

sum = ∑c
i=1

∣∣∣∣∣∣C1
i

∣∣∣−∣∣∣C2
i

∣∣∣∣∣∣/n. (18)

where
∣∣C1

i

∣∣ and
∣∣C2

i

∣∣ are the actual and the computed numbers of data in the ith cluster,
respectively. On the other hand, according to CFCM, the weighting value of the jth data
point qj is determined by its density as

qj = ρj/(∑n
k=1 ρk/n), s.t., ρj = (∑k∈N(xj)

∣∣∣∣∣∣xk − xj

∣∣∣∣∣∣)−1 , j = 1, 2, . . . , n. (19)

where N(xj) is the set of neighboring data points around xj and ∥·∥ denotes the distance
between any pair of points.

All clustering results are presented in Table 2 and the clustering centers of Sets 1–4 are
shown in Figure 1. According to clustering accuracy and Sum, we compared four clustering
algorithms: FCM, PCM, CFCM, and DFCM. In these algorithms, all fuzziness exponents
are uniformly taken as 1.5 and the stop error are 10−3.

In the four synthetic datasets, Figure 1 illustrates that the cluster centers derived from
FCM deviate from the actual centers. This deviation is attributed to FCM’s limited capacity
to discern the typicality or compatibility of points for effective clustering. Contrary to
FCM, DFCM was able to determine the clustering centers more accurately. Table 3 presents
a detailed comparative analysis of the four clustering algorithms. In terms of clustering
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accuracy, DFCM surpasses the other three algorithms, with CFCM ranking the second
and FCM achieving the lowest accuracy. The results demonstrate that DFCM is effective
and valuable. The incorporation of dual constraints in DFCM enhances the accuracy of
the clustering centers and the corresponding membership degrees. In contrast, PCM and
CFCM exhibit slight deviations, whereas DFCM demonstrates negligible deviations. Hence,
the value of Sum of DFCM is the lowest among the three algorithms. PCM and CFCM rank
as intermediate, while FCM has the highest value. Furthermore, the value of Sum derived
from CFCM is nearly the same as DFCM, as shown in Table 2. However, FCM has the
shortest runtime when the number of clusters is fixed, and both PCM and DFCM depend
on FCM due to their initialization processes.

Table 2. Clustering results of all tested datasets.

Algorithm FCM PCM CFCM DFCM

Dataset A(%)/Sum Time (s) A(%)/Sum Time (s) A(%)/Sum Time (s) A(%)/Sum Time (s)

Sy
nt

he
ti

c
da

ta
se

ts Set1 95.9/0.075 0.0283 96.2/0.071 0.1222 97.8/0.039 4.8718 98.5/0.006 4.9533
Set2 87.8/0.238 0.0216 80.0/0.403 0.1336 89.8/0.128 4.1582 98.9/0.012 4.3201
Set3 95.5/0.092 0.0206 98.4/0.032 0.1817 97.1/0.058 10.995 99.5/0.003 11.218
Set4 94.4/0.071 0.0475 95.0/0.059 0.2010 94.8/0.062 11.315 96.2/0.005 11.320

R
ea

ld
at

as
et

s

Iris 88.0/0.133 0.0111 92.7/0.000 0.0826 90.7/0.027 0.6003 91.3/0.040 0.6218
Seeds 89.0/0.067 0.0300 89.0/0.067 0.0768 90.5/0.067 0.0479 91.9/0.038 0.0520

Tea 49.7/0.305 0.0037 52.3/0.265 0.0886 51.0/0.305 0.0562 55.0/0.132 0.0702
Breast 51.9/0.547 0.0090 57.5/0.381 0.0846 58.5/0.528 0.1157 64.2/0.208 0.1201
Cancer 92.8/0.081 0.0092 91.7/0.018 0.0804 93.8/0.018 0.1701 93.7/0.035 0.1761

Wholesale 82.7/0.264 0.0131 79.8/0.277 0.1243 87.3/0.168 0.0924 88.2/0.118 0.1049
Appendicitis 79.4/0.165 0.0088 84.5/0.062 0.1118 83.5/0.082 1.5589 88.7/0.021 1.5838

Wisconsin 93.8/0.060 0.0090 96.0/0.063 0.1384 95.6/0.009 1.1571 95.9/0.009 1.2124

Note: For any clustering algorithm, “A (%)” indicates accuracy (percentage), “Sum” is computed by Equation (18),
and “Time (s)” is the CPU runtime (second). The items underlined in red are the best results in any
corresponding row.

Table 3. Applicable ranges and limitations of the four clustering algorithms.

Algorithm Overlapped Cluster Different Densities Different Sizes Different Shapes Time Complexity

FCM Applicable Applicable Inapplicable Inapplicable O (ctn)

PCM Applicable Applicable Applicable Inapplicable O (ctn)

CFCM Inapplicable Applicable Partially applicable Partially applicable O (n3)

DFCM Applicable Applicable Applicable Partially applicable O (n2)

In the eight real datasets, Table 2 shows that DFCM outperformed the other three
algorithms in five of the datasets, whereas it failed in terms of A and Sum in the remaining
three. However, the clustering results of DFCM is very close to the best results of the three
datasets. Hence, DFCM exhibits a slight superiority compared to the other three algorithms.
Our conclusions based on these results are as follows: Firstly, most clusters in these eight
datasets are non-spherical, but the four algorithms can in principle work well only with
datasets with spherical clusters. Secondly, the complex structures of the eight datasets
result in a generally low clustering accuracy of any clustering algorithm applied. In recent
decades, the clustering accuracy rates of these datasets were less than 50% using existing
algorithms [6].

In terms of average runtime, FCM’s runtime was the shortest among the four algo-
rithms, followed by PCM, CFCM, and DFCM. These results are consistent with those in
the four synthetic datasets. Figure 2 shows the convergence of DFCM in the four synthetic
datasets compared with the other three clustering algorithms, and the number of iterations
is fixed at 40. The corresponding objective function value reflects the convergence speed.
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Especially, as these objective functions of the four algorithms have different orders of
magnitude, Figure 2 illustrates their relative values of objective function by normalizing
these values to the interval [0, 1]. As shown in Figure 2, PCM has the fastest convergence
speed among the other three algorithms, followed by DFCM and FCM. Moreover, CFCM
shows instability across the four datasets. Given that the convergence speed of any iteration
algorithm reflects its runtime and varying tendency, Figure 2 clearly illustrates the runtime
of the four algorithms when applied to various datasets.
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4.4. Comparison and Discussion

When confronted with various datasets with different characteristics, these four algo-
rithms reveal their limitations. According to the general approach of evaluating a clustering
algorithm, Table 3 summarizes their applicable ranges based on five common features:
cluster overlap, density difference, size difference, cluster shape, and time complexity. The
term “applicable” indicates that the given algorithm can correctly cluster these data points
in the dataset. Conversely, “inapplicable” indicates that the given algorithm is completely
incapable of clustering the dataset correctly, while “partially applicable” refers to limited
effectiveness in clustering a dataset with the relevant features.

Furthermore, the clustering results of the four clustering algorithms are explained and
discussed as follows. Although FCM, PCM, CFCM, and DFCM can all be used to cluster
datasets with overlapping clusters, both CFCM and DFCM can perform better since they
stress the typicality of each point. And PCM must depend on FCM as its initialization
process and otherwise cannot be applied to separate overlapping clusters. Differences in
density and size can cause larger errors for FCM and PCM and partially affect the clustering
results of both CFCM and DFCM due to their condition of constraining various clusters.
In principle, the four algorithms cannot cluster data that are distributed in arbitrarily
shaped clusters. But DFCM and DFCM have smaller errors than FCM and PCM when all
clusters have convex shapes. Consequently, DFCM has an advantage over the other three
algorithms in terms of clustering accuracy. But DFCM has a longer runtime than FCM and
PCM, but not CFCM, and FCM is the most effective.
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5. Conclusions

Fuzzy clustering is now extensively employed across various research fields. Numer-
ous applications necessitate the partition of a dataset into clusters with a fixed number
of instances. Additionally, it is essential to determine the importance degree of each data
instance. However, to date, no clustering algorithm can effectively satisfy these criteria due
to challenges in assigning a fixed number of data points to undefined clusters and the lack
of a feasible iterative formula. To address this issue, we propose a new fuzzy clustering
method utilizing a feasible iteration method which can be regarded as an extension of
the fuzzy clustering algorithm. The new method emphasizes the importance degree of
both clusters and individual data points, satisfying the dual criteria for specific points and
underlying clusters.

Despite progress, the proposed DFCM algorithm does not address two critical issues
in the clustering process. Firstly, determining the appropriate number of clusters remains
unsolved. Therefore, the algorithm requires prior knowledge of cluster quantity in the
dataset, which is a significant practical limitation. Secondly, similar to other existing cluster-
ing algorithms, the algorithm proposed in this study is primarily designed for datasets with
spherical clusters. If it is employed to partition a dataset with non-spherical clusters, the
clustering results usually exhibit significant errors. Currently, various adaptations of fuzzy
clustering are being explored to address these issues. Integrating these effective methods
with the proposed DFCM algorithm will be our future focus. Note that fuzzy clustering has
been extended to applications involving clustering arbitrarily shaped clusters [27]. In the
future, an important research direction is to enhance the capability of the DFCM algorithm
to accurately cluster datasets with various cluster shapes.
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