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Abstract: Alfalfa holds an extremely significant place in animal nutrition when it comes to providing
essential nutrients. The leaves of alfalfa specifically boast the highest nutritional value, containing a
remarkable 70% of crude protein and an impressive 90% of essential vitamins. Due to this incredible
nutritional profile, it becomes exceedingly important to ensure that the harvesting and threshing
processes are executed with utmost care to minimize any potential loss of these invaluable nutrients
present in the leaves. To minimize losses, it is essential to accurately determine the resistance of the
leaves in both their green and dried forms. This study aimed to estimate the breaking resistance of
green and dried alfalfa plants using machine learning methods. During the modeling phase, five
different popular machine learning methods, Extra Trees (ET), Random Forest (RF), Gradient Boost
(GB), Extreme Gradient Boosting (XGB), and CatBoost (CB), were used. The correlation coefficient
(R2), root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE) metrics were used to evaluate the models. The obtained metric results and the graphs
obtained from the prediction values of the models revealed that the machine learning methods made
successful predictions. The best R2 (0.9853), RMSE (0.0171), MAE (0.0099) and MAPE (0.0969) values
for the dry alfalfa plant were obtained from the model established with the ET method, while the
best RMSE (0.0616) and R2 (0.96) values for the green alfalfa plant were obtained from the model
established with the RF method and the best MAE (0.0340) value was obtained from the model
established with the ET method. Additionally, the best MAPE (0.1447) value was obtained from the
model established with the GB method.

Keywords: breaking stress; alfalfa; extra trees; CatBoost; machine learning

1. Introduction

Alfalfa plants are necessary for animal feeding both in Turkey and worldwide, and
they are used extensively. Green and dry can be consumed as grass, as well as silage
can also be used. Alfalfa plants are rich in protein, mineral substances, trace elements,
and vitamins, and they give high-quality grass [1]. There are losses in the nutritional
value of alfalfa plants due to different reasons, from harvesting to utilization. These losses
are generally losses due to plant respiration, nutrient loss, losses caused by rain damage,
losses due to leaf breakage, and losses due to mechanization applications (mowing and
conditioning, machine type, harrowing, baler) [2].

In animal nutrition, alfalfa is mostly used in dry form, but it undergoes significant
nutrient losses during drying [3]. For alfalfa grass under natural drying conditions, the dry
matter, crude protein and crude amount of cellulose losses increase even more. Although
dry matter losses are realized between 15 and 25%, this rate is between 35 and 100%
under rain damage depending on the weather conditions. Leaf losses increase due to the

Appl. Sci. 2024, 14, 1638. https://doi.org/10.3390/app14041638 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041638
https://doi.org/10.3390/app14041638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9977-2718
https://orcid.org/0000-0003-0703-4804
https://orcid.org/0000-0002-9483-0894
https://doi.org/10.3390/app14041638
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041638?type=check_update&version=2


Appl. Sci. 2024, 14, 1638 2 of 15

decrease in product moisture. Alfalfa leaves contain 70% of the crude protein and 90% of
the vitamins. Leaves are also 40% more digestible than stems [4]. For this reason, the leaf
losses that may occur in the plant should be minimized. To minimize the loss rate, mowing,
raking and baling operations should be completed early in the morning, which increases
the drying time of the product, and therefore, higher quality and higher efficient feed can
be obtained [5].

Various studies have been carried out on the physico-mechanical properties of forage
crops until today, but studies on the breaking resistance of alfalfa leaves have not been found
much in the literature. The determination of the leaf break resistance is very important to
improve the design, optimization and efficiency of the necessary machinery, equipment
and cutting tools for harvesting and threshing alfalfa plants with minimum leaf loss. King
and Vincent (1996) [6] studied the determination of the static and dynamic properties of
flax plants indigenous to New Zealand. Yilmaz and Gokduman (2014) [7] determined the
leaf breaking resistance of sage plants according to different moisture contents. As a result
of the experiments conducted at three different moisture contents, it was reported that
the leaf breaking force varied between 4.3 and 6.5 N (Newton). Arevalo et al. (2013) [8]
investigated the mechanical properties of rosemary stems. In their study, they found that
the compression forces causing deformations were low, about 2 N, and the shear force
required to break the bundle at the harvest point varied between 30 and 50 N on average.
Shinners et al. (1987) [9] found that longitudinal shearing of alfalfa stems required less than
1/10 of the energy required to shear alfalfa transversely. Öten et al. (2018) [10] carried out
studies on the determination of both the green and dry leaf breaking resistance of some
clover genotypes collected from the natural flora of Antalya province. It was reported that
the highest leaf break force value was 1.0419 N and the lowest was 1.0022 N in the dry
samples. Prince et al. (1969) [11] investigated the hardness modulus of green and dried
alfalfa samples and found mean values of 0.225 GPa and 1.45 GPa, respectively. Türker
(1992) [12] performed experimental measurements on 1700 alfalfa to determine the cutting
resistance of alfalfa. The effects of factors such as the blade speed, blade opening, blade
type, diameter of the alfalfa at the cutting point and cutting time on the cutting resistance
of alfalfa were determined. Halyk and Hurlbut (1968) [13] reported that the stem of alfalfa
has a tensile strength in the range 9–36 MPa and that this strength is dependent on the
moisture content.

The literature shows that studies related to the evaluation of the mechanical qualities
required to maintain the leaf quality of alfalfa or other forage crops, as well as the design and
modernization of the equipment required for harvesting and threshing and the optimization
of the operating parameters, are usually carried out under laboratory conditions and harsh
field conditions. These techniques are exceedingly expensive, labor-intensive, and require
a very drawn-out approach. Unconventional approaches can be employed in place of
experimental procedures to precisely establish these required attributes in the current era
where economy, energy, labor, and time are highly significant. The most popular non-
conventional technique for figuring out the physical and mechanical characteristics of plant
products is machine learning.

Machine learning, which is a sub-branch of artificial intelligence, can be defined as a
method that makes predictions by using inferences from past experiences and data [14]. It
focuses on teaching computers to learn from data and improve them through experience
rather than being explicitly programmed to do so. In machine learning, algorithms are
trained to find patterns and correlations in large data sets and make the best decisions and
predictions based on this analysis [15]. Machine learning algorithms are one of the extremely
popular methods applied to classification and regression problems in many fields, such
as medicine [16,17], engineering [18,19], economy [20], education [21,22], business [23,24],
natural sciences [25,26], sport sciences [27] and agriculture [28,29]. Alkali et al. (2014) [30]
utilized an artificial neural network (ANN) to predict some mechanical properties of melon
fruit. Kabas et al. (2023) [14] determined some engineering parameters of cherry tomatoes
using machine learning algorithms. Cevher and Yıldırım (2022) [31] estimated the rupture
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energy values of Deveci and Abate Fetel pear fruit using an artificial neural network (ANN).
An artificial neural network can be used to better estimate the volume and surface area of a
fruit according to Ziaratban et al. (2017) [32]. Kabas et al. (2023) [33] conducted an experiment
on the determination of hazelnut’s (Corylus avellana L.) terminal velocity and drag coefficient
based on some fruit physical properties using machine learning algorithms. By using
computerized mathematical and statistical processes on data, this technique models systems
that make predictions. It belongs to the science of artificial intelligence. It includes several
algorithms and method architectures. Numerous technical developments, such as speech and
pattern recognition, data analysis, and prediction, have been made possible through machine
learning. Using training data, machine learning, which learns and develops autonomously
based on experience without outside assistance, may categorize and predict [34,35].

Knowing the leaf breaking resistance allows harvesting to be performed with a min-
imum leaf loss rate, thus minimizing leaf losses during harvesting and post-harvesting.
This study aimed to provide an accurate prediction of the leaf break stress of alfalfa plants
depending on some vegetative and mechanical parameters using machine learning. By
using machine learning models, it was aimed to determine the most accurate model con-
sidering different inputs and network structures. The results obtained can be considered
as an effective tool to deal with post-harvest losses of alfalfa leaves and to collect the
necessary data for the optimization of existing processing systems and the design of the
necessary machinery.

2. Materials and Methods

This research was carried out at Akdeniz University Vocational School of Technical
Sciences, Antalya, Turkey, in 2023. Alfalfa (Victoria cultivar) obtained from local growers in
Antalya province was used in the experiment. A total of 120 plant branches were taken
as material, and 30 plant branches from each replicate were taken as the basis for this
experiment in the trials carried out in 4 replicates in randomized blocks.

The measurements were carried out in the second year of cultivation and after the
third mowing. The material to be measured for green breaking resistance was placed in
containers filled with water to prevent moisture loss after mowing, with the cut ends in
water and kept in this way until the measurement was performed.

2.1. Data Set

The petiole thickness of 120 alfalfa samples was measured with a digital caliper with a
precision of 0.001 mm, and the petiole area was calculated with the formula A = π·d2/4
and the data were recorded.

A texture analyzer with a data sampling rate of 10 Hz and a 1000 N load cell with
a sensitivity of 0.01 N was used to determine the breaking force of the leaves (Figure 1).
A pulling speed of 8 mm min−1 was used to determine the leaf breaking resistance of
alfalfa [36]. The device was calibrated following the calibration template before the analyses.
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The leaves were fixed to the device with the help of a gripping jaw and the value read
at the moment when the leaf broke away from the stem was determined as the breaking
force of the leaf, and the obtained values were recorded on the computer with the help
of a software. A force–deformation curve was created with the help of the obtained data
(Figure 2). The rupture energy of the leaf was determined by calculating the area under the
force–deformation curve. The breaking stress was calculated by the ratio of the determined
leaf breaking forces to the petiole area.
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Trials were conducted when the main stems of the clover were green first, then dried
at 105 ◦C for 24 h, and then the leaf breaking force measurement was realized. The input
variables were the leaf stem diameter, leaf stem area, leaf breaking force, and leaf breaking
energy, and the target variable was the leaf breaking stress. The whole variables used in
the machine learning models are seen in Figure 3.
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2.2. Machine Learning Methods

Machine learning, also known as predictive analytics or statistical learning, lies at
the intersection of statistics, artificial intelligence, and computer science [37]. The goal of
machine learning is to produce predictive or descriptive models using sample data or past
experience so that the value of a continuous output or the class of a classificatory output
can be predicted [38]. In this study, the leaf breaking stress of green and dried alfalfa plants
was estimated using machine learning methods. During the modeling phase, five different
machine learning methods, Extra Trees (ET), Random Forest (RF), Gradient Boost (GB),
Extreme Gradient Boosting (XGB), and CatBoost (CB), were used. The models obtained
using the five different methods were interpreted and the results were visualized. The data
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set of the study was divided into training and testing data, and 80–20%, 75–25% and 70–30%
ratios tried in the partitioning process (training, testing), respectively. The best results were
obtained with the training 70% and test 30% partitioning, and these values were interpreted.
The modeling and visualization stages were carried out using the Python programming
language. The workflow of the machine learning process is shown in Figure 4.
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The first stage of the machine learning process is to obtain the data to be used in the
modeling. The second and one of the most important stages is data preprocessing. At
this stage, if there are missing and/or noisy variables in the data set, these variables are
removed from the data set or filled with an appropriate predicted value [39,40]. In the third
stage, machine learning algorithms are applied. At this stage, the data set is divided into
training and testing without applying the machine learning method. The model is trained
on the training data set, and the success of the trained model is realized on the test data set.
In the fourth stage, modeling results are obtained. In the fifth stage, graphs of the results
are created and in the last stage, the models are interpreted.

2.3. Extra Trees

ET, an ensemble-based machine learning method, was developed as an extension of
the RF method to avoid the overfitting problem and increase the classification accuracy [41].
In this algorithm, all the data sets are used to train all the trees in an ensemble rather than
using the bagging method to generate the training subset for each tree. This randomization
significantly reduces the variance compared to the ensemble ML models. Instead of utilizing
the bagging approach to create the training subset for each tree, this algorithm uses all the
data sets to train all trees in an ensemble. Comparing this randomization to the ensemble
ML models, the variance is significantly reduced [42,43].

2.4. CatBoost

CatBoost is an ensemble-based machine learning method just like RF, ET, and XGB.
Based on the GB method, CB is an advanced version of the GB method. CB successfully
tackles categorical attributes and takes advantage of coping with them during training as
opposed to pre-processing time. Another advantage of the CB algorithm is that it uses a
new scheme to calculate the leaf values when choosing the tree structure. This helps reduce
overfitting [44].

During the modeling phase, a series of decision trees are created. Each decision tree
influences the next to improve the modeling performance. Thus, the next tree is created
with less loss. In other words, each decision tree is influenced by and learns from the
previous one. The goal here is to create a strong learner [45]. In GB, DTs are trained
iteratively to minimize the loss function, as shown in Figure 5 [46]. The image shown below
the trees shows the training error of the tree (red). The error rate is high in the first and
second trees. The error rate is minimized in the Nth tree by reducing iteratively [47].
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2.5. Gradient Boosting

The purpose of the GB algorithm is based on combining a set of weak models that
together allow for creating a stronger model [48]. The basic idea behind this algorithm is to
build new base learners in such a way that they are maximally associated with the negative
gradient of the loss function associated with the entire ensemble [49].

The fact that the loss function can be selected by the practitioner makes the GB method
flexible, and the implementation of boosting algorithms is relatively simple [50].

2.6. Extreme Gradient Boosting

XGB, a GB-based method, uses the gradient descent optimization algorithm [51]. A
highly scalable, flexible and versatile tool, XGB is designed to exploit resources correctly
and to cope with the limitations of the earlier gradient boosting [52]. The novelty of XGB
lies in the fact that it includes an objective function [53].

The objective function consists of the combination of the regularization term, which
is used to prevent overfitting of the model, and the loss function, which measures the
difference between the predicted value and the real value [54].

2.7. Random Forest

RF, one of the most common ensemble learning methods, is frequently used in both
regression and classification problems [55]. The purpose of ensemble learning is based on
combining the results generated by solving the same problem using many classifiers [56].
This gives the model result a higher precision and generalization ability. The features
chosen by each tree during the model’s training process are just a small subset of the
features chosen at random. The RF approach can achieve better generalization and anti-
overfit abilities because to its strong randomness, which means that additional pruning is
typically not required [57].

2.8. Models’ Evaluation Criteria

Since the output variable that is tried to be predicted in this study is continuous, the
mean absolute error (MAE), mean absolute percentage error (MAPE), the coefficient of
determination (R2), and root mean square error (RMSE) metrics were used to measure the
prediction success of the established machine learning models [18,58,59]. The MAE, MAPE,
R2, and RMSE metrics are defined in Equations (1)–(3), respectively.

RMSE =

√
1
m∑m

i=1(Xi − Yi)
2, (1)

MAE =
1
m∑m

i=1|Xi − Yi|, (2)

MAPE =
1
m∑m

i=1

∣∣∣∣Yi − Xi
Yi

∣∣∣∣, (3)
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R2 = 1 − ∑m
i=1(Xi − Yi)

2

∑m
i=1

(
Y − Yi

)2 (4)

The coefficient of determination, proportion of explained variance, or R2 for short, is
known as a measure of the success of the independent variables in predicting the dependent
variable [60]. R2 can be defined as the proportion of the variance in the dependent variable
that can be predicted from the independent variables [59]. In the R2 metric, which takes
a value between 0 and 1, it takes the value of 1 if the independent variables fully explain
the dependent variable, while the value of 0 indicates the opposite situation. Accordingly,
an R2 value approaching 1 indicates that the success of the model is high [61]. Another
performance metric for regression models, the MAPE is used for the interpretation of the
relative error [62].

While the MAPE takes a value between 0 and ∞, the mean absolute percentage error
between the actual value and the prediction approaches 0, indicating that the success of
the established model is high [59]. Prediction models with MAPE values between 10% and
20% are categorized as “correct/good”, whereas models with MAPE values below 10% are
categorized as “high accuracy/very good” [63,64].

The RMSE is the square root of the mean of the squares of all the errors [65]. Like
the MAPE, the RMSE measures, which take values between 0 and ∞, are also used in
the interpretation of regression problems. Values close to 0 indicate that the model is
successful [66–68]. The MAE is another statistical measure that is used in the interpretation
of regression problems. While it takes values between 0 and ∞, values close to 0 indicate
that the model is successful [18].

3. Results and Discussions

Modeling studies are very important in the evaluation of green and dry alfalfa leaf
resistance. A statistical summary of some mechanical property data of dry and green alfalfa
leaves used for the modeling study, including the means and standard deviations, is shown
in Table 1. The differences between the mechanical properties of dry and green alfalfa are
shown in Table 1. The leaf breaking force, leaf breaking resistance and leaf breaking tension
of dry alfalfa are much lower than the values obtained in green alfalfa, which indicates that
the leaf losses will be much higher in dry alfalfa. While the leaf breaking force of green
alfalfa was 0.087 N, this value was found to be 0.031 N in dry alfalfa, and it is seen that
there is a 64.36% decrease between these two values. This decrease was 61.65% in leaf
breaking stress and 64.42% in leaf breaking energy. These values clearly show that the
mechanical strength of alfalfa leaves decreases as they dry and so leaf losses will increase
rapidly. Predicting the breaking resistance of alfalfa leaves in advance will make it possible
to minimize the leaf losses that may occur during and after harvest.

Table 1. Experimentally measured values of green and dry alfalfa.

Plan Type Variables Mean ± SD

Dried

Leaf stem diameter (mm) 0.561 ± 0.157
Leaf petiole area (mm2) 0.261 ± 0.152
Leaf breaking force (N) 0.031 ± 0.023
Leaf breaking energy (J) 0.037 ± 0.028
Leaf breaking stress (N mm−2) 0.158 ± 0.204

Green

Leaf stem diameter (mm) 0.580 ± 0.157
Leaf petiole area (mm2) 0.280 ± 0.152
Leaf breaking force (N) 0.087 ± 0.055
Leaf breaking energy (J) 0.104 ± 0.066
Leaf breaking stress (N mm−2) 0.412 ± 0.371

In this study, five different machine learning methods, Extra Trees, Random Forest,
Gradient Boost, Extreme Gradient Boosting, and Cat Boost, were used. The performances
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of the models were interpreted based on the evaluation metrics obtained as a result of the
established modeling. The results of the models established to predict the breaking stress
of the green alfalfa plant and dry alfalfa plant are shown in Table 2.

Table 2. Results of the machine learning models.

Plant Type Model
Evaluation Criteria

RMSE MAPE MAE R2

Dried

Extra Trees 0.0171 0.0969 0.0099 0.9853
CatBoost 0.0174 0.1068 0.0105 0.9838
Gradient Boosting 0.0265 0.1936 0.0178 0.9624
Random Forest 0.0306 0.2163 0.0191 0.9499
Extreme Gradient Boosting 0.0223 0.1224 0.0124 0.9736

Green

Extra Trees 0.0707 0.1604 0.0340 0.9472
CatBoost 0.0850 0.1806 0.0387 0.9239
Gradient Boosting 0.1194 0.1447 0.0621 0.8497
Random Forest 0.0616 0.2135 0.0363 0.9600
Extreme Gradient Boosting 0.1026 0.1750 0.0542 0.8889

3.1. Interpretation of Modeling Results of Dried Alfalfa

According to the results in Table 2, for the dried alfalfa plant, the model established
by the Extra Trees method is more successful in all the metrics. The best MAE value was
obtained as 0.0099. The MAE value is close to 0, so it can be said that the model built is
successful. The best MAPE value was obtained as 0.0969. Accordingly, the leaf breaking
stress value of dried alfalfa plants can be estimated with an error of approximately 10%.
This result shows that the model established with the Extra Tree method is successful.
Similarly, the R2 value was obtained as 0.9853. Accordingly, the independent variables
explain approximately 98.5% of the variance of the dependent variable. Since the R2 value
obtained is close to 1, the established model is successful. The RMSE is a statistical metric
that evaluates the error values of regression models built with machine learning methods.
It is value close to zero, which indicates that the error obtained from the model is low,
and this indicates that the established model is successful. The RMSE value was obtained
as 0.0171. This result is close to 0 and shows the success of the established model. The
worst RMSE, MAE, MAPE and R2 values were obtained from the model established with
the Random Forest method. The results for these metrics were 0.0306, 0.0191, 0.2163 and
0.9499, respectively. As a result, the most successful model in predicting the leaf breaking
stress value of dried alfalfa was obtained with the ET method, while the worst model was
obtained with the RF method.

There are no studies that have been found to predict the leaf breaking stress of any
plant using machine learning methods. In the field literature, it is seen that regression
and classification studies are carried out using artificial neural network, logistic regression,
support vector machines, extra trees, light gradient boosting, random forest, and decision
tree regression methods [14,33,69].

In their study, Kabas et al. [14] made predictions with the value of R2:0.97 with the
artificial neural networks model, R2:0.91 with the logistic regression, and R2:0.81 with the
decision tree regression model. In another study, Kabas et al. [33] predicted the value of
R2:0.92 with the support vector regression model. Kocer et al. [58] made predictions with the
value of R2:0.76 with the Extra Trees model, R2:0.73 with the Random Forest and R2:0.68 with
the Light Gradient Boosting model. In this study, the best R2 (0.9853), RMSE (0.0171), MAE
(0.0099) and MAPE (0.0969) values for the dry alfalfa plant was obtained from the model
established with the ET method.

In the machine learning models established to predict the breaking stress value of the
dry alfalfa plant, the metric results were generally close to each other. The models were
also more successful, with slightly better results in some metrics. Although the model
established by the ET method was the most successful model in the MAE metric, all the
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models obtained similar results. The differences between the models were negligible.
Therefore, it can be said that all the models achieved successful results in the MAE metric.
We can also make this comment for the RMSE and R2. In the RMSE and R2 metrics,
the model established with the ET method was more successful with small differences
compared to the models established with other methods. Although the model established
with the ET method was slightly more successful than the models established with other
methods, the models established with the ET, CB, and XGB methods had similar values. It
can be said that these models were more successful compared to the models established
with the RF and GB methods in the MAPE metric.

3.2. Interpretation of Modeling Results of Green Alfalfa

Similarly, the machine learning model results established to predict the leaf breaking
stress of green alfalfa plants are shown in Table 2. In terms of the R2 and RMSE metrics,
the model built with Random Forest is the most successful. The best R2 value obtained
is 0.96. Accordingly, the independent variables explain approximately 96% of the variance
of the dependent variable. The established RF model is successful because the R2 value is
close to 1. The fact that the RMSE value is close to zero indicates that the error obtained
from the model is low, which indicates that the established model is successful. The RMSE
value is obtained as 0.0616, which is close to 0 and shows the success of the established
RF model. In terms of the MAPE metric, the model built with Gradient Boosting is the
most successful. The best MAPE value obtained is 0.1447. Accordingly, the leaf breaking
stress value of green alfalfa plant can be estimated with an error of approximately 14.5%.
This result shows that the model established using the GB method is successful. The worst
RMSE, MAPE, and R2 are 0.1194, 0.2163, and 0.8497, respectively.

Kuradusenge et al. [70] performed predictions with the value of R2:0.875 and RMSE:
129.9 with the RF model. In another study, Mostafaeipour et al. [71] produced predictions
with the value of R2:0.953, MSE: 0.0102 and RMSE: 0.1010 with the Extreme Learning
Machine model. Kabas et al. [72] produced predictions with the value of R2:0.9715, MAPE:
0.0146 and RMSE: 15.69 with the CatBoost model, and MAE: 10.63 with the RF model. In
this study, while the best RMSE (0.0616) and R2 (0.96) values for green alfalfa plant were
obtained from the model established with the RF method, the best MAE (0.0340) value was
obtained from the model established with the ET method. Finally, the best MAPE (0.1447)
value was obtained from the model established with the GB method.

Figure 6 shows the scatterplots of the machine learning models. While the first graph
was produced by the RF model, the second graph was produced by the ET model. Similarly,
in the machine learning models established to predict the breaking stress value of the green
alfalfa plant, the metric results are generally close to each other. When the predicted values
and actual values are close to each other, the values will be on the y = x line. However, as
the predicted values deviate from the actual values, the values will not lie on this line. It
is clearly seen in the scatterplot that the deviations in the model established with the RF
method are greater than in the model established with the ET method. Accordingly, it can
be said that the model established with the ET method makes more successful predictions.
It is also possible to note that the figures support the metric results shown in Table 2. The
models performed better on some metrics, with small differences. Although the model
established using the ET method was the most successful model in the MAE metric, all
the models obtained similar results. The differences between the models were negligible.
Therefore, it can be said that all models achieved successful results in the MAE metric.
We can also make this comment for the RMSE metric. In the RMSE metric, the model
established with the RF method is more successful with small differences compared to the
models established with other methods. The models established with RF, ET, and CB have
similar values in the RMSE metric. On the other hand, the model established with the RF
method is slightly more successful than the models established with the other methods. A
similar situation is valid for the R2 metric. Although the model established with the RF
method is slightly more successful than the models established with other methods, the
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models established with the ET and CB methods also have similar values. It can be said
that the models established with RF, ET, and CB are more successful in the R2 metric than
the models established with the GB and XGB methods. Although the models established
with GB, XGB and ET have similar values in the MAPE metric, the model established with
the GB method is the most successful model in the MAPE metric.
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Figure 7 shows the relationship between the actual and predicted breaking stress
values. While the x-axis in the graphs shows the observations, the y-axis shows the stress
value. Red lines show the actual values, dashed blue lines show the predicted values. The
first graph was produced from the model in which we obtained the leaf breaking stress
for the dried alfalfa plant using the RF method. The second graph was produced from
the model obtained using the ET method. In both graphs, the actual and predicted values
almost overlap. This shows that the established models are successful. The metric results
shown in Table 2 and the line plots shown in Figure 7 support each other. The R2 and MAPE
values of the model established with the RF method are 0.9499 and 0.2163, respectively. On
the other hand, the R2 and MAPE values of the model established with the ET method are
0.9853 and 0.0969, respectively. These results show that although both models are extremely
successful in predicting leaf breaking stress, it can be said that the model established with
the ET method makes a more successful prediction. Accordingly, it can be said that the
metric results and graphic results support each other.
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In this study, the leaf breaking stress of dried and green alfalfa plants was predicted
using the Extra Trees, Random Forest, Gradient Boost, Extreme Gradient Boosting and Cat
Boost methods. For the dried alfalfa plant, the best R2 (0.985) value was obtained from
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the model established using the Extra Trees method. Similarly, the best RMSE (0.0171)
and MAPE (0.0969) values were obtained from the model established with the Extra Trees
method. For the green alfalfa plant, the best MAPE (0.1447) value was obtained from
the model established using the Gradient Boosting method. The best RMSE (0.0616) and
R2 (0.96) values were obtained from the model established with the Random Forest method.

4. Conclusions

Green and dried alfalfa leaf breaking stress characteristics are crucial factors in harvest-
ing and threshing operations. The design and modification of machinery used in harvesting
and threshing activities depend on these criteria. To compute these characteristics, a vast
number of samples must be measured over an extended period of time. It takes a lot of time,
money, and labor to measure a lot of samples. Various measuring mistakes also happen.
Larger data sets, traits, and methods that can be utilized for future study may be developed
together with more accurate and timely results for applications including discrimination,
ranking, and prediction in the industrial sector.

In this study, the green and dried alfalfa leaf breaking stress value was successfully
predicted using machine learning methods. The R2, MAE, MAPE, and RMSE metrics were
calculated to evaluate the models. When the successful evaluations of the models for the
dried alfalfa plant are made using the R2 metric, the model established by the ET method
is the most successful model. Independent variables explain approximately 98.5% of the
variance of the dependent variable (Table 2). The proportion of variance of the dependent
variable explained by the independent variables is 98.5%. When success evaluations are
made using the RMSE, MAE and MAPE metrics, the model established with the ET method
is the most successful model. The leaf breaking stress value of the dried alfalfa plant can
be estimated with an error of approximately 10% (MAPE). The RMSE and MAE value
are 0.0171 and 0.0099, respectively. Since the results are close to 0, it can be said that the
established model is successful. In fact, all the model results have close values in the
R2, MAE and RMSE metrics. However, the model established with the ET method has
become the most successful model, obtaining better results with slight differences. The
situation is slightly different for the MAPE metric. While the models established with the
GB and RF methods produce worse results, the models established with the ET, CB and
XGB methods are more successful with similar results. However, the model established
with the ET method has become the most successful model, obtaining better results with
slight differences.

When the success evaluations of the models for the green alfalfa plant are made using
the MAPE metric, the model established using the GB method is the most successful model.
The leaf breaking stress value of green alfalfa plant can be estimated with an error of
approximately 14.5%. For the R2 metric, the model established using the RF method is the
most successful model. The proportion of variance of the dependent variable explained by
the independent variables (Table 2) is 96%. For the RMSE metric, the model established
with the RF method is the most successful model. The RMSE value is 0.0616. Since the
result is close to 0, it can be said that the established model is successful. When success
evaluations are made using the MAE metric, the model established with the ET method is
the most successful model. The MAE value is 0.0099. Since the result is close to 0, it can
be said that the established model is successful. In fact, all the model results have close
values in the MAE and RMSE metrics. The situation is slightly different for the MAPE
metric. While the models established with the RF and CB methods produce worse results,
the models established with the GB, ET and XGB methods are more successful with similar
results. The situation is slightly different for the R2 metric such as the MAPE. While the
models established with the GB and XGB methods produce worse results, the models
established with the RF, CB and ET methods are more successful with similar results.
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Nomenclature

ANN Artificial Neural Network
CB CatBoost
DT Decision Tree
ET Extra Trees
GB Gradient Boost
GPa Giga Pascal
H Hertz
J Joule
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine Learning
MPa Mega Pascal
N Newton
RF Random Forest
R2 Correlation Coefficient
RMSE Root Mean Square Error
XGB Extreme Gradient Boosting
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