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Abstract: In the context of increasingly competitive shipbuilding, the flexible multi-level picking
system, composed of high-rise shelves, Automated Guided Vehicles (AGVs), and picking stations,
has been of gradual interest because of its advantages in operation efficiency, system flexibility, and
system robustness. Compared with other simple-level systems, the flexible multi-level picking system
has a more complex coupling temporal relationship, which makes the scheduling optimization of
shipbuilding automated collaborative order picking (SACOP) extremely difficult. In order to avoid the
dilemma of finding a feasible and optimal collaborative scheduling scheme under the constraints of a
complex temporal relationship, this paper proposed a multi-AGV-driven pallet-picking scheduling
optimization (MADPSO) method, which takes the AGV scheduling scheme as the direct solution
and modifies it to a feasible solution under the reasonably designed interaction strategy of stacker,
AGV, and the interaction strategy of picking station, AGV. Furthermore, taking the minimum energy
consumption and operation time as the optimization objectives, a multi-objective optimization
mathematical model was established to describe MADPSO, and an improved NSGA-III algorithm
was designed to solve the problem. Finally, several experiments were conducted in various scenarios
and verified that using MADPSO can achieve a comprehensive optimization index improvement of
52.02–75.66% compared with traditional picking methods, which has a certain reference significance
for shipyards.

Keywords: shipbuilding material management; pallet picking; automated storage and retrieval
system; parallel tasks scheduling; multi-objective optimization; improved non-dominated sorting
genetic algorithm III

1. Introduction

With the development of society and the economy, the traditional manufacturing
industry is facing dual pressures of rising land and labor costs, as well as competition in
product prices. The material preparation stage in the production lifecycle of manufacturing
products, namely the material storage stage, requires a large amount of labor, material
resources, and factory area resources without generating any additional value. Therefore,
there is an urgent need for cost reduction and efficiency improvement reforms. In this
context, the Automated Storage and Retrieval System (AS/RS), based on key equipment
such as high-rise shelves, stackers, and AGVs, has been promoted and applied in a wide
range of industries due to its inherent advantages in storage capacity, unmanned degree,
and operational efficiency. Especially for today’s manufacturing industry, which has just
experienced the impact of the epidemic, researching the application of the AS/RS has
important potential social security significance [1].

As a typical labor-intensive industry, the introduction of the AS/RS for material
storage is becoming an important trend for major shipyards to improve their material
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management level. The picking operation is the main business of the warehousing process,
which usually accounts for more than 65% of the total workload. Therefore, research on
order-picking optimization is one of the hot subproblems of AS/RS application problems,
which has important practical significance, and this is no exception in the shipbuilding
industry. However, it should be noted that the AS/RS order-picking problem in shipyards
has its characteristics, as follows.

C1: Palletization is commonly used for the picking and usage of materials in shipyards.
Palletization refers to the inherent set attribute of orders, and orders within the same pallet
must be picked and outbound in the same batch. The efficiency of the operation is based
on the overall picking time of the pallet.

C2: The processes of retrieving containers and picking the orders out from the contain-
ers to the pallet should be carried out simultaneously. The characteristics of small batch
customized ship products determine that the AS/RS picking objects in the shipyard are
many orders with significant differences. Therefore, pickers need the SKU (Stock Keeping
Unit) numbers to assist in identifying during the order-picking process, which means the
delayed order-picking strategies are not applicable in the shipyard AS/RS.

The above two characteristics indicate that the order-picking scheduling problem in
the shipyard AS/RS is a complex scheduling problem that combines batch sorting of order
groups and intragroup order-picking scheduling. Meanwhile, the tasks require multiple
devices to complete. Especially under the conditions of multiple aisles, multiple picking
stations, and multiple AGVs, this problem is more complex and difficult to solve than
traditional order-picking problems. Its research has stronger practical significance and
application value.

A large amount of research has been conducted on order-picking problems to optimize
the operational efficiency of the AS/RS. Through relevant research reviews, the current
research hotspots in order picking are gradually moving towards practical applications.
Many mathematical models have been established for special scenarios in practical applica-
tions, as well as abundant optimization algorithms that consider a series of special elements
such as different warehouse layouts, AGV power capacity limitations, order distribution
routing problems, order conflict restrictions, etc. However, there are some shortcomings in
existing research results, which have led to their inability to solve the AS/RS order-picking
problems in shipyards. Most studies only consider single optimization objectives such
as job efficiency or total order delay time, without simultaneously considering the dual
demands of efficiency and cost [2–4]. Furthermore, the majority of the literature has a dif-
ferent system composition from the shipyard AS/RS [5–8]. Meanwhile, most of them only
focus on a single link of the whole main links, including stacker retrieval, order delivery,
and order picking at picking stations, failing to achieve order-picking optimization in a
multi-device collaborative mode [9,10]. Accordingly, the purpose of this paper is to solve
the optimization problem of parallel order-picking scheduling in multi-device collaboration
mode with the goal of reducing costs and increasing efficiency. This problem is named the
Shipbuilding Automated Collaborative Order-picking (SACOP) problem in this paper.

The remainder of the paper is organized as follows: Section 2 reviews the related
literature. Section 3 presents a description of the problem and proposes a method of the
SACOP problem transformation. Section 4 proposes a 0–1 integer programming model.
Section 5 gives the details of the INSGA-III-based MADPSO method. Computational results
on numerous instances are reported in Section 6. Conclusions and future research directions
are suggested in Section 7.

2. Related Work

As the core business of all types of warehouses, order picking has received widespread
attention and research. According to the classification of the order-picking system [11],
the SACOP problem belongs to the manual picking problem of the parts to picker, so
this review only focuses on the relevant literature of the parts-to-picker system. The
system models of parts-to-picker systems can be divided into the AS/RS-based picking



Appl. Sci. 2024, 14, 1618 3 of 32

systems and Robotic Mobile Fulfillment Systems (RMFS). The main difference lies in the
fact that the AS/RS-based picking systems use stackers or shuttle cars to retrieve the
containers while RMFS sends the entire shelves to the picking stations by the mobile
robots. To meet the needs of storage area, operational efficiency, energy consumption,
and labor intensity, the AS/RS-based picking system in shipyards usually adopts a hybrid
system composed of stackers, AGVs, and manual picking stations. Based on this, the
SACOP problem can be decomposed into subproblems such as stacker scheduling, AGV
delivery task scheduling, order batch, and sorting. Currently, there is little literature that
uses this system to research the order-picking problem, which means existing research
cannot be cited separately to solve the practical SACOP problem. Based on the above
considerations, this paper comprehensively reviews the relevant literature on stacker
scheduling, AGV task scheduling, RMFS order batch, and sort scheduling, as well as other
relevant scenarios that are beneficial to this study. On this basis, the SACOP problem was
proposed and studied.

2.1. Stacker Scheduling

Bozer et al. first constructed mathematical models for the expected walking time
of stackers in single instruction mode and dual instruction mode in 1982 [12]. Hwang
et al. added stacker acceleration and deceleration as well as maximum driving speed on
this basis [13]. Subsequently, researchers gradually expanded the scheduling problem
of stackers from single-station stackers to multi-stations stackers, from single stacker in
single aisles to multi-stackers in single aisles [14–17], and from single deep to compact
shelves. Under these special constraints, they studied sub problems such as stacker
job scheduling, standby strategy, and path planning [18]. By reviewing the above
literature, the sorting of inbound and outbound tasks and the arrival interval between
tasks have significant impacts on the efficiency and energy consumption of the stacker
system. Therefore, it is necessary to consider the energy consumption and order delay
performance of the stacker system under different order allocation decisions when
discussing the SACOP problem.

2.2. AGV Task Scheduling

In the broad context, not only including shipyards, AGV scheduling optimization
has been discussed extensively, which typically includes goals such as total delivery
time or total delayed arrival time, path planning length, path conflict penalty, number
of AGVs, energy consumption [19–21], etc. For example, Nitish Singh et al. discussed
the AGV scheduling problem under battery capacity constraints, with the optimization
objective of minimizing AGV transportation time and the weighted total cost of order
delay penalty [22]. They established a mixed integer linear programming model for this
problem and proposed an adaptive large neighborhood search algorithm as a solution.
Xueting He et al. established a mixed integer programming model for waste, AGV,
and picking station points allocation problems in medical waste sorting systems, and
proposed a dynamic programming-based variable neighborhood search algorithm to
solve practical problems [23]. Although there are significant differences between the
AGV scheduling literature reviewed above and the SACOP problem system model in this
paper, the discussion and construction of models related to energy consumption and path
conflict issues have great inspiration for this paper.

2.3. RMFS Orders Batch-Picking Scheduling

RMFS has been a popular picking system in recent years, which decomposes tradi-
tional warehouse picking activities into two sub-activities: handling by robots and picking
by humans. This allows robots and manual pickers to complement each other’s advantages,
freeing manual pickers from heavy handling activities while fully retaining and leveraging
the experiential advantages of manual pickers in picking activities.
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Azadeh et al. [24] and Boysen et al. [25] found that the order-picking problem in
RMFS has not been fully resolved. Xiying Yang et al. [26] paid attention to the coupling
relationship between order sorting and mobile shelf scheduling. They established an
integer programming model to describe the problem and proposed a two-stage solution
method to solve the joint optimization of order sequencing and mobile shelves scheduling.
Zhang, Jingtian et al. [27] innovatively transformed the robot task scheduling problem
into a resource-constrained project scheduling problem with transfer time and proposed
a genetic algorithm using a building-block-based crossover (BBX) operator to solve this
problem. Justkowiak et al. [28] also recognized the correlation between order sorting
and shelf scheduling and proposed a new mixed integer programming formula based
on original preprocessing techniques to solve the order and shelf sorting problem with a
single picking station, which provided a reference example for the optimization problem
of RMFS orders at a medium scale. Teck and Dewil [29] established an integrated order
scheduling model that differs from the commonly used phased decision-making model in
other literature and proposed a heuristic solution method called a bi-level psychological
memetic algorithm, which further extended the two problems of order sorting and shelf
scheduling. In addition, Amir Gharehgozli et al. [30] first incorporated the recycling of pods
into the RMFS order-picking model. The process of pod picking and recycling described in
the model is like the order recycling in the SACOP problem. However, the model proposed
in that paper was limited by a single picking station and considered the single optimization
objective, which was unsuitable for the SACOP problem.

By reviewing the literature mentioned above, although there are certain differences
in the order-picking system (OPS) between RMFS and SACOP, based on similar behavior
patterns and related constraints, the mobile shelves in RMFS can be considered AGVs
to some extent in the SACOP problem. Therefore, summarizing the above literature can
further clarify the strong coupling between order batch picking and AGV scheduling
in the SACOP problem. The relevant ideas, mathematical models, and optimization
algorithms design have significant inspiration for the study in this paper. In addition, the
literature [31] on the labor intensity of picking workers provides useful insights for this
paper, and the literature [32,33] provided useful optimization method design ideas for
this paper.

By the literature review in this section, the limitations of existing research have been
clarified: (1) There is a lack of research on collaborate picking systems’ concluding stackers,
AGVs, and picking stations. (2) Existing research has overlooked other important opti-
mization objectives, such as machine energy consumption and worker load, or subjectively
weighted multiple optimization objectives into a single objective, which resulted in the
results deviating from reality. On the other hand, this also demonstrates the complexity of
the SACOP problem.

As a result, this paper dictates the multi-objective scheduling optimization model
and method for the SACOP problem, firstly, which takes the overall energy consumption
and operational efficiency into account. With our work, a Pareto optimal solution set
can be generated within a reasonable time range for a batch outbound task of orders and
transformed into corresponding stacker scheduling schemes, AGV scheduling schemes,
and pick station task schemes.

3. System Specification
3.1. System Composition

The AS/RS-based picking system structure discussed in this paper includes three
parts: storage unit, transport unit, and picking unit. The detailed system composition is
shown in Figure 1.
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The storage unit consists of high-rise shelves and stackers. In the AS/RS discussed
in this paper, the high-rise shelves provide sufficient storage compartments, and each
compartment can store a standard container. Each container, as a SKU, usually stores
multi-shipbuilding material items with separate material identification codes, and the
orders to pick in the task are included in these materials. The stackers of storage units
referred to in this paper are the most common medium-sized double-column stackers. One
stacker is arranged in one aisle and each stacker is responsible for the storage and retrieval
of containers. The handover points between the stackers and AGVs are set at the exit of
the aisles.

The transport unit consists of multiple AGVs of the same model. When the AGVs are
idle, they can be on standby or charged in the designated charging area.

The picking unit includes multiple picking stations with workers for parallel opera-
tions, each of which is managed by a picking worker. Considering the space limitations of
the picking station, as well as the difficulty and probability of errors for workers, this paper
sets an upper limit of three pallets that can be picked simultaneously at each picking station.

3.2. SACOP Process

In addition to the system composition, we will further explain the system process. The
research object of the SACOP problem is the pallet-picking task in the shipyard AS/RS. It
is easy to confuse that the concepts of “pallet” and “order” mentioned in this paper differ
from the traditional OPS literature. Therefore, a brief explanation of these two concepts
will be provided first. Palletized material management is an important means to support
modern shipbuilding. The original meaning of a “pallet” is the container that carries sorted
materials, and it is also used to refer to this batch of materials on the pallet in shipyard
material management. This paper will continue to use this material management concept,
using the “pallet” to refer to the set of sorted materials and using the “order” to refer to
each specific material contained in the pallet.

The main process of pallet picking is shown in Figure 2. Firstly, the pallet-picking tasks
are assigned to each picking station, and the picking station will open several pallet-picking
tasks based on its own capacity limit. After the tasks are opened, the upstream storage
unit will “spit out” the containers to which the orders belong. The containers spit out are
transported by AGVs to the picking stations to pick out. After all orders in the pallet are
picked out, close the pallet-picking task, and open a new one until all pallet-picking tasks
are completed.
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The pallet-picking task consists of basic order-picking cycles. As shown in Figure 3, the
operation cycle of a single order includes three stages, extracting the container, transporting
the container, and returning the container, as well as two interactive nodes: handing over
the container between the stacker and AGV, and AGV waiting at the picking station for the
order to be picked out.
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During the entire SACOP operation process, each device needs to interact with other
devices for each operation, which will have a profound impact on itself and the entire
system. Therefore, solving the SACOP optimization problem is extremely difficult. Due
to the lack of a multi-devices collaborative scheduling solution, current shipyards adopt a
picker-led mode for pallet picking in the shipyard AS/RS, which can be referred to as the
traditional pallet-picking mode (TPPM), as shown in Figure 4.
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3.3. Transformation of SACOP

Considering the strong coupling relationship between various devices in the SACOP
environment, it is extremely difficult to simultaneously schedule stackers, AGVs, and
picking stations to operate without conflicts and achieve energy consumption and operation
efficiency optimization goals. Furthermore, even if there is a set of optimized collaborative
solutions, they have almost no anti-interference ability in the face of various uncertain
factors in actual operations. Based on the above understanding and inspired by TPPM, this
paper proposes an approach to find a key device to dominate the entire scheduling process
and ensure that it can be transformed into a collaborative scheduling solution. Due to the
ability of AGVs to connect upstream and downstream units in the system, their scheduling
schemes have the potential to drive stackers and picking stations to operate. Therefore, this
paper chooses them as key devices, thereby transforming the original SACOP problem into
a modified multi-AGV scheduling task problem (MMATSP), as shown in Figure 5.
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The modifications of the MMATSP mainly include two aspects, which correspond
to the interaction strategy of stacker, AGV, and the interaction strategy of picking station,
AGV: one is that the stacker subsystem will perform pickup waiting correction on the
original solution, and the other is that the picking station subsystem will perform waiting
correction caused by capacity limit.

Interaction strategy of stacker, AGV: Due to the maximum driving speed and the ideal
driving speed with the lowest energy consumption of the stacker, there is a “minimum
time”, represented by tmin, and an “ideal time”, represented by tbest, for the extraction
process of each container. We refer to the time between the moment when the previous
AGV leaves the aisle and the moment when the next AGV arrives at the aisle as the
“demand time” for this container, represented by tdemand. The stacker subsystem adopts
the following operating strategy: for tdemand > tbest, operate at the ideal driving speed;
for tbest > tdemand > tmin, operate at the specified speed to ensure synchronized container
handover with the AGV; and for tdemand < tmin, operate at the rated maximum speed to
reduce the waiting time of the AGV.

Interaction strategy of picking station, AGV: Waiting correction caused by capacity
limit refers to the need for the AGV delivery to consider the capacity limit of the picking
station. When an AGV arrives at the picking station, if the pallet containing this order is
open or if the picking station capacity does not reach the upper limit, then the delivery is
completed; if the order does not belong to any pallet being operated and the picking station
capacity reaches the upper limit, then wait for the picking station capacity to be released.
Due to the possibility of system deadlock caused by AGVs on standby waiting, standby
waiting is modified to set up a temporary store buffer to wait for the capacity release in this
paper, which is called buffer waiting. An example of a system deadlock is shown in Figure 6.
When using the buffer waiting strategy, orders that need to wait are directly sent to the
buffer, while the AGV continues to perform subsequent tasks. When the picking station
capacity is released, the original AGV picks up the order from the buffer and sends the
container to the picking station. Compared to standby waiting, the buffer waiting strategy
increases the construction cost of the buffer and incurs additional energy consumption for
AGV’s round-trip to and from the buffer. However, on the one hand, it can enable AGVs to
quickly carry out subsequent order tasks, thereby improving overall efficiency. On the other
hand, it converts standby waiting time into AGV’s round-trip time, which is equivalent



Appl. Sci. 2024, 14, 1618 9 of 32

to exchanging energy consumption for efficiency considering the first advantage. For the
same solution as the MMATSP, these two strategies have similar comprehensive indicators
of energy and efficiency, so using a buffer waiting strategy instead of a standby waiting
strategy is reasonable. The last and most important is that the buffer waiting strategy
ensures that each AGV scheduling scheme is a feasible solution. The pallet-picking process
after adopting the MMATSP is shown in Figure 7.
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3.4. Problem Definition

Finally, we define the SACOP problem as P pallet-picking tasks that need to be
assigned to W picking stations, while each pallet contains several orders, and a maximum
of C pallets can be picked simultaneously at each picking station. Only the pallets with all
orders picked up can leave the picking table. The materials corresponding to N orders in
the pallets are stored in M containers, while M ≤ N. The containers are stored on high-rise
shelves and need to be taken out by S stackers and transported to the picking stations by a
maximum of A single-load AGVs. It is needed to find the optimal decision-making solution
that minimizes the total operation time and minimizes system energy consumption.

4. Mathematical Model
4.1. Assumption

Before further research on the problem, to facilitate the research of the problem and
the establishment of the model, the following assumptions are made:

1. When orders within the same pallet belong to the same container, these orders are
considered as one consolidated order.

2. Once the pallet-picking task is opened, it can only be closed when all the associated
orders are completed.

3. There is a limit to the number of pallets that can be picked simultaneously by each
picking station, and this paper assumes it to be three.

4. The operation time for actions such as retrieving containers, handing over containers,
and picking out orders is not considered.

5. The stacker is a single load and can only retrieve one container at a time.
6. The stacker is assumed to drive at a constant speed, without considering the accelera-

tion and deceleration process. Its constant lifting and lowering speed are expressed
as Vy, the maximum horizontal speed is expressed as Vxm, and the ideal horizontal
movement speed with the best energy consumption is expressed as V0.

7. Each handover point at the aisle port can only store up to one container.
8. AGV is a single-load vehicle that can only transport one container at a time and drives

at a constant speed along a straight line at a speed of 1 m/s without considering
acceleration and deceleration processes.

9. AGVs adopt the predetermined acceleration and deceleration strategy to avoid colli-
sions, with the same additional energy consumption paid each time.

10. The power limit of AGVs and the capacity limit of the buffer zone are not considered.

4.2. Solution Expression

In Section 3.3, we propose an approach to transform optimal collaborative scheduling
for the SACOP into the optimal AGV scheduling for the MMATSP. In this paper, the SACOP
optimal collaborative scheduling scheme is referred to as the executable solution, and the
MMATSP optimal AGV scheduling scheme is referred to as the direct solution. According
to the previous description, the executable solution can be obtained through simulation
calculation of the direct solution. For a clearer expression, we use (X, Y) to represent the
direct solution, use Z to represent the executable solution, and use Z = SL((X, Y)) to
represent the process of obtaining the executable solution through simulation calculation
of the direct solution, where the function SL represents the simulation calculation method.

As shown in Equation (1), (X, Y) is a direct solution expressed jointly by two M × N
matrices X and Y, where M represents the number of available AGVs and N represents
the total number of order tasks. Corresponding to the intuitive expression of AGV task
sequences, the order task sequences of M AGVs are obtained by removing zero elements
from M row vectors extracted from matrices.

X =

 X11 . . . X1N
...

. . .
...

XM1 · · · XMN

, Y =

 Y11 . . . Y1N
...

. . .
...

YM1 · · · YMN

 (1)
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Among them:

• Xij = ∑N
n=1 nxnij represents the order number of task j of AGV i;

• Yij = ∑W
w=1 wyXijw represents the picking station number of task j of AGV i;

• The decision variable xnmk is equal to one, iff order n is assigned as task k of the AGV
m; otherwise, it is equal to zero;

• The decision variable ynw is equal to one, iff order n is assigned to picking station w;
otherwise, it is equal to zero.

The converted Z through function SL is divided into three parts: stacker scheduling
scheme Z1, AGV scheduling scheme Z2, and picking station scheduling scheme Z3.

Among them:

• Z1 includes a list of retrieval tasks for each stacker, and each individual instruction of
retrieval task j for stacker i includes three parts: container number Cij, AGV pickup
time Tij, and stacker driving speed Vij, as shown in Equation (2).

Z1 =

{C11, T11, V11} . . . {C1N , T1N , V1N}
...

. . .
...

{CS1, TS1, VS1} · · · {CSN , TSN , VSN}

 (2)

• Z2 is the AGV running trajectory list that includes order numbers, node location
information, and node entry–departure time, as shown in Equation (3).

Z2 = (L1, L2, · · · , LM)T , Lm =


Om1 Om2 · · · OmU
xm1 xm2 · · · xmU
ym1 ym2 · · · ymU
Tm1 Tm2 · · · TmU
T′

m1 T′
m2 · · · T′

mU

 (3)

• The picking station scheduling scheme Z3 is an arrival information table that includes
the order number, the pallet number to which the order belongs, and the delivery time
of the order, as shown in Equation (4).

Z3 = (A1, A2, · · · , AW)T , Aw =

Ow1 Ow2 · · · OwN
Pw1 Pw2 · · · PwN
Tw1 Tw2 · · · TwN

 (4)

4.3. Objective Function

The objectives of the SACOP problem can be divided into three functions, F1, F2,
and F3, in which F1 represents the aim of minimizing energy consumption of the stacker
subsystem, F2 represents the aim of minimizing energy consumption of AGV subsystem,
and F3 represents the aim of minimizing system operation time.

4.3.1. Stacker Energy Consumption Objective

In the context of this paper, different AGV scheduling schemes determine different
horizontal driving speeds of stackers. Therefore, before giving the expression for F1, it
is necessary to first clarify the relationship between the energy consumption of a single
operation of the stacker and the horizontal driving speed of that operation.

Firstly, we provide a simple Inference 1 directly without proof:

Inference 1. The energy consumption difference of a stacker completing the same task at different
speeds is directly proportional to the difference in the square of the horizontal driving speed.

When we release the constraint of the demand time window for stacker retrieval tasks,
there must be a unique minimum operating energy consumption of the stacker subsystem
for each direct solution. Therefore, we can use the difference between the actual energy
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consumption and the theoretical minimum energy consumption to characterize the stacker
energy consumption objective. Furthermore, we provide the final expression for F1 based
on Inference 1, as shown in Equation (5).

F1 = min
I

∑
i=1

J

∑
j=1

(V2(i, j)− V2
0 ) = min

I

∑
i=1

J

∑
j=1

f1(i, j) (5)

V(i, j) represents the value of the horizontal driving speed of stacker i to retrieve task
j, and f1(i, j) represents the unit objective function value of stacker i to retrieve task j.

Since the waiting time for AGV pickup is determined by an external factor, the operat-
ing strategy of the stacker is necessary to provide an exact calculation method for V(i, j)
to ensure the computability of function SL. The calculation method for V(i, j) is shown
as follows.

Firstly, we let C(i, j) be the j-th retrieved container of the stacker i, where T(i, j)
represents the handover completed time of C(i, j), and T′(i, j) represents the arrival time of
the AGV picking up C(i, j). Meanwhile, t(i, j) = T(i, j)− T(i, j − 1) represents the overall
time for retrieving C(i, j), and t′(i, j) = T′(i, j)− T(i, j − 1) represents demand time for
task C(i, j). In addition, let ∆t(i, j) = T(i, j)− T′(i, j) represent the waiting time for AGV
to pick up container C(i, j).

For each container C(i, j), its inherent storage location attribute corresponds to three
inherent time attributes, as shown in Equations (6)–(8), in which tbest(i, j) represents theoret-
ical optimal operation time, txmin represents the minimum operation time considering the
horizontal movement speed limit, tymin represents the minimum operation time consider-
ing vertical movement speed limit, x(i, j) represents the horizontal coordinates of the C(i, j)
storage location, and y(i, j) represents the vertical coordinates of the C(i, j) storage location.

tbest(i, j) = 2
x(i, j)
Vx0

(6)

txmin(i, j) = 2
x(i, j)
Vxm

(7)

tymin(i, j) = 2
y(i, j)

Vy
(8)

On the premise of fully discussing all possible size relationships among tbest(i, j), txmin,
tymin, we provide a calculation method for f1(i, j), as shown in Equation (9), and an update
method of T(i, j) that supports iteration, as shown in Equation (10).

f1(i, j) =


0, tbest(i, j) < max(tymin, txmin, t′(i, j))

4 x2(i,j)
t′2(i,j) − V2

0 , max(tymin, txmin) < t′(i, j) < tbest(i, j)
V2

xm − V2
0 , t′(i, j) < max(tymin, txmin) < tbest(i, j)&tymin < txmin

x2(i,j)
y2(i,j)V2

y − V2
0 , t′(i, j) < max(tymin, txmin) < tbest(i, j)&txmin < tymin

(9)

T(i, j) =


T′(i, j), t′(i, j) > max(tymin, txmin)
T(i, j − 1) + txmin(i, j), txmin > max(t′(i, j), tymin)
T(i, j − 1) + tymin(i, j), tymin > max(t′(i, j), txmin)

(10)

4.3.2. AGV Energy Consumption Objective

In the SACOP problem, the total driving energy consumption of AGVs is mainly
affected by two non-negligible factors: the total length of the AGV path and the number of
path conflicts. Under the condition of constant speed and conflict-free driving, the energy
consumption of AGV is directly proportional to the path length. However, there are often
collision conflicts between the multi-AGV driving paths determined by direct solutions.
Considering that the AGV operating space in the SACOP problem is a free rectangular
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plane, rather than the aisle environment with finite degrees of freedom in traditional
problems, adopting a speed control strategy to avoid conflicts is the most economical and
feasible method. By adding a mirrored acceleration–deceleration process at possible conflict
points, collisions can be avoided while also avoiding any impact on the system scheduling
plan. Under a unified speed control strategy, the speed adjustment energy consumption of
AGVs to avoid conflicts can be seen as directly proportional to the number of conflicts.

To sum up, the minimum AGV energy consumption objective function F2 can be
expressed as Equation (11).

F2 = min
N

∑
n=1

(ln + βCn) (11)

ln represents the total length of the driving path of AGV n, Cn represents the number
of conflicts that occurred by AGV n, and β is the conversion coefficient related to the system,
which can be measured experimentally for specific systems.

4.3.3. System Operation Time Objective

According to the relevant description in the solution expression section, the comple-
tion moment of the latest completed AGV is the final completion moment of all pallet-
picking tasks for this round. Based on this, we provide the expression of F3, as shown in
Equation (12).

F3 = min(max(T′
mU)− min(T′

m1)), m ∈ [1, M] (12)

T′
mU represents the termination time of each AGV and T′

m1 represents the start time of
each AGV.

4.4. Constraint

This problem includes several conventional constraints (Constraint 1, 2, 4) and a
special constraint (Constraint 3).
Constraint 1 is expressed as follows: each order should be picked and only picked once,
which can be guaranteed by Equations (13) and (14).

M

∑
m=1

N

∑
k=1

xnmk = 1 (13)

W

∑
w=1

ynw = 1 (14)

Constraint 2 is expressed as follows: the usage of the device cannot exceed its available
limit, which can be guaranteed by Equations (15) and (16).

1 ≤ m ≤ M (15)

1 ≤ w ≤ W (16)

Constraint 3 is expressed as follows: the orders belonging to the same pallet can only be
picked by the same picking station.

To mathematically express Constraint 3, we first define a function f (p, n) to represent
the subordination relationship between pallet p and order n, which is equal to one iff the
order n belongs to the pallet p. Next, we structure a matrix Y(p) as shown in Equation (17).
Finally, the matrix Y(p) is constrained by Equation (18) to ensure that Constraint 3 holds.

Y(p) =

 f (p, 1) · y11 . . . f (p, N) · yN1
...

. . .
...

f (p, 1) · y1W · · · f (p, N) · y1W

 (17)
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P

∏
p=1

r(Y(p)) = 1 (18)

Constraint 4 is expressed as follows: pallet-picking tasks that are simultaneously open on
the picking station cannot exceed the upper capacity limit of the picking station.

Due to each order belonging to a unique pallet, the picking operation time window for
each pallet can be obtained based on the order arrival schedule of each picking station as
described in Section 4.2. We use TPwi = [Twi, T′

wi] to represent the picking operation time
interval of pallet i on picking station w, use MP to represent the upper limit of the picking
station capacity, and use TPw to represent the set {TPwi}. When card(TPw) > MP, we use
TPn =

{
TPn1 , TPn2 , · · ·, TPnMP+1

}
to represent any subset of TPw with a size of MP + 1. To

sum up, Constraint 4 can be guaranteed by Equation (19):

card(TPw) ≤ MP, or card(TPw) > MP and
MP+1
∩

i=1
TPni = ∅ (19)

5. MADPSO Method Design

Due to the lack of a unified mathematical expression for the function SL, it is not
enough to solve the SACOP problem relying solely on the mathematical model. Thus, this
paper proposes a multi-AGV-driven pallet-picking scheduling optimization (MADPSO)
method based on the improved NSGA-III to solve the SACOP problem.

The Non-dominated Sorting Genetic Algorithm III (NSGA-III) was proposed by
Kalyanmoy Deb in 2014 [34], which includes main steps such as population initializa-
tion, crossover, mutation, and non-dominated sorting selection. Due to the introduction of
an elite preservation strategy and selection operator based on the reference point, it has out-
standing convergence speed and population diversity advantages in solving multi-objective
optimization problems and is currently one of the most efficient algorithms.

Based on the characteristics of the SACOP problem, this paper has specially designed
and improved the chromosome encoding, chromosome decoding, crossover, and mutation
operators in the original NSGA-III. The process of using the SL function for solution
transformation is designed as a specific decoding process.

In addition, decision makers usually need a few candidate solutions, and they may
have different energy consumption and efficiency tendencies in different situations. This
means that the Pareto solution set provided by the traditional NSGA-III cannot directly
meet the decision-making needs. In this regard, this paper specifically introduces the
multi-objective decision-support operator TOPSIS (Technique for Order Performance by
Similarity to Ideal Solution) [35]. On the one hand, this operator can perform decision-
support ranking on the Pareto front to assist in making final decisions, and on the other
hand, it can label the decision-support optimal individuals in each generation of the
population as auxiliary reference points to verify the convergence of the algorithm.

5.1. General Procedure of MADPSO

The main process of MADPSO based on INSGA-III is shown as the pseudocode of
Algorithm 1, which includes the following steps:

• Step 1: Initialize population. Based on the input system parameters (system compo-
nent coordinates, capacity of the picking station, container coordinates, containers’
dependent orders set, etc.), as well as the corresponding problem parameters (pallet-
picking tasks set, the used picking station numbers, available AGV quantities, etc.),
Sizep individuals are generated randomly to form the initial population P0.

• Step 2: Generate offspring by crossover operator. Sizep individuals are generated
by performing the crossover operator designed in this paper on the current parent
population Pt to form an offspring population Qt.

• Step 3: Merge to generate a mixed population. Combine the parent population Qt
obtained in the previous step and the offspring population Pt into a new population
Rt, which can be expressed as Rt = Pt ∪ Qt.
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• Step 4: Perform mutation operators. Perform mutation operations on each individual
in the mixed offspring Rt to update Rt.

• Step 5: Perform non-dominated sorting on Rt. Calculate the fitness function of each in-
dividual in Rt and non-dominated sort Rt based on it, thereby marking the dominance
level {F1, F2, · · · , FL} of each individual.

• Step 6: Select the next-generation population Pt+1 from Rt. Starting from the F1 layer,
individuals are selected from Rt layer by layer and placed in the next-generation
population Pt+1 according to the dominance level, which continues until the number
of individuals ni in the Fi layer is greater than the remaining demand individuals nre
of the next-generation population. Afterwards, select nre individuals closest to the
nearest reference point from the Fi layer to thereby make up for the missing individuals
in Pt+1.

• Step 7: Perform decision-support sorting operator on Pt+1. Sort the individuals in Pt+1
by the TOPSIS method and label the most prioritized individual among them.

• Step 8: Repeat Step 2–Step 7 until the predetermined number of iterations Sizeg is
reached and output the individuals in the F1 layer of the last-generation population as
the Pareto solution set. At the same time, output the decision-support solution labeled
by the TOPSIS operator.

Algorithm 1: MADPSO method general procedure

Input: system parameters (system component coordinates, capacity of the picking station,
container coordinates, containers’ dependent orders set, etc.), problem parameters (pallet-picking
tasks set, the used picking station numbers, available AGV quantities, etc.), population size Sizep,
maximum number of iterations Sizeg.
Output: Pareto solution set {s1, s2, s3, · · · }, decision-support solution sr.
1. Initial population Pt, t = 0
2. While t < Sizeg do
3. Qt = Crossover(Pt)
4. Rt = Pt ∪ Qt
5. Rt = Mutation(Rt)
6. F = FastNonDominatedSort(Rt)
7. Pt+1 = ∅, TempPt+1 = ∅, and i = 1
8. while card(TempPt+1) ≤ Sizep do
9. Pt+1 = Pt+1 ∪ TempPt+1
10. TempPt+1 = TempPt+1 ∪ Fi
11. i = i + 1
12. end while
13. nre = Sizep − card(Pt+1)
14. Pt+1 = Pt+1 ∪ select(Fi, nre)
15. (Pt+1, srt) = TOPSIS(Pt+1)
16. t = t + 1
17. end while
Get the set F1 of Pt as the Pareto solution set
Return{s1, s2, s3, · · · }, sr

5.2. Algorithm Design

This subsection will introduce the details of the encoding, decoding, crossover, muta-
tion, selection, and TOPSIS operators designed in the MADPSO method.

Specifically, in order to ensure population diversity and global search ability during
the evolution process of the algorithm, thereby avoiding falling into local optima, the
MADPSO method has specially designed a layered crossover strategy and set indepen-
dent mutation rates and strategies for different chromosome segments. Furthermore, the
parent population preservation strategy and reference-point-based individual selection
method that are beneficial for maintaining population diversity in the NSGA-III were also
adopted. In addition, the MADPSO method also designed an effective stopping criterion to
determine the termination condition of the algorithm. This criterion can be understood as
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a termination criterion for algorithms based on the convergence necessity criteria of the
reference evolution curve obtained by the TOPSIS operator and the number of individuals
in the top priority non-dominated layer, combined with the maximum iteration limit.

5.2.1. Chromosome Coding

In response to the need to arrange the picking station and the AGV for each order
simultaneously in the SACOP problem, we designed a double-layer integer encoded
chromosome, and a specific example of the chromosome structure is shown in Figure 8.
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The first layer of chromosomes represents the allocation of pallet-picking tasks for
each picking station, which is named the Picking Station Task-allocation Layer. The gene
value wi of the pj gene represents the allocation of pallet i to picking station j.

The second layer of chromosomes represents the order-task sequence of each used
AGV, which is named the AGV Task-allocation Layer. Referring to the example in Figure 8,
Ai, Aj, etc., represent the AGV numbers called in this solving process. We refer to these
genes as AGV Genes, while the remaining genes are referred to as Order Genes. The Order
Gene string is cleaved into several Order Gene sub-strings by the AGV Genes, and each
Order Gene sub-string represents a task sequence fragment belonging to its head AGV
Gene. The final task sequences of each AGV can be obtained by concatenating the Order
Gene sub-strings belonging to the same AGV successively.

In addition, to facilitate the random generation of the initial population, we adopt
the following method to generate the AGV Task-allocation Layer chromosome: first, all
orders are randomly sorted to an initial sequence, then several breakpoints are randomly
generated in the initial sequence (there will always be a breakpoint on the first gene locus),
and, finally, each breakpoint is randomly assigned an available AGV number.

5.2.2. Queuing Service Model-Based Decoding Operator

As mentioned above, SACOP is a parallel tasks’ collaborative scheduling problem
with the coupled temporal relationship, while the designed chromosome code only contains
the task allocation and sequence of each AGV, which means the decoding operator is a
process to complete the AGV task timing information. However, due to the complexity of
the parallel tasks’ temporal problem, it is difficult to give a few formulas to complete the
decoding process. Moreover, the measure mentioned above to ensure that all solutions are
feasible by setting a buffer zone may also lead to the inconsistency between the real task
execution order of AGV and the encoding information, which further increases the difficulty
of decoding by direct calculation. Therefore, it is necessary to find a new decoding method.

Considering that in the two working states of AGV static operation and dynamic
traveling, the AGV in the dynamic phase will not change the temporal state of the current
system until it reaches the next endpoint (static operation point), and we can convert the
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decoding process into a special queuing service model (as shown in Figure 9). In the model,
multiple parallel AGV tasks’ sequences converge into a single temporal workflow through
a temporal information-adding window. Based on the above cognition, this paper proposes
a simulation decoding method based on the queuing service model.
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The main flow of the decoding operator is shown in the following steps:

• Step 1: Generate task sequences Stask
i = [(o1, w1, s1), (o2, w2, s2), · · · , (oN , wN , sN)] for

each AGV based on individual chromosome information, where oj represents the
j-th task’s order number, wj represents the j-th task’s picking station number, and sj
represents the j-th task’s stage (including pick up, delivery, and container return).

• Step 2: Check the status of picking stations and move the buffered orders contained
in the pallets that are being picked to the corresponding task sequence header of
the AGV.

• Step 3: Take the first tasks in each AGV task sequence to form the set to be served and
calculate the to-be-served tasks’ time of arrival in endpoints (in particular, we take a
large value for the endpoint arrival time of the pickup task of the occupied container
to indicate that it has the lowest priority to be served).

• Step 4: Take the task with the earliest arrival time in the to-be-served set as the service
object this time and check its task stage. If the stage is picking up, skip to Step 5; if it is
delivering, skip to Step 6; and if it is container return, skip to Step 7.

• Step 5: Calculate the endpoint departure time and the stacker energy consumption
of the task, update the container status to “occupied”, and update the task phase
information to “delivery”. When finished, skip to Step 8.

• Step 6: Check the picking pallet information of the picking station to determine
whether the order can be picked. If the order can be picked out, the following process
is performed in sequence: check the remaining orders in the container that can be
picked out, update the AGV task sequence, add the endpoint departure time of this
task, update the task phase information to “container return”, and update the container
destination according to the number of remaining orders in the container. If the order
cannot be picked out, the following process shall be performed in sequence: check
the remaining orders that can be picked out in the container, update the AGV task
sequence, add the order task to the buffer task sequence, add the endpoint departure
time of this task, update the task stage information to “container return”, and update
the container return destination to “buffer”. When finished, skip to Step 8.
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• Step 7: Execute the following process in sequence. Add the endpoint departure time
of the task; update the container status to “available”; delete the first task in the
corresponding AGV task list. When finished, skip to Step 8.

• Step 8: Update the track list
[(

x1, y1, tarrival
1 , tdeparture

1

)
; · · ·

]
of the AGV corresponding

to the service object and update the total energy consumption of the stacker system.
• Step 9: Check whether all orders have been picked. If yes, go to Step 10. If no, go

to Step 2.
• Step 10: Calculate and output the individual’s fitness values

[
f1, f2, f3]

T .

5.2.3. Fitness Function

Based on the description in the mathematical model section, the fitness function of the
MADPSO method is also divided into three types: stacker energy consumption f1, AGV
energy consumption f2, and total operation time f3.

By performing the designed decoding operator, the energy consumption of each
stacker during each operation and the trajectory matrix of all AGVs corresponding to each
chromosome individual can be obtained. By accumulating the energy consumption of
a single operation of the stacker, the total energy consumption f1 of the stackers can be
obtained. The trajectory matrix carries the position and time information of the entire AGV
operation process, and through these trajectory matrices, a public solution space (x, y, t)
can be constructed.

As shown in Figure 10, for a specific individual’s corresponding public solution space,
the total length of each AGV trajectory projected on the (x, y) plane is the total length of
the AGVs’ travel path. By designing a reasonable step size to discretize the t-axis to check
the projection layer by layer, the total number of conflicts between AGVs can be obtained.
Quoting Equation (9) can obtain the energy consumption f2 of AGVs. In addition, the
difference between the maximum and minimum values of the projections of each AGV
trajectory in the t-axis direction is the total system operation time f3 of the individual.
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5.2.4. Crossover Operator

Since conventional crossover operators are not suitable for the double-layer integer
encoded chromosome in this paper, we designed a segmented crossover operator, which
includes two parts: perform double-point crossover at the Picking Station Task-allocation
Layer and perform single-point crossover at the AGV Task-allocation Layer.
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As shown in Figure 11, pp1 and pp2 represent the Picking Station Task-allocation Layer
chromosomes of two-parent individuals, and the double-point crossover is performed by
exchanging chromosome fragments between two randomly selected genes. Due to the
simple encoding form in the Picking Station Task-allocation Layer and the independent
between information of different genes, using double-point crossover helps to expand the
search range of the algorithm.
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Figure 11. Picking Station Task-allocation Layer crossover design.

Because the genetic information of the AGV Task-allocation Layer is jointly expressed
by AGV Genes and Order Genes, and individual genes do not have complete independence
in genetic information expression, we adopt a less destructive single-point crossover
method. The crossover process of the AGV Task-allocation Layer is divided into two
steps: Order Gene crossover and AGV Gene crossover, and a specific example is shown in
Figure 12.
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5.2.5. Mutation Operator

Since different types of segments in the double-layer chromosome have different gene
expression patterns, it is necessary to separately design mutation modes and probabil-
ities for different parts. After multiple tests and adjustments, this paper uses a vector
mu = [0.04, 0.2, 0.16] to represent the probability of mutation, which includes the mutation
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rate of 0.04 in the Picking Station Task-allocation Layer, 0.2 in the Order Gene, and 0.16 in
the AGV Gene.

Different parts of chromosomes correspond to different modes of mutation. For
the Picking Station Task-allocation Layer chromosome, traverse each gene for mutation
detection, and when a gene mutates, replace the value of that gene with any other available
value. The mutation of AGV Gene and Order Gene occurs at the individual level. For
AGV Genes, when an individual mutates, select an AGV Gene randomly to mutate the
gene value and position simultaneously. For Order Genes, as their genetic information
expression is more related to the gene sequence when an individual mutates, two genes on
the Order Gene loci are randomly selected for exchange.

5.2.6. Selection Operator

This paper uses the classical non-dominated sorting selection approach in NSGA-III
34, which includes the rapid non-dominated selection and niche-preservation selection,
to select the offspring of each generation. The approach can be realized through the
following steps:

• Step 1: Rank the population Rt, which is generated by crossover and mutation operator
and with a size of 2 × Sizep, into non-dominated levels {FR1, FR2, · · · , FRL}.

• Step 2: Start from FR1, individuals are selected into the offspring Pt+1 layer by layer
until the number of individuals in the next layer FRl is about to exceed the remaining
demand for individual quantity Ne in Pt+1.

• Step 3: Use Das and Dennis’s systematic approach to structure Nr reference points on
the hyper plane and define a reference line corresponding to each reference point on
the hyper plane by joining the reference point with the origin [36].

• Step 4: Use Kalyanmoy Deb’s approach to adaptively normalize the fitness values of
individuals in the population Rt as Equations (20)–(23).

f ′i (x) = fi(x)− zmin
i , i = 1, 2, 3 (20)

fi(x) represents the i-th fitness value of individual x, zmin
i represents the minimum

value of the i-th fitness function of all individuals.

ASF(x,ω) =
3

max
i=1

( fi(x)/ωi) (21)

ω represents the axis direction corresponding to the current fitness function. ωi refers
to the direction weight coefficient, which equals one when it is consistent with ω;
otherwise, it equals 10−6.

zi,max = argminXASF(x,ωi) (22)

zi,max represents the extreme point corresponding to the i-th fitness function.

f n
i (x) =

f ′i (x)
ai − zmin

i
, i = 1, 2, 3 (23)

f n
i (x) represents the i-th adaptive normalized fitness value of individual x, and ai

represents the intercept between the hyper plane constituted by all extreme points and
the i-th axis.

• Step 5: Map the adaptively normalized individuals into the objective space and
associate each individual to the nearest reference line, as shown in Figure 13.

• Step 6: Calculate the number rj of each reference line’s associated individuals in Pt+1.
After that, randomly select a reference line lri from the reference lines with the smallest
rj and randomly select an associated individual closest to lri to put in Pt+1 thereafter.

• Step 7: Repeat Step 6 until the scale of Pt+1 reaches Sizep.
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5.2.7. TOPSIS Operator

In practical multi-objective optimization problems such as SACOP, the ideal Pareto
front is usually unknown, so conventional metrics such as Inverted Generational Distance
(IGD) cannot be used to evaluate the convergence and diversity of algorithms. Furthermore,
from the perspective of decision support, it is necessary to find a method to select a small
number of suitable solutions from many individuals in the Pareto solution. For the above
two considerations, this paper proposes a reference point-assisted convergence judgment
and multi-objective decision support method based on the TOPSIS, which we refer to as
the TOPSIS operator.

TOPSIS is one of the widely used multi-objective decision methods [37]. In the
MADPSO method, TOPSIS is employed to normalize the three fitness functions into deci-
sion indicators. By ranking the individuals according to the decision indicator, the optimal
individual from each generation population can be identified as an assisted reference point.
Using the decision indicator of the assisted reference point as the assisted-reference fitness
value, an assisted-reference evolution curve is then plotted, which aids in verifying the
convergence of the INSGA-III of MADPSO. Moreover, the TOPSIS operator can be utilized
to select several optimal decision solutions from the Pareto front, assisting the decision
makers in making the final pallet-picking scheme decision.

The main process of the TOPSIS operator is as follows:

• Step 1: First, the solution set is transformed into the evaluation matrix A accord-
ing to Equation (24), where Fi

(
Ij
)

represents the i-th fitness function value of the
j-th individual.

A =


F1(I1) F2(I1) F3(I1)
F1(I2) F2(I2) F3(I2)
· · · · · · · · ·
· · · · · · · · ·

F1(ISizep) F2(ISizep) F3(ISizep)

 (24)

• Step 2: Then, the normalization is completed according to Equations (25) and (26),
and the evaluation matrix A is transformed into the normalized evaluation matrix B,
where Sizep is the number of individuals. The purpose of this step is to eliminate the
dimensional difference between the three fitness functions.

zIij =
Fj(Ii)√

∑
Sizep
i=1 Fj(Ii)

2
, j = 1, 2, 3 (25)
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B =


zI11 zI12 zI13

zI21 zI22 zI23

· · · · · · · · ·
zISizep1 zISizep2 zISizep3

 (26)

• Step 3: After that, the relative weight vector [w1, w2, w3] of three objective functions
is determined, and the columns of matrix B are multiplied by the weight coeffi-
cients to transform the matrix B into a modified evaluation matrix C, as shown in
Equations (27) and (28).

z′Iij
= wj · zIij (27)

C =


z′I11

z′I12
z′I13

z′I21
z′I22

z′I23
· · · · · · · · ·

z′ISizep1
z′ISizep2

z′ISizep3

 (28)

• Step 4: Finally, the decision indicators are calculated as Equations (29)–(31), and all
individuals are sorted according to their decision indicators after that.

z′+j = max(z′I1j
, z′I2j

, · · · , z′ISizep j
) (29)

z′−j = min(z′I1j
, z′I2j

, · · · , z′ISizep j
) (30)

SIi =

√
∑3

j=1 (z
′−
j − z′Iij

)
2

√
∑3

j=1 (z
′−
j − z′Iij

)
2
+

√
∑3

j=1 (z
′+
j − z′Iij

)
2

(31)

For the purpose of more objective weight coefficients in Step 3, we propose the
following weight coefficient determination rules: Firstly, the contribution ratio α:β of
stacker energy consumption F1 and AGV energy consumption F2 to the total system
energy consumption Fe is determined through experiments, and F1, F2 corresponding to all
individuals in the population are transformed into Fe based on F1 according to this ratio.
Then, the correlation analysis between Fe, F3 of all individuals is carried out to calculate
the coefficient k, which represents the additional energy consumption to improve unit
efficiency in the current population situation. In the problem without a specific application
scenario, the k value is simply calculated by linear regression temporarily. Furthermore, we
set a subjective focus coefficient Ω (Ω ∈ [0, 1]) to express the proportion of decision makers’
focus on efficiency and energy consumption. Finally, the weight vector can be expressed
as [w1, w2, w3] =

[
k, α

β , Ω
1−Ω

]
. And the reference solution cost of the optimal individual

selected by TOPSIS in each generation can be expressed as f re f erence = ∑3
i=1

ωi
ω1+ω2+ω3

fi.

6. Results and Discussion

To verify the performance of MADPSO in solving the SACOP problem, this section
took a group of actual pallet-picking tasks’ data from a shipyard in Southeast China as
instances to conduct instance validations. Moreover, to further discuss the performance
of MADPSO under different working conditions, we took the existing traditional pallet-
picking mode (TPPM) in shipyards and other pallet-picking optimization algorithms as the
reference object and carried out multiple groups of comparative experiments under different
levels of experimental factors (including different task sizes, the number of available AGVS,
the number of picking stations and so on).

6.1. Experimental Settings

The average size of daily pallet-picking tasks is about 40 in a shipyard AS/RS, and
each pallet includes about 10 orders on average. Considering the interruption of continuous
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pallet picking during lunch breaks, this subsection selected an example to solve based on
the half-day task volume of the shipyard. The parameters of the instance validation are
shown in Table 1.

Table 1. Set instance validation parameters.

Parameter Value

Pallet quantity 12
Order quantity 120

Picking station quantity 2
Pallet capacity of a picking table 3

Available AGV quantity 10
AGV idle zone exit coordinate (0,0)
Stacker aisles exit coordinates (2,5), (4,5), (6,5), (8,5)
Picking stations coordinates (4,0), (8,0)
Buffer zone exit coordinate (13,2)

Recycle zone exit coordinate (13,4)

In addition to instance validation, the TPPM currently used by shipyards and other
existing pallet-picking optimization algorithms were selected as control groups to conduct
comparative experiments under different operating conditions.

As the fact that the current relevant research results of OPS have differences in system
structure and system operation mode with this paper, we selected the optimization method
proposed in a paper related to RMFS [30], which is closer to the system in this paper,
as another comparison method besides TPPM, and we named it RMFSOM for short. It
should be noted that RMFSOM only optimizes the order allocation at the picking station,
which makes it unable to directly solve the SACOP problem. Therefore, this paper uses
a reverse-order calculation method to calculate the objective function value of RMFSOM.
This calculation method can be simply understood as the pallet-picking process being
reasoned backward into a warehousing process with a known warehousing sequence (the
reverse picking sequence of the picking station) based on the known order-picking scheme
of the picking station.

According to the types of variable elements in the warehouse layout, the experimental
factors corresponding to different working conditions were designed as pallet quantity (PQ),
available AGV quantity (AAQ), and work/picking station quantity (WQ). The experimental
factors and level settings are shown in Table 2.

Table 2. Experimental factors and levels settings.

Level
Factors

PQ (A) AAQ (B) WQ (C)

1 4 5 2
2 8 10 3
3 12 15 4

Due to the excessive number of 3-factor and 3-level full-factor experiments considering
interaction, this paper uses the orthogonal experimental design method to reduce the ex-
perimental cost. As the interaction between experimental factors is unknown, the standard
orthogonal table L27

(
313) was used to design the experiment on the premise of default

that the three factors have pairwise interaction, and the specific orthogonal experiment is
designed. To ensure the comparability of experimental results, the average referenceable op-
timal solution (AROS) obtained by dividing the reference solution cost (which is calculated
by the TOPSIS-selected optimal solution) by PQ is used as the experimental index.
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6.2. Instance Validation

In the instance validation part, considering the actual environment of the shipyard,
we set a warehouse layout as high-rise shelves with 4 aisles, 8 sides, 10 floors, 20 columns,
and 2 synchronous picking stations, as well as 10 available AGVs. We solved the instance
problem of optimizing 12 pallet-picking tasks with 120 orders under the above warehouse
layout conditions by MADPSO.

Tables 3 and 4 and Figure 14 show the final solution of the instance problem, where
Table 3 shows the AGV task sequence, Table 4 shows the stacker scheduling scheme, and
Figure 14 shows the task Gantt chart of the picking station. In addition, Figure 15a shows
the evolution curve of the number of individuals in F1 layer with the number of iterations.
It can be seen from the figure that after 100 iterations, the scale of the Pareto solution set has
stabilized to more than the expected value of 80. It can be preliminarily considered that the
algorithm has converged at this time. Figure 15b shows the evolution curve of the reference
solution cost of the optimal ideal reference point selected by the TOPSIS operator in each
generation with the number of iterations. It can be found from the curve that the algorithm
converges in about 100 iterations, which verifies that MADPSO can converge within finite
iterations when solving SACOP problems from another perspective. Figure 15c shows the
Pareto front distribution. MADPSO uses the selection operator of the classic NSGA-III to
ensure the diversity of individual distribution in the final Pareto solution set.

Table 3. Order task sequence of the instance problem.

NO. Order Task Sequence

AGV 1 [9,16,29,73,57,33,93,3,117,18,105,85,49,40,82,45,59,61,70,62,15,103,75,66,111,8,
13,91,104,81,11,21,89,78,83,27,1,12,28,20,107,39,63,106,84,100,47,112,79,74,53]

AGV 2
[14,26,95,30,34,72,60,7,116,120,5,52,24,94,43,37,87,97,58,109,55,90,77,10,67,22,
71,17,98,19,32,51,65,44,6,118,25,41,38,35,50,88,56,31,101,80,114,108,4,113,76,119,
2,69,86,36,23,54,110,115,92,64,68,96,42,102,99,48,46]

Table 4. Stacker scheduling scheme of the instance problem.

NO.
Stacker 1 Stacker 2 Stacker 3 Stacker 4

ORN 1 TST 2 V 3 ORN TST V ORN TST V ORN TST V

1 9 −3.39 0.50 26 17.74 0.50 14 −11.43 0.50 16 −10.87 0.50
2 30 82.32 0.50 95 56.6 1.66 29 46.52 0.50 57 92.53 0.50
3 60 152.54 0.50 73 74.6 0.67 34 102.66 0.50 3 162.75 0.54
4 7 177.8 1.50 72 126.82 0.50 33 120.66 0.56 116 195.28 0.98
5 5 235.06 0.52 93 144.82 2.00 117 186.3 0.50 18 209.28 0.71
6 85 255.28 1.58 43 314.04 0.50 120 212.61 0.61 24 266.33 0.50
7 49 279.88 0.73 82 321.47 1.88 105 232.83 1.48 45 336.3 0.50
8 37 339.76 0.53 59 362.66 0.50 94 289.88 0.50 87 357.98 0.50
9 97 380.6 0.50 109 419.11 0.50 62 437.47 0.50 58 398.82 0.50

10 61 386.6 0.50 103 483.23 0.56 15 458.92 1.77 70 413.82 2.00
11 55 442.39 0.68 77 495.23 0.67 75 500.56 0.53 8 557.1 0.50
12 90 467.65 1.19 10 518.09 0.50 66 522.01 1.40 104 621.23 0.50
13 71 589.96 0.50 67 541.1 0.50 111 543.46 0.50 21 673.87 0.72
14 19 660.18 0.50 22 563.96 1.31 13 580.65 0.91 32 691.87 0.89
15 89 703.37 0.79 17 613.11 0.61 91 602 1.59 51 713.3 0.50
16 83 749.42 0.50 27 771.16 0.50 98 633.16 0.50 44 759.63 0.50
17 1 797.16 0.50 6 785.99 1.35 81 639.16 1.00 25 819.68 0.60
18 28 846.46 0.50 12 820.46 0.75 11 655.38 0.99 2 966.48 0.50
19 53 1003.7 0.50 41 846.19 0.54 78 722.4 0.50 47 974.48 1.00
20 35 1161.43 0.50 20 869.76 0.50 65 740.4 1.22 23 1008.52 0.50
21 84 1289.62 0.50 39 951.41 0.50 118 806.04 0.50 31 1131.93 0.50
22 46 1297.62 0.75 74 1131.45 0.50 38 866.34 0.60 36 1178.91 0.55
23 54 1378.71 0.50 100 1311.36 0.50 107 889.81 0.50 79 1196.91 2.00
24 69 1538.34 0.50 48 1331.36 0.50 4 990.03 0.50 42 1204.91 2.00
25 88 1668.44 0.50 112 1349.36 2.00 63 1107.29 0.50 76 1576.89 0.50
26 113 1828.17 0.50 56 1443.12 0.50 50 1351.41 0.50 80 1618.65 0.50
27 114 1853.43 1.03 64 1463.41 0.59 68 1511.04 0.50 99 1730.91 0.50
28 86 1645.16 0.50 101 1754.46 0.50 102 1768.1 0.50
29 92 1690.71 0.61 110 1805.72 0.55 119 1890.17 0.50
30 96 1713.72 0.70
31 108 1788.39 0.50
32 115 1875.7 0.50

1 ORN: Order Retrieval No.; 2 TST: Task Start Time; 3 V: Drive Speed of Stacker.
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6.3. Comparative Experiments

Comparative experiments were carried out according to the experimental scheme and
the results were recorded in Table 5.
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Table 5. Design and results of comparative experiment.

NO. A 1 B 2 C 3 A×B 4 A×B A×C 5 A×C B×C 6 B×C
MADPSO TPPM RMFSOM

AROS 7 CT 8 AROS CT AROS CT

1 4 5 2 1 1 1 1 1 1 357.89 216 s 754.57 2 s 381.69 163 s
2 4 5 3 1 1 2 2 2 2 363.61 246 s 781.16 3 s 421.03 174 s
3 4 5 4 1 1 3 3 3 3 346.13 234 s 775.11 2 s 367.83 172 s
4 4 10 2 2 2 1 1 2 3 341.02 229 s 1295.28 3 s 385.29 166 s
5 4 10 3 2 2 2 2 3 1 331.75 257 s 1236.66 2 s 383.46 184 s
6 4 10 4 2 2 3 3 1 2 347.48 267 s 1273.65 4 s 396.21 164 s
7 4 15 2 3 3 1 1 3 2 361.32 238 s 2039.02 2 s 422.32 181 s
8 4 15 3 3 3 2 2 1 3 356.86 271 s 2147.67 3 s 376.17 179 s
9 4 15 4 3 3 3 3 2 1 321.65 293 s 2123.22 5 s 358.23 165 s

10 8 5 2 2 3 2 3 1 1 421.43 413 s 748.45 3 s 503.65 155 s
11 8 5 3 2 3 3 1 2 2 372.06 465 s 754.62 2 s 397.24 157 s
12 8 5 4 2 3 1 2 3 3 364.53 453 s 734.69 4 s 396.58 184 s
13 8 10 2 3 1 2 3 2 3 412.29 524 s 1027.39 3 s 467.25 170 s
14 8 10 3 3 1 3 1 3 1 388.07 562 s 1170.89 3 s 411.49 182 s
15 8 10 4 3 1 1 2 1 2 373.57 543 s 1183.12 3 s 423.43 158 s
16 8 15 2 1 2 2 3 3 2 412.88 607 s 1425 2 s 478.82 171 s
17 8 15 3 1 2 3 1 1 3 372.41 581 s 1569.27 4 s 445.75 159 s
18 8 15 4 1 2 1 2 2 1 354.63 617 s 1575.3 5 s 371.93 187 s
19 12 5 2 3 2 3 2 1 1 503 608 s 743.9 4 s 548.27 160 s
20 12 5 3 3 2 1 3 2 2 423.28 651 s 743.18 3 s 485.59 174 s
21 12 5 4 3 2 2 1 3 3 409.17 702 s 758.73 2 s 475.82 175 s
22 12 10 2 1 3 3 2 2 3 471.28 725 s 980.91 2 s 562.91 176 s
23 12 10 3 1 3 1 3 3 1 427.53 773 s 1083.21 2 s 456.33 165 s
24 12 10 4 1 3 2 1 1 2 398.67 746 s 1121.18 2 s 472.34 187 s
25 12 15 2 2 1 3 2 3 2 464.31 806 s 1273.42 4 s 553.91 172 s
26 12 15 3 2 1 1 3 1 3 427.18 842 s 1337.85 2 s 457.76 192 s
27 12 15 4 2 1 2 1 2 1 391.08 987 s 1452.59 3 s 432.56 155 s
Rj 87.54 10.98 48.73 9.82 3.2 17.27 21.32 11.96 2.24

1 A: Fact AQ, pallet quantity. 2 B: Fact AAQ, available AGV quantity. 3 C: Fact WQ, picking station quantity.
4 A×B: Interactive Factor of A and B. 5 A×C: Interactive Factor of A and C. 6 B×C: Interactive Factor of B and C.
7 AROS: Experimental Index, Average Referenceable Optimal Solution. 8 CT: Computational Time.

It is not difficult to find from the experimental data in the above table that, although
MADPSO has significantly better optimization effects in general situations, its computa-
tional speed is significantly inferior to other optimization methods. From the perspective
of algorithm code running logic, the decoding of each individual in the MADPSO method
requires a relatively complex queuing service simulation calculation. This computational
burden will overlap with the increase in task size, the number of iterations, and the expan-
sion of population size, leading to weaknesses in the computational speed of the MADPSO
method. However, considering that in the actual production environment of shipyards,
the demand for pallet-picking tasks usually comes several days in advance, the weakness
of the MADPSO method in terms of calculation speed will not have a significant impact
on the actual use of shipyards in the environment. Therefore, this article will not further
pursue the computational speed of the MADPSO method.

To further discuss the influence of each experimental factor on the experimental index,
the range Rj of each factor is calculated according to the range analysis method of the
orthogonal experiment and filled in the last row of Table 5. For the interaction columns, the
average range of the two columns is taken as the range of the interaction factor. According
to the size of the range, the order of factors’ influence is A > C > A×C >B > A×B > B×C.
Since the influence of A and B on the experimental index is greater than their interaction
factor A×B, the interaction A×B can be ignored, and the interaction B×C can be ignored
similarly. The influence of factors A, C, A×C, and B on the experimental index will be
further analyzed below.

6.3.1. Task Scale Factor Analysis

Calculate the average value of the experimental index according to the value of PQ for
the experimental data in Table 5; the results are shown in Table 6.



Appl. Sci. 2024, 14, 1618 27 of 32

Table 6. Calculate the average value of AROS in Table 5 according to PQ.

PQ
MADPSO TPPM RMFSOM

MADPSO/TPPM MADPSO/RMFSOM
AROS AROS AROS

4 347.52 1380.7 388.03 74.83% 10.44%
8 385.76 1132.08 432.9 65.92% 10.89%

12 435.06 1056 493.94 58.80% 11.92%

According to the experimental results and the statistical data in the above table, the
following two obvious conclusions can be drawn:

• Conclusion 1: In the experiments, MADPSO showed a better optimization effect than TPPM
and RMFSOM under all task scale conditions. In particular, it showed a more than 50%
optimization improvement of MADPSO to widely used TPPM.

• Conclusion 2: With the expansion of the task scale, the optimization effect of MADPSO
shows a slight downward trend.

Conclusion 1 shows the effectiveness of MADPSO under different task scale conditions,
while Conclusion 2 points out that the task scale has some limitations on the performance
of MADPSO.

Considering the capacity limit of the picking station and the additional penalty cost
caused by the fact that orders exceeding the capacity limit need to be sent to the buffer for
waiting, an Inference can be speculated as follows:

Inference 2. Whether the task scale exceeds the upper limit of the total capacity of all picking
stations (we call this different state a pseudo factor PF, which is T when exceeding and F when not
exceeding) will affect the experimental index AROS.

To verify Inference 2, the data in Table 5 are sorted according to the level of pseudo-
factor PF, as shown in Table 7. The data in the table show that when the task scale exceeds
the upper limit of the total capacity of the picking stations, the AROS value will rise,
weakening the effect of the algorithm. On the other hand, within the timeslot when a
pallet-picking task remains open, the number of pallets circulating in the whole system
is limited. We call this situation the limited vision of single pallet optimization. This
means that the relationship between single pallet-picking tasks in large-scale SACOP is not
close. Therefore, the direct solution of large-scale SACOP is not only a lack of algorithm
performance support, but also a lack of necessity. At the same time, it also increases the
interference risk of uncontrollable factors, such as machine failure, personnel fatigue, and
so on. For large-scale SACOP, it is more reasonable to decompose it into pallet-picking task
batch and order-picking optimization within the batch than to directly solve it.

Table 7. Sort and calculate data in Table 5 according to PF.

PF
MADPSO

AROS Upper Bound Lower Bound

F 364 409.17 321.65
T 440.35 503 412.29

6.3.2. Picking Station Quantity Factor Analysis

Calculate the average value of the experimental index according to the value of WQ
for the experimental data in Table 5; the results are shown in Table 8.
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Table 8. Calculate the average value of AROS in Table 5 according to WQ.

WQ
MADPSO TPPM RMFSOM

MADPSO/TPPM MADPSO/RMFSOM
AROS AROS AROS

2 416.16 1143.1 478.23 63.59% 12.98%
3 384.75 1202.72 426.09 68.01% 9.70%
4 367.43 1221.95 410.55 69.93% 10.50%

It can be seen from the statistical data in the above table that with the increase in
the number of picking stations, the AROS indicators of MADPSO and RMFSOM show a
downward trend. This means that through MADPSO, the advantages of parallel picking in
SACOP problems can be fully utilized, making parallel picking mode with multiple picking
stations more energy efficient and operation efficient compared to single picking assembly
line mode. On the contrary, the AROS indicator of TPPM will increase with the increase
in WQ. This shows that under the premise of adopting scientific optimization methods,
the layout of more picking stations, within limits, in the warehouse will help to reduce
costs and increase efficiency. For TPPM, due to the lack of scheduling and control over
AGVs during the picking process, arranging more picking stations is more likely to call
unnecessary AGV resources, causing mutual interference and conflicts, thereby reducing
overall efficiency and increasing energy consumption.

6.3.3. PQ×WQ Interaction Factor Analysis

We calculated the average value of the experimental index according to the value of
PQ/WQ for the experimental data in Table 5; the results are shown in Table 9.

Table 9. Calculate the average value of AROS in Table 5 according to PQ/WQ.

PQ×WQ
MADPSO TPPM RMFSOM

MADPSO/TPPM MADPSO/RMFSOM
AROS AROS AROS

4 × 4 338.42 1390.66 374.09 75.66% 10.85%
4 × 3 350.74 1388.5 393.55 74.74% 10.88%
4 × 2 353.41 1362.96 396.43 74.07% 9.54%
8 × 4 364.24 1164.37 397.313 68.72% 14.01%
8 × 3 377.51 1164.93 418.16 67.59% 8.32%

12 × 4 399.64 1110.83 460.24 64.02% 9.72%
8 × 2 415.53 1066.95 483.24 61.05% 13.60%

12 × 3 425.99 1054.75 466.56 59.61% 8.70%
12 × 2 479.53 999.41 555.03 52.02% 13.17%

It can be observed from the experimental statistics in the table above that the MADPSO
performance shows a gradual weakening trend with the rise of PQ/WQ value, which
is in line with Inference 2 mentioned above. In addition, for TPPM, the AROS value
decreases slightly with the increase in PQ/WQ value, indicating that the traditional picking
mode tends to obtain a better average energy efficiency index when the picking station is
fully loaded.

6.3.4. Available AGV Quantity Factor Analysis

We calculated the average value of the experimental index according to the value of
AAQ for the experimental data in Table 5; the results are shown in Table 10.
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Table 10. Calculate the average value of AROS in Table 5 according to AAQ.

AAQ
MADPSO TPPM RMFSOM

MADPSO/TPPM MADPSO/RMFSOM
AROS AROS AROS

4 395.68 1380.7 441.97 71.34% 10.44%
8 387.96 1132 439.86 65.73% 10.89%

12 384.7 1055 433.05 63.54% 11.92%

The correlation between algorithm performance and AAQ cannot be confirmed from
the statistical data in the above table. To further verify the impact of AAQ on the perfor-
mance of the algorithm, fix PQ equals 12 and WQ equals 2, we conducted supplementary
experiments on different AAQ values. The results are shown in Table 11, where UAQ
represents the number of called AGVs in the solution.

Table 11. Supplementary experiments result in different AAQ values when fix PQ equals 12 and WQ
equals 2.

AAQ AROS UAQ

4 467.6 2
6 454.22 3
8 461.39 2
10 460 2
12 479.92 3
14 483.62 3
16 487.91 2

From the experimental results shown in the table above, it can be seen that the number
of AGVs used rather than the number of available AGVs really affects AROS, and too-large
AAQ will lead to a slight decline in algorithm performance. For different SACOP problems,
we need to reasonably set different AAQs, so as to avoid the algorithm performance
degradation caused by excessive AAQ, while ensuring sufficient AGV resources.

6.4. Experiments Conclusions

Based on a series of experiments executed in scenarios of incremental task scale, the
changeable numbers of available AGVs, and the different numbers of picking stations,
we conclude that our work is capable of simultaneously optimizing the overall energy
consumption and overall operation duration of the system, and the optimization effect is
remarkable compared with the traditional picking mode in the shipyard.

On the other hand, through the experiment and result analysis, it is found that the effect
of MADPSO still has a certain dependence on the use environment. For example, excessive
task scale will not only weaken the optimization effect, but also significantly increase the
computational burden. This burden is specifically manifested in that when more than
20 pallet-picking tasks (with more than 200 orders) are optimized, the calculation time of
the MADPSO method reaches more than 30 min. Although the actual production with high
requirements for system robustness does not excessively pursue the optimization of large-
scale pallet-picking tasks in an excessive time span, it is still one of our future endeavors
to further improve the MADPSO computing speed. In addition, in the experiments, we
also found that the optimal scheme has different requirements for the number of available
AGVs in different task scenarios, so our work also has certain reference significance for the
investment decision of AGVs.

7. Conclusions

As a result of conducting this research, it is proposed that this work be dedicated to an-
alyzing and optimizing the shipbuilding automated collaborative order-picking (SACOP)
scheduling in flexible multi-level picking systems. Precisely, the key role of AGVs in
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SACOP activities was noticed and a multi-AGV-driven pallet-picking scheduling optimiza-
tion (MADPSO) method to transform the SACOP problem into the modified multi-AGV
scheduling task problem (MMATSP) was proposed. On this basis, a mathematical model
was established to describe the multi-objective optimization process of using the MADPSO
method to solve the SACOP problem, in which the optimization objectives, constraints,
and the interaction strategy between devices after being converted to the MMATSP were
analyzed in detail. Furthermore, an improved NSGA-III algorithm was designed to im-
plement the MADPSO method, including the design of a double-layer coding method, a
simulation decoding operator based on a queuing service model, a hybrid crossover and
mutation strategy, the additional TOPSIS decision support operator, and so on. Finally,
through a series of comparative experiments, the effectiveness of the MADPSO method
in solving SACOP problems and the performance advantage of MADPSO compared with
traditional pallet-picking mode (TPPM) and other existing research that may be used to
solve SACOP problems are verified. By using the MADPSO method, the difficult multi-
level flexible order-picking optimization problem with complex coupling relationships
can be transformed into a more easily solvable multi-AGV parallel tasks scheduling opti-
mization problem. Furthermore, the queuing service model is used to solve the temporal
relationship problem in parallel scheduling, thereby transforming the SACOP problem into
a common combinatorial optimization problem that can be solved by multiple heuristic al-
gorithms. This means that our work can address the challenges associated with scheduling
optimization in flexible multi-level picking systems.

In addition, the MADPSO method proposed in this paper has the following advantages.
Firstly, the MADPSO method can solve multi-objective optimization problems with more
than two objective functions, which makes it highly scalable in practical applications
and can increase optimization objectives according to actual needs. The SACOP problem
discussed in this article involves three objective functions, and when another objective
needs to be added, the adjustment can be simply completed by expanding the reference
hyperplane and adjusting the TOPSIS operator. Secondly, the MADPSO method fully
considers the performance requirements of jumping out of local optima and has a strong
global search ability. Therefore, this method still has good optimization ability when solving
problems involving nonconvex/nonlinear objective functions and constraints. Finally, the
MADPSO method has a certain solving ability for problems with uncertain parameters, and
its included queuing service model can be used to transform the original picking scheduling
scheme into a feasible solution in the event of sudden parameter changes. Considering the
above advantages, the MADPSO method has great potential for application in complex
manufacturing entities such as shipyards.

This work may help the shipyard AS/RS to obtain a set of Pareto optimal scheduling
schemes with diversity assurance and rank these Pareto optimal solutions based on the
energy consumption and efficiency preferences of the manager for comprehensive decision-
making indicators. This enables the shipyard AS/RS to obtain better order-picking schemes
compared to traditional picking modes, thereby reducing energy consumption and improv-
ing the efficiency of the pallet-picking operation, as well as achieving a balance between the
two, so as to realize the cost reduction and efficiency increase in the shipbuilding material
storage link.

Future studies will focus on three directions. The first is to find a mathematical
method to determine whether an individual has a deadlock, and further study the deadlock
resolution strategy, so as to reduce the buffer waiting time in the optimization process.
The second is to improve the MADPSO implementation algorithm, improve its operation
speed, and expand its ability to solve large-scale problems. The last is to further consider
the optimization objective of the order arrival balance of the picking station so that the
fatigue problem caused by the unbalanced workload of picking workers can be solved.
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