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Abstract: Complex and long interactions (e.g., a change of topic during a conversation) justify
the use of dialog systems to develop task-oriented chatbots and intelligent virtual assistants. The
development of dialog systems requires considerable effort and takes more time to deliver when
compared to regular BotBuilder tools because of time-consuming tasks such as training machine
learning models and low module reusability. We propose a framework for building scalable dialog
systems for specific domains using the semi-automatic methods of corpus, ontology, and code
development. By separating the dialog application logic from domain knowledge in the form of an
ontology, we were able to create a dialog system for the banking domain in the Portuguese language
and quickly change the domain of the conversation by changing the ontology. Moreover, by using the
principles of never-ending learning, unsupported operations or unanswered questions create triggers
for system knowledge demand that can be gathered from external sources and added to the ontology,
augmenting the system’s ability to respond to more questions over time.

Keywords: natural language processing; dialog systems; chatbot; intelligent virtual assistants;
task-oriented; ontology; knowledge base; never-ending learning; domain-specific; banking; Brazilian
Portuguese; framework

1. Introduction

Dialog systems require considerable effort when being implemented because they have
multiple modules and apply machine learning algorithms to natural language processing
and dialog management tasks most of the time. Additionally, they require textual data
collection, annotation, and environment user simulation to train the inner modules. Most
of the big tech companies, such as Google, Microsoft, and Amazon, have BotBuilder tools
available for creating chatbots for any domain. They require little implementation and a
lower amount of data to create the initial models used in conversational systems. However,
these tools only provide a pretrained intent classifier (by the companies) and are fine-
tuned to the specific domain of new chatbots. This approach is hard to maintain as a
domain increases in complexity. Every time a new feature is added, new intents must
be created. The dialog context is also a limitation of these tools, in which the user is
restricted and cannot change topics during the dialog or is required to repeat information
previously mentioned.

We present a framework for dialog systems for more complex domains, which require
multiple interactions between user and machine to complete one operation. It allows
the user to change context at any point of the conversation while tracking all previous
information said in the dialog to avoid having to start over when the user switches to a
different topic. The architecture and semi-automatic development methods improve the
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implementation so as to have a shorter project implementation time so that the system can
be delivered to the market more quickly.

When there is a need for an intelligent system to chat with a user who needs to
accomplish a specific goal, a task-oriented dialog system is a conventional solution. These
systems can hold knowledge of a specific domain to help the user in a specialized task,
such as booking a hotel, searching for restaurants, or completing banking transactions.
Sometimes, there is a need to have multiple conversational systems in different domains
of a similar area, each having a specific knowledge base to meet a unique user need. This
work presents a framework for building specific domain conversational systems, which
helps develop multiple instances for distinct domains, lowering the amount of rework
needed to create a new system for each new domain.

Facilitating the dialog system domain and its knowledge expansion is relevant since
smaller iterative improvements have become the norm for software projects. Thus, if the
system knowledge base is static, it may require the creation of a new ontology and it is
likely that the models will need retraining each time a new dialog needs to be supported.
In order to meet this need for faster updates and time to market, this framework proposes
an ontology that can be updated during online use by human experts or by automatic
knowledge extraction and uses the never-ending learning process.

For that, we propose a modular architecture to make it possible to quickly swap a
module’s implementation if necessary and keep some modules constant for similar domains
(Section 3). BotBuilder tools and other dialog systems that inspired this work are presented
in the Related Work section (Section 2). Further, we present the experimental results from a
use case via an evaluation and the never-ending learning analysis (Section 4). The proposed
framework allows for the creation of multiple implementations of conversational systems
for similar domains with low effort in automatic information retrieval from external data
sources (Section 5).

The proposed modular framework aims to provide scalable architectures for con-
versational agents. A dialog system for the banking domain in the Portuguese language
was created using the proposed framework as a demonstration of its application, but
the framework is intended to be domain-independent. Researchers and practitioners are
expected to use the proposed architecture and specialize it for their specific domains by
adjusting the training datasets and ontologies but reusing the organization of the proposed
architecture. The present work aims to contribute to addressing the research gap in terms
of the scalability of dialog systems based on ontologies [1,2].

2. Related Work

There are two main approaches for building a task-oriented chatbot: intent-driven or
dialog-driven. In the first one, the main component is the intent classification model, where
the response is given by its intent classification. Big tech companies have tools available to
them for creating these systems with low effort (Section 2.1). Intent-driven systems perform
very well for simple dialogues with a low number of turns. However, their decision tree
form makes them increasingly complex and difficult to maintain as the domain increases
in complexity.

Conversely, dialog systems (Section 2.2) are dialog-driven and have a solution for
dialog management in the design; this includes dialog memory and context switching. This
approach requires more custom implementations and is, therefore, harder to implement
as quickly as possible with BotBuilder tools. However, it handles the complex domain
much more elegantly and is easier to maintain. One significant aspect is that the domain
knowledge is separated from the code.

2.1. BotBuilders

BotBuilders are tools for creating simple chatbots with a minimum requirement
of data collection or preparation and code development. Some of the most popular
tools in this category are Google Dialogflow. (https://dialogflow.cloud.google.com (ac-
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cessed on 21 December 2023)), IBM Watson (https://www.ibm.com/watson (accessed on
21 December 2023)), and Facebook WitAI (https://wit.ai (accessed on 21 December 2023)).
In order to create a new chatbot using these tools, you need to create some intentions for
the system to recognize in the user’s messages and provide a few examples for each one of
them. This is possible because these companies have machine learning models trained for
supported languages, and when users add examples to their specific needs, these models
are fine-tuned to them.

This allows for rapidly creating new chatbots with very little NLP knowledge needed
compared to creating a complete dialog system from scratch. However, these tools have
some limitations in more complex domains and in keeping with the dialog context. More-
over, the language needs to be supported by their solution and may not be ready for certain
vocabulary in a very specific domain.

As an intelligent agent increases in complexity, the number of needed intents rapidly
increases. This makes the system harder to maintain, and for each new intent added, more
examples are required for the classifier to correct each case separately, decreasing one of
the main benefits of these tools, which is that of needing few examples. Keeping with the
context of the dialog can also be difficult; in most of these tools, the context is given by a
set of global variables, and topic switching must be addressed by the designer, usually by
creating dialog paths in a tree structure. This requires that the creator thinks about all the
possible paths the user may follow, and all exceptional cases must be mapped to deal with
each one individually. This can fix a user into a specific path during the dialog; for example,
in the money transfer operation, the user may be required to give each mandatory piece of
information always in a specific order, and any changes in the topic during this process
may be prevented.

2.2. Dialog Systems

In order to address these problems, dialog systems introduced solutions in their
design that allow free context switching by the user, especially the Belief Tracker module
of the dialog management step. One of the dialog systems that does this and inspired the
framework of this work is Pydial [3]. Another aspect of dialog system architecture that
makes it easier to maintain in more complex scenarios is the separation of the domain
knowledge and the code. This separation, common to expert systems, makes it possible
to change some functionality by only modifying the ontology without having to change
the code. This is impossible for traditional solutions, in which the domain knowledge is
intrinsic to the implementation.

Rasa [4] is a conversational AI platform that uses the modules of dialog systems to
create conversational systems. It provides NLP models to fine-tune to the domain with
a few examples, such as BotBuilder tools, while having the possibility to deal with more
complex domains with the aspects of dialog systems. However, they require a larger
amount of development to create a new chatbot or virtual assistant than those tools.

Most of the similar dialog systems do not have built-in security solutions. One example
of privacy by design in this area is Snips [5], which is an embedding voice platform that
is used to perform the NLU tasks of a dialog system without the need to be online with
third-party servers that process the messages in a centralized manner. As shown there and
in this work, it is possible to have a full dialog system in small devices, such as smartphones,
by adopting the privat- by-design principle.

2.3. Comparison

A comparison of the proposed framework and the related work found in the literature is
presented in this subsection and in Table 1. This discussion considers the following aspects:

• Learning: how the conversational system learns and expands its scope;
• Control: the level of control over the solution;
• Reusable: how reusable some of the modules of the conversational system are;
• Availability: the language or platform in which the solution is available;

https://www.ibm.com/watson
https://wit.ai
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• Context: it is related to the possibility of the platform to either be able to automatically
manage the context of a conversation or to allow for developing a code for this;

• All-in: indicates whether the platform offers multiple services related to the task of
understanding natural language.

These platforms are observed to seek to remove obstacles regarding the development
of conversational agents, given that they present a high or medium level of usability due
to the friendly interface and documentation. All platforms offer reconstructed entities
and intentions and offer form filling as a form of composition, except Wit.ai and Watson
conversation, which do not offer prebuilt intentions and the Watson conversation platform
also offers the option of composing via block diagrams, in addition to the option of filling
out the form. The DialogFlow and Amazon Lex platforms were the only ones that presented
online integration, and DialofFlow presented integration with 14 systems. DialogFlow
and Wit.ai were the only ones that, in addition to having SDK availability, also have
integration via Webhook enabled. Note that, among the platforms compared, the only one
that presented all the automatic resources analyzed was DialogFlow, contemplating the
standard fallback intention, automatic context, and intentions linked on the same platform.

To the best of the authors’ knowledge, this work is one of the first to propose a
framework for dialog system construction for a specific domain, with a proof of concept
in Brazilian Portuguese for the banking domain considering scalability aspects. In other
languages, there are specialized ontologies, such as financial industry business ontology
(FIBO) [6], but there was no similar knowledge base available for the banking domain
in Brazilian Portuguese, which motivated the creation of the semi-automatic knowledge
acquisition method.

There is a lack of benchmarks to evaluate natural language processing in Portuguese,
which motivates the creation of some initiatives [7], but as far as we are concerned, there is
no natural language benchmark for the banking domain in Brazilian Portuguese. Even in
other languages, benchmarks for dialog system evaluation are new [8–10]. This gap should
be subject to future research efforts, and such works might support formal comparisons of
the different approaches using measurable criteria.

Table 1. Comparison of the proposed framework with related work.

Category Solution Learning Control Reusable Cloud Context Security All-in

Botbuilders

DialogFlow manual low no dependant yes no yes

Watson manual low no dependent yes no no

WitAI manual low no dependent no no no

Dialog
Systems

Pydial iterative medium no independent yes no yes

Rasa iterative high no independent yes no yes

Snips manual medium no independent yes yes no

Proposed semi
automatic

high yes independent yes yes yes

3. Architecture

In this section, we present the architecture of the proposed framework for dialog
systems. Each module has its inputs and outputs defined by a data structure. Consequently,
all implementations should conform to the same protocol and could be exchanged without
modifications to the rest of the system. Furthermore, there is the possibility of using this
framework for multiple communication channels, knowledge bases, and applications,
which can use the dialog system as the natural language interface for its users.
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3.1. Architecture Overview

The overall architecture of the framework follows the design of previous dialog
systems, such as [3], with four central modules: Natural Language Understanding (NLU),
Belief Tracker, Policy, and Natural Language Generation (NLG). Some additional modules
are present in the architecture to split responsibilities in a deliverable dialog system. The
framework architecture is presented in Figure 1.

Figure 1. Architecture of the dialog system framework.

On the left side, we have the communication channels that could be used by the user,
which could be in textual or audio form. On the right side are some of the knowledge
sources the dialog system could use. In this work, we focus on ontologies, which is the
preferred method, but others are also possible. At the bottom, some possible applications
can use the dialog system as a new interface to interact with the user by employing natural
language. A description of each module of the proposed framework is as follows:

• User Connection: this deals with all communication channel interfaces and converges
all incoming messages to a specific format of InputMessage so that the system can
process all kinds of messages in the same way;

• NLU: the Natural Language Understanding module has to interpret the user messages
and extract helpful semantic information to assist the system in responding to the user,
producing the Semantic Document with all the relevant semantic information;

• Belief Tracker: this updates the current dialog state with the new user message. This
module keeps the short-term memory that contains information mentioned previously
in this conversation;

• Policy: the dialog policy observes the current state and selects which action should be
taken by the agent;

• NLG: the Natural Language Generation module transforms the action chosen by the
policy into a natural language sentence to be sent to the user, delivered by the same
channel through which the user sent the message;

• Knowledge Management: this has the role of managing the domain knowledge; it
fetches external APIs, ontologies, or relational databases to provide domain informa-
tion to the Belief Tracker and Policy modules;

• App Gate: this acts as a connector between the dialog system and the application.
After a sufficient number of exchange messages between the user and the dialog
system for a specific operation, the Policy module triggers the action for this module
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to request an operation. This operation is performed by the external application, and
its result returns to the dialog system to be included in the response;

• User Authentication: when the user requests an operation, this module authenticates
the user. Authentication is not required when the user only asks informational ques-
tions. These questions are the user’s doubts about the operations available or specific
domain knowledge, whereas transactional messages aim to perform a task.

The data passed between modules are of standard types to allow each module to
be replaced independently from others. The Semantic Document should hold semantic
information extracted from the user message, such as classified intents, named entities,
sentiments, and desired operations. That information is extracted by the NLU, usually
by task-specialized machine learning models. The State contains the current dialog state,
holding the data from the most recent Semantic Document and other information men-
tioned previously in the dialog; this is a representation of the short-term memory of the
dialog system. The Action is the representation of the system’s reaction to the current state;
it holds the system intent, operation, and other slots needed to generate a response. For
example, in a response about an account balance, the action might have an informed intent
about the check balance operation with the slot balance with the balance available to the
user. These data types can be extended to support other use cases; the data presented are a
minimal example.

External services can be accessed via the dialog system by the APIs called by the
App Gate module; these services can, thus, provide a conversational interface with their
customers. The APIs provided by these services should be REST APIs that expose the
core functionality of the service, allowing the conversational system to complete similar
functions to what dedicated apps and webpages can do. Their details will depend on
the specific application connected. For an Internet Banking application, a request could
send the user account number and the operation check balance, while its response would
be the balance for that user. Another possible request, after the user asks for a financial
recommendation, might be sending user identification and one area of financial products;
then, the response might be a list of recommended products for that customer, containing
information such as product name, minimum value, and rate. The responses from the APIs
are passed as data in the Action so that the NLG can use it to generate responses to the user
using information from these external services.

Other dialog systems in works such as [3–5] have similar architectures, where the
NLU, Belief Tracker, Policy, and NLG modules are common to all. This work proposes
the inclusion of the Knowledge Management, App Gate, User Connection, and User
Authentication modules, which perform important tasks for the agent, as described earlier.

Semi-automatic corpus generation based on BNF grammar and text data augmentation
was used to train the NLP models used in the NLU and NLG modules, with a similar
approach to what was carried out in [11–13] regarding the production of training text data.
This allows for quickly changing the domain in which the models are trained because
the grammar is capable of producing examples of annotated sentences for the specific
domain with its vocabulary. The same approach was used to produce the test corpus for
these models, which produces a similar set to the training and is the result of a real data
evaluation set, which is not expected to be the same.

The ontologies were created manually by the authors based on the interaction with
mobile applications and internet banking for browsers of Brazilian banks, selecting the
most common operations and required data to complete them via the graphic interface.
Protégé version 4.3 (https://protege.stanford.edu (accessed on 21 December 2023)) is an
open-source tool for building and visualizing ontologies. It was used for creating the
ontologies of the dialog system. The database used for accessing the ontology was the
triplestore GraphDB (https://graphdb.ontotext.com (accessed on 21 December 2023)).

The data were obtained automatically from external sources using robotic process au-
tomation (RPA) TagUI (https://github.com/aisingapore/TagUI (accessed on 21 December
2023)), a free automation tool from AI Singapore [14]. PDF, DOC, and HTML files available

https://protege.stanford.edu
https://graphdb.ontotext.com
https://github.com/aisingapore/TagUI
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online were processed using the semi-automatic ontology development method presented
in the literature [15]. This method is based on natural language processing (i.e., SpaCy and
NLTK [16]), which was used to process Brazilian Portuguese texts that describe banking
operations and services. This method also uses the Python OwlReady library [17].

The ontology development method presented in [15] and depicted in Figure 2 was
enhanced with automatic triple selection between words based on their similarity and triple
classification (hierarchical or nonhierarchical) based on the type of verb using WordNet.Br
version 1.0. [18].

Figure 2. Semi-automatic ontology development method. The rounded boxes are the processing
modules of the semi-automatic method, whereas the squared white boxes are the output files at each
processing step. The blue boxes are modules from the original semi-automatic ontology development
method. The green boxes are additional or enhanced modules in this work. The black box is the
semi-automatic ontology validation step.

All modules were designed using tools for semi-automatic development, which allows
the engineer to create diagrams of the solution and then generate the equivalent code.
Specifically, the IBM Rhapsody version 7.6.1. (https://www.ibm.com/products/systems-
design-rhapsody (accessed on 22 December 2023)) tool was used, in which the data struc-
tures and modules were given an interface definition, leaving the implementation to be
completed. This facilitated the migration of the dialog system to multiple environments.

A mobile application for this dialog system was created for the iOS system. This shows
that the architecture proposed can be fully implemented in mobile devices without the
need for communication with third-party systems. Additionally, this is the device most of
the clients will use to interact with the intelligent agent.

The never-ending learning process was conducted using an in-memory ontology to
improve the execution time during the knowledge producer modules’ learning step. At
the end of each iteration, the working ontology was exported to a file that could then be
used by the dialog system, and it was imported into GraphDB or Protégé. The import and
export of ontologies were performed using Owlready 2 version 0.45 [17], which allowed
for flexible ontology manipulation.

Except for one of the relation populator modules, the work of which was carried out
by OpenNRE, the other modules from the architecture shown in Figure 3 were based on
simple machine learning models trained for the domain. However, other solutions might

https://www.ibm.com/products/systems-design-rhapsody
https://www.ibm.com/products/systems-design-rhapsody
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be as easily integrated as knowledge producers by producing candidate knowledge and
training from other examples in the current ontology.

domain documents

Category Populator

Instance Populator Property Populator

OpenNRE Relation Populator
candidate knowledge

Knowledge Integrator

Knowledge base

Initial ontology

1

Figure 3. Never-ending learning process.

The architecture is not limited to any specific language or domain and can be imple-
mented in various contexts. Later on, we will demonstrate an example of its application
in the banking domain using the Portuguese language. One of the advantages of this
architecture is its flexibility, as it can be adapted to other domains by changing the ontology.
Furthermore, it can be implemented in different languages and even non-Latin alphabets
as long as the NLU and NLG algorithms are adjusted accordingly.

3.2. Scalable Architecture

In addition to being functional, a conversational system architecture must be scalable
and support a set of nonfunctional requirements.

When considering the proposed architecture, the system execution environment must
be able to scale up and scale down (ideally in a preventive manner) to avoid the need for
contingency actions for availability and performance requirements. The system must serve
multiple users with low latency.

The solution proposed is an architecture based on microservices implemented in
containers to promote the scalability of the execution environment. For communication
between containers, the system uses message queues based on Kafka technology. Microser-
vices act as specific servers, being defined by a specific functionality or responsibility for
action. The microservices mentioned are organized in a communication infrastructure
(execution environment) that allows them to interoperate with the required scalability.

In order to map the components in microservices, the processing times obtained in
experiments carried out were taken into account, as well as the degree of coupling between
the components. Therefore, the implementation of the following microservices and their
respective containers was proposed:

• NLU: a microservice that mainly contains the existing NLU component;
• BeliefTracker, Policy, and KnowledgeManagement (KM): microservices that contain

the aforementioned components. Note that KM is included not as a component but,
rather, as a library;

• NLG: a microservice that mainly contains the NLG component and KnowledgeMan-
agement (KM). Again, KM is included as a library;

• Conversational Agent: a microservice that contains the main code (orchestrator) of
the conversational agent. In an orchestrated microservices architecture, this is the
central microservice.

In addition to the mentioned microservices, there are also other components designed
exclusively for the proposed solution:
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• Session: a microservice to simulate the opening of a user session with the system;
• RLog: a component for capturing performance metrics;
• Queues: Kafka technology for asynchronous communication;
• Containers: Docker technology to facilitate the deployment of each microservice with

the management of its dependencies;
• Container manager: Kubernetes technology, which consists of an open source con-

tainer management platform, is also an orchestrator of these containers, their resources,
and their scale. After generating the Docker image for each microservice, by using
Kubernetes, it is possible to manage the resources that each one will use and scale
from, depending on the availability of resources and demand.

In an orchestrated architecture, there is a central element that makes the decision
on the flow to be followed to carry out the processing. In the case of the conversational
system, this central element is the Conversational Agent microservice. Figure 4 presents
the centralization of logical communication with the Conversational Agent microservice,
which decides which microservice to call at each processing step.

Figure 4. Proposed scalable architecture of the dialog system framework. Green arrows indicate
synchronous communication and blue arrows indicate asynchronous communication.

3.3. Natural Language Processing

The NLU and NLG are the application natural language modules. Both need some
adaptation for the specific domain. The NLU module classifies the sentences and identi-
fies the named entities, some of which are domain-independent and domain-dependant.
The approach proposes a reduction in rework when using the framework by having the
intent classification be domain-independent, which could be one of the following classes:
greetings, goodbye, perform, inform, confirm, and not confirm. These intents are enough
for the completion of tasks and question-answering in most domains. Should a new intent
be added, it would be necessary to change the NLU to produce the new classification and
update Policy to handle this intent.

Other required classifications can be domain-dependent, such as operation, sentiment,
and question type. One important aspect is that every possible label for each classification
has a one-to-one mapping with an ontology element so that the ontology has the knowledge
to address any inquiry detected by the NLU. With this mapping, it is easy for Knowledge
Management to find the correct ontology element that the sentence is referring to; the ontology
searches for the node with the classification label, and its properties or related nodes are sent to
the other modules. This relevant approach allows for the Belief Tracker and Policy modules to
process the dialog based on only the intent and Knowledge Management, and thus, it does not
need to be changed for new domains unless a feature with a particular dialog flow is needed.
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The context-independent slots filled by the NLU can be carried out by a general
named entity recognition system that recognizes, for example, names, places, and dates.
The domain-specific slots, which are needed for the tasks supported by the dialog system
and their associated external application, can be implemented by some sentence-tagging
algorithm, for example, using a recurrent neural network [19]. It is essential that the
slot label also has a one-to-one mapping with ontology elements in both cases. Since
Knowledge Management can deliver the mandatory slots for a supported operation, the
Policy module can then verify if these slots are filled before triggering an execution for an
external application. This approach can be easily used if the slots produced by the NLU
have the same label as the required operation properties in the ontology.

The NLG module can be implemented using templates for each possible action taken
by the dialog system, with placeholders for the response slots [3]. Another way is to have
a generative model, eliminating the need for the designer to plan all possible responses
and create a unique template for each. A machine translation model is an especially well-
suited model; it can transform a set of triples from the ontology into a natural language
sentence [20]. With this approach, the knowledge of what should be given in response is
also contained in the ontology of the system.

The data needed to train the models of these modules can be created by domain
specialists of a curatorship team, who know the users’ behavior and language and can
produce examples similar to what the user will say with the dialog system. An approach to
reducing the amount of manual work and accelerating the application of the framework is
to have a semi-automatic process of corpus creation.

3.4. Ontology

The ontology should have all the knowledge needed about the domain for the system
to perform its tasks. Moreover, this information should be structured in a particular manner
so that the Knowledge Management module can fetch the information. This work proposes
the division into three ontologies:

• Task ontology: this ontology contains the primary knowledge to perform the dialog
system tasks, including supported operations, mandatory slots, and disambiguation
options. It is designed in such a way that the ontology classes are the tasks that
can be performed, and each ontology individual is the task that one does not need
to disassemble. These ontology individuals are related to the data that need to be
demanded to carry out the operation.

• Support ontology: this ontology supports the system with additional information that
is required by the task ontology, and it can be fetched in this system. In other words, it
is the ontology that contains the long-term data. Such an ontology has its structure
assembled from the data that are defined as relevant in the task ontology.

• Domain ontology: the knowledge needed for solving questions about the domain is
present in this ontology. This knowledge can be definitions, relations, or properties,
describing the knowledge of subjects related to the tasks; it does not describe the steps
for its accomplishment but describes the clear doubts inherent to the activities.

There must be consistency among all ontologies, with the same terms for the operations
in all of them. For example, the task ontology may require a set of slots related to a person to
complete a money transfer. If the user wishes to transfer money to someone who is already
known, this person’s information can already be in the Support ontology so that all of their
information can be fetched from this ontology without the need to be asked from the user
during the dialog. In the same way, if the user wants to clarify doubts about any task that
appears in the task ontology, such details must be contained in the domain ontology.

3.5. Never-Ending Learning

Never-ending learning is a learning approach that combines multiple tasks and con-
straints coupled together to acquire more knowledge and improve future learning [21]. A
knowledge base in a never-ending learning system is updated constantly as more data are
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acquired and self-reflection is performed, which prevents the system from being stuck in a
learning plateau.

A study case for this proposal is never-ending language learning (NELL), a system de-
signed to learn the web by starting from an initial ontology with hundreds of categories and
relations between them. NELL has been running continually forever in a semi-supervised
manner, and its knowledge base has millions of beliefs, showing that an agent could im-
prove its reading over time. This behavior of continuous learning over time is what is
desired in a conversational system, which could learn to answer new questions without
explicit human intervention.

In this work, our interest is a specific domain, and our knowledge base should only
include information relevant to that domain. Therefore, our approach was to apply the
concepts of a never-ending learning system to a limited and specific domain. We aim to
reduce the learning problem so that only domain knowledge is gained, but continued
learning is still in effect, which is accomplished by using a limited quantity of in-domain
input texts given to the agent.

Architecturally, the solution is very similar to NELL; the main difference lies in which
learning method modules were selected so that the learning tasks and constraints can adapt
to the domain and are feasible on a smaller scale. The never-ending learning architecture
used is shown in Figure 3. The initial ontology was created manually by using the infor-
mation available in one of the input documents, which was also used for the knowledge
producer models’ initial training. Another difference is the amount of data: while NELL
was designed for big data, it may have some difficulties in learning specific concepts; in
addition to being a defined domain, the dataset of the present work is also restricted, with
low redundancy (small data [22]).

The modules in our architecture are the following:

• Instance Populator: A neural network for named entity recognition that was trained
to identify classes from the current ontology in the text. These entities will then be
candidate instances of those classes to be added;

• Property Populator: A set of simple heuristic rules to identify common ontology
properties such as label and description, as well as other custom properties based on
the data properties available in the ontology; for example, matching dates in the text
with ontology instances that can have a date property;

• Category Populator: Another neural network for named entity recognition, but this
time, it is used to search for other entity types that are not currently in the ontology [16];

• OpenNRE: An open-source neural network for relation extraction [23], which is used
to find new relations between instances of the current ontology;

• Relation Populator: A random forest classifier [24] trained to find new relations
between instances of the current ontology;

• Knowledge Integrator: This is the same module as in NELL; it accesses confidence in
new beliefs so as to only integrate high-confidence beliefs and perform consistency
checks, for example, if the subject and object of relations are of the correct type.

With these learning tasks, two coupling types could be observed, which is an important
factor in never-ending learning systems when avoiding concept-drift [25]. The first is between
those modules with different goals, such as the instance populator and the relation populator.
In one step, these modules can produce some candidate beliefs that can be inserted into the
ontology. Then, in the next step, when passing by the same input data, the relation populator
was able to find new relations between instances that were just added to the previous step,
showing the effect from one learning task to another. The other type is between thsoe modules
with the same tasks. The relation populator and OpenNRE produce relations; at any given step,
they produce different candidate beliefs and can then improve their respective predictions in
the following step by using the new relations produced from the other module.

The presented architecture can be re-applied in other domains by providing some
adjustments. It would be necessary to create knowledge-producing modules that are able
to extract entities relevant to the specific domain. Some general modules from NELL or the
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shown architecture, like OpenNRE, can be reused for other domains if desired. Additionally,
the initial ontology needs to be created to contain the core domain information and some
sample knowledge.

Some aspects of the original NELL proposal were not fully explored and should be
the object of future research. They include a self-reflection process that is integrated into
learning iterations and the further coupling the learning tasks.

4. Experimental Results

Given the main contribution of this work is a framework for a specific domain dialog
system, the authors built an example of a dialog system for the banking domain in the
Portuguese language as an example of the application of the framework. The development
of this dialog system was driven by the semi-automatic generation of corpora, ontologies,
and code to construct the system rapidly.

4.1. Specific Banking Domain for the Portuguese Language

The chosen domain for the dialog system is the banking domain, which has a vo-
cabulary with specific terms, and security during its operation is mandatory. The system
supports the four main transactions in an internet banking application, which are money
transfers, balance checking, extract inquiries, and payments. These operations can be
performed, or questions can be asked about them. Thus, the domain-specific classifications
needed are operations, which type of question is asked, and the sentiment expressed. Some
of the domain-specific slots are account number, bank number, and payment type.

In order to recognize these domain-specific classifications and entities, we trained
machine learning models using an artificially generated dataset that was generated by the
BNF grammar method mentioned in Section 3.1. We manually constructed a generation
grammar and then used it to produce a training dataset with 15,000 labeled examples,
as well as a test dataset with 600 examples. Both datasets had equal proportions of all
classes. We evaluated this by using the validation dataset, measuring the F1 score of the
classification, and naming the entity-recognition tasks. The intent model had a 96.08 F1
score, the NER model had an 85.71 F1 score, the operation classifier had a 100 F1 score, the
question classifier had a 94.98 F1 score, and the emotion classifier had a 99.46 F1 score.

The three ontologies described in Section 3.4 created for the banking domain are shown
in Figures 5–7. The task ontology contains the four operations: money transfer (“trans-
ferencia”), balance (“saldo”), extract inquiry (“extrato”), and payment (“pagamento”),
as a child of the root node “procedimento”. The red nodes are classes and need further
disambiguation, choosing which type of payment or money transfer the user wants. This
ontology also shows that for the “interbancaria” money transfer, the data from the sender
“pessoa_remetende” and receiver “pessoa_favorecida” are mandatory.

The domain ontology has a similar graph structure to the task ontology because when
the user asks a question about a term in the task ontology, the same spot can be found in the
domain ontology to obtain the knowledge to respond to the user’s question. In this ontology,
there are the properties for each node, such as the maximum value for the money transfer
between different banks, which the user could ask for. There is an annotation in each node
with its definition so that questions such as “What is TED?” can be answered with the correct
definition given by the specialist consulted during the creation of the ontology.

Finally, the support ontology has information from past operations that can be reused
in a future dialog. For example, the yellow node is a money transfer for the same bank
(“intrabancaria”) between two persons: “usuario_1” and “maria_silva”. Thus, if the same
user wants to transfer to Maria Silva again, her information can be obtained from the
support ontology, and the user does not need to repeat her banking information, such as
account number and agency. Therefore, the first time a user makes a money transfer to an
unknown person, it is necessary to explicitly inform all the information about the receiver,
and with the approval of the user, this new contact can be saved in the support ontology to
be used again in the future.
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Task Ontology Domain Ontology Support Ontology

Figure 5. Task ontology. The red nodes are classes representing banking operations, procedure (“pro-
cedimento”), money transfer (“transferência”), interbank transfer (“interbancária”), and payment (“paga-
mento”). The green node is a child class representing the intrabank transfer (“interbancaria”), and the beige
nodes represents the objects needed by this interbank transfer: favored person (“pessoa favorecida”) and
sender person (“pessoa remetende”). The blue nodes are instances of operations: extract inquiry (“extrato”)
and balance (“saldo”). The relations shown are needs (“precida de”) and needed by (“é demandado por”).

Figure 6. Domain ontology. The red nodes are classes representing banking operations, procedure
(“procedimento”), money transfer (“transferência”), interbank transfer (“interbancária”), and payment
(“pagamento”). The green node is a child class representing the intrabank transfer (“intrabancaria”). The
blue nodes are instances of operations: extract inquiry (“extrato”) and balance (“saldo”). The relations
shown are needs (“precida de”) and needed by (“é demandado por”). The purple noes are instaces of
interbank transfers.
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Figure 7. Support ontology. The red nodes are ontology classes: procedure (“procedimento”), intrabank
transfer (“intrabancaria”), ted (a type of transfer), and person (“pessoa”). The blue node represent a
instance of ted transfer. The purple node repsents instances of people: Maria Silva (“maria_silva”) and
user 1 (“usuario_1”). The yellow node represent a instance of intrabank transfer beetwen Maria Silva
and user 1, the relations of this transfer are done by (“realizou”) and recieved (“recebeu”).

The estimated time savings in Table 2 were calculated to evaluate the results of using
RPA with the semi-automatic ontology development method. Compared to the manual
process, the automated process achieved a relative reduction of 76%, from 37 to 9 h, to
build an ontology.

Table 2. Automation results using RPA and semi-automatic ontology development method.

Steps for Building an Ontology Manual Semi-Automatic with RPA

1. Domain Definition 2 2

2. Existing Ontology Analysis 2 2

3. Terms Definition 5 0.5

4. Hierarchy Definition 4 0

5. Property Definition 6 0.5

6. Definition of Required Data and Relationships 6 0.5

7. Rules and Restrictions Definition 2 0.5

8. Validation 5 2

9. Review 5 5

Total 37 9
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4.2. Throughput Evaluation

A simulation process was carried out to test the scalability of the PoC of the conversa-
tional system using JMT (Java Modeling Tool version 1.2.5) software [26]. The objective
was to determine the number of servers (in this case, containers) of each module (running
in parallel) necessary to meet a given message arrival rate.

The closed simulation model was used (see Figure 8); it has no input or output for
external requests or responses [27]. Requests (messages) are circulated internally. The total
number of requests remains constant. A closed system can be considered one in which the
“Out” is connected back to the “In”, whereby requests that leave the system immediately
enter the system after a delay (“think time”) that can be configured. The flow of “Out-to-In”
requests defines the throughput of the closed system. When analyzing a closed system, the
number of requests (messages) is assumed to be provided. The purpose of the analysis is to
determine the throughput of completing the requests.

Figure 8. Java modeling tool queue model. The clients go from A letter to B letter in the icons.
“Clientes” (from Portuguese) means “Clients” in English, and “Sessao” (from Portuguese) means
“Session” in English.

In the solution adopted by the project, all messages enter and leave the Kafka compo-
nent when passing from one container to another. In the simulation model considered, the
Kafka component is represented by two queues: Kafka_1 and Kafka_2. Kafka_1 receives
all the messages, and Kafka_2 sends the messages. However, for Kafka_2 to know how
to route messages to the correct destination, a simulator feature was used that allows for
identifying the messages leaving a queue destined for the next queue. This feature consists
of identifying messages through classes. The following classes were defined:

• C-I (blue): The class of messages arriving from clients;
• C-NLU (red): The class of messages that go to the NLU queue;
• C-Belief (green): The class of messages that go to the Belief Tracker + Policy + KM queue;
• C-NLG (pink): The class of messages that go to the NLG + KM queue;
• C-S (orange): The class of messages that go to the Session queue.

At the exit of each queue, the message is converted to the class of the next queue
before being forwarded to the Kafka_1 queue. Message classes are represented by different
colors in the simulation results. The simulation was carried out using the closed model for
the case of 1,000,000 msg/day to determine how many users are served simultaneously.
The execution times of the modules used in the simulation were based on the average
times obtained during the execution in eight virtual machines with 6 GB of memory and
two virtual CPUs each. The obtained execution times used for throughput evaluation are
presented in Table 3.

The following scenario was used in this simulation:

• The number of containers in the PO_Km module = 5;
• The number of NLG module containers = 11;
• The execution time of the modules based on Table 1;
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• The delay in generating a new message by the client after receiving a response from
the previous message = 7 s;

• The boundary condition, where the use of modules is less than or equal to 0.7.

In order to determine how many users were served simultaneously, corresponding to
a flow of 11.57 messages per second, the number of users varied (50–150) when observing
the flow corresponding to each number of users. The simulation results can be seen in the
graph of the flow by number of users, illustrated in Figure 9.

Table 3. Execution times used for throughput evaluation.

Module Average Execution Time (ms)

NLG 659.69

PO_KM 310.51

PO 83.55

NLU 44.80

PO_BT_KM 16.68

ROUTER 13.18

NLG_KM 8.81

SESSION 8.69

AC 1.38

PO_BT 0.04

BT 0.03

BT_KM 0.01

Figure 9. Throughput vs. the number of users. Considering the closed model, the flow of 11.5 msgs
per second (horizontal black arrow) corresponds to approximately 95 customers (vertical black arrow).
The red line represents the relationship between the entire system throughput and the total customers
in the system.

An approximate flow rate of 11.5 messages per second is observed to correspond to
95 users with a “think time” of 7 s.

The graphs in Figures 10 and 11, respectively, illustrate the processor usage by the
PO_Km and NLG modules with variations in the number of users.
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Figure 10. PO_Km module processor utilization. Approximately 95 customers (vertical black arrow)
correspond to 70% utilization (horizontal black arrow). The red line represents the relationship
between the PO_Km module processor utilization and the total customers in the system.

Figure 11. NLG module processor utilization. Approximately 95 customers (vertical black arrow)
correspond to 68% utilization (horizontal black arrow). The red line represents the relationship
between the PO_Km module processor utilization and the total customers in the system.

From the PoC simulation, only the utilization rates of the PO_Km and NLG queues are
observed to need to be monitored, as their relative execution times are orders of magnitude
higher than the execution times of the other queues. Therefore, these modules are system
performance limiters. Specifically, NLG is the main bottleneck, followed by PO_Km.

Considering the identified performance issues, an NLG module optimization was
performed without retraining the original model in the T5 format. The T5 model was
converted into an ONNX model [28] and optimized by quantization. The optimization
was conducted internally by using the FastT5 library, which saves the optimized model so
that it can be loaded again without the need for a new optimization at each execution of
the system.

The NLG using FastT5 version 0.1.4. proved to be around three times faster than the
non-optimized one. By carrying out tests with the rest of the system, the improvement
obtained was two times the ability to process texts, that is, half the time. As a result, the
required number of NLG module containers to serve 11.5 msgs/s increased from 11 to 5.
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4.3. Never-Ending Language Learning

The never-ending language learning (NELL) process is triggered by new knowledge
demand, which could be carried out by a user who wishes to insert new knowledge into the
system to cover more topics in the dialog or by a user inquiry that could not be solved with
the available knowledge at that time. In the experiments, we, as the human supervisors,
started the NELL process when we noticed a user’s questions were not answered.

When this process was triggered, one automated bot searched for pages in a specific
web portal with information relevant to our banking domain; then, it captured HTML
pages or PDF files and extracted the text from them, creating a plain text file. This file
was then consumed by the NELL process itself, and the knowledge-producing modules
predicted new beliefs based on this document, which were analyzed before being inserted
into the ontology. Afterward, this new knowledge could be used during the dialog to
answer new questions.

For example, consider the initial ontology shown in Figure 12, which includes knowl-
edge about one event (blue node), its presenters (green nodes), and the companies in which
they work. Based on this ontology, the system is capable of conducting the dialog about
this event, as shown in Figure 13. The first question the user asks is, “Who presents the
event *Event1*?” and the system responds with the related presenters: “The presenters for
the event *Event1*?” are: “*Talker1*, *Talker2*, and *Talker3*”. Additionally, the system
can answer other information about the event, as shown in the next question, “How does
it happen?” which is responded by “The event *Event1* is online”; this information is a
property in the ontology and is not shown in the previous figure.

Figure 12. Initial ontology. The relations shown are “trabalha em” (from Portuguese) that means
“works for” (in English), and “apresenta” (from Portuguese) that means “presents” (in English). The
other terms shown are organization names.

However, it was not possible to answer the last question, ‘What events are presented
by *Talker5*?” due to unavailable data on the knowledge base; there is no instance of a
presenter by this name in our current ontology. Then, when running the NELL process
with a new document containing information about this new event, a snippet from this
document can be seen in the following:

*Event2*
ingresso único, Grátis
17 de setembro de 2021, 14 h–15 h 30, Evento online via Netshow.me (. . . ) DESCRIÇÃO

O evento será composto por três mesas redondas voltadas ao tema da economia circular,
uma nova forma de pensar as atividades econômicas associando desenvolvimento e melho-
ria no uso de recursos naturais, por meio de novos modelos de negócio, da reestruturação
da relação de consumo e da otimização de processos de fabricação, com foco na utilização de
insumos mais duráveis, recicláveis e renováveis. (. . . ) MINI BIO DO(S) PALESTRANTE(S)
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Figure 13. Dialog with the initial ontology. The user is represented by “Felipe Pinna”, and the agent
is “LIA”; the text below these names is each one’s message. In English the dialog can be translated as
the following. LIA: Hi! How can I have you today about ...? User: Who presents the event ...? LIA:
The presenters of the event ... are ... User: How does it happen? LIA: The event ... is online. User:
Which events are presented by ...? LIA: Sorry, I don’t know yet about ..., but I will inform myself.
User: bye. LIA: See you later.

*Talker4* Especialista em Meio Ambiente da FIRJAN (Federação das Indústrias do
Estado do Rio de Janeiro) (. . . )

*Talker5*: Ativista ambiental, empreendedora e idealizadora do MENOS 1 LIXO,
movimento e negócio de impacto por meio de uma plataforma de educação ambiental. Fer-
nanda também é colunista das revistas Glamour e Ela, defensora da ONU Meio Ambiente
na campanha Mares Limpos e conselheira do Greenpeace Brasil, tendo sido premiada pela
Geração Glamour de 2018 como a mulher mais influente no segmento da sustentabilidade
de 2017. (. . . )

Which can be translated to English as the following:
*Event2*
single ticket, free
17 September 2021, 2 p.m.–3:30 p.m., Online event via Netshow.me (. . . ) DESCRIP-

TION The event will consist of three round tables focused on the topic of circular economy, a
new way of thinking about economic activities associating development and improvement
in the use of natural resources, through new business models, restructuring the consump-
tion relationship and optimization of manufacturing processes, focusing on the use of more
durable, recyclable and renewable inputs. (. . . ) MINI BIO OF THE SPEAKER(S)

*Talker4* Environmental Specialist at FIRJAN (Federação das Indústrias do Estado do
Rio de Janeiro) (. . . )

*Talker5*: Environmental activist, entrepreneur and creator of MENOS 1 LIXO, a
movement and impact business through an environmental education platform. Fernanda
is also a columnist for Glamour and Ela magazines, a defender of the UN Environment in
the Mares Limpos campaign and an advisor to Greenpeace Brasil, having been awarded by
Geração Glamour in 2018 as the most influential woman in the sustainability segment in
2017. (. . . )

The knowledge-producing modules processed this text and were able to predict a set
of new beliefs, such as the following triples:

• Unary Relationship: isAnEvent(“*Event2*”);
• Unary Relationship: isATalker(“*Talker4*”);
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• Unary Relationship: isATalker(“*Talker5*”);
• Binary Relationship: presents(“*Talker4*”, “*Event2*”), wherein the first attribute is the

unary relationship isATalker(“*Talker4*”), and the second attribute is the relationship
isAnEvent(“*Event2*”);

• Binary Relationship: presents(“*Talker5*”, “*Event2*”), wherein the first attribute is the
unary relationship isATalker(“*Talker5*”), and the second attribute is the relationship
isAnEvent(“*Event2*”).

After those beliefs were integrated into the ontology, it had the structure shown in
Figure 14, which shows the nodes from the previous state, the new cloud of nodes from the
new event, and the relations among all the instances. Then, when the dialog was resumed,
the system was able to respond to the pending question, as shown in Figure 15, where
the first message from the system is “Remember when you asked me about *Talker5*, the
answer to your question is: “The event present by *Talker5* is *Event2*”. Additionally, it
was able to keep talking about the extended dialog domain after the user asked “Who is
*Talker5*?” the system responded with the definition for her node in the ontology available
in the input text for the NELL process.

Figure 14. Ontology after one never-ending learning step. The relations shown are “trabalha em”
(from Portuguese) that means “works for” (in English), and “apresenta” (from Portuguese) that
means “presents” (in English). The other terms shown are organization names.

Our initial ontology was composed of 11 instances, 10 relations, 9 properties, and
3 categories. After processing a few documents, our final ontology had 98 instances,
106 relations, 114 properties, and 5 categories. This was a small-scale experiment to prove
the availability of the learning method in a dialog system, and we should aim to process
more documents in the future.

Different types of couplings can be explored [25]. The first type is concordance coupling,
in which two classifiers have different inputs and produce the same classification. In this case,
the two classifiers must agree, and by coupling, we can increase confidence in this knowledge.

In the never-ending learning system developed, there are two instance producers that
observe different attributes of the text and produce the same types of instances. Thus, it was
possible to add agreement coupling between them. The result of this coupling is shown in
Table 4, where an increase in the number of instances of 128% and a growth of 120% in the
number of properties is observed. Another relevant fact is that the number of iterations doubled
from 4 to 8, showing that the coupling produced the expected effect of increasing the number of
rounds of the system, in which new knowledge can be extracted from the same set of data.



Appl. Sci. 2024, 14, 1585 21 of 24

Figure 15. Dialog with the ontology after one never-ending learning step. In English the dialog can
be translated as the following. User: Good afternoon. LIA: Hi! How can I help you today about ...?
Remember when you asked me about ... the awnser for your question is: the event presented by ...
is ... User: Who is ...? LIA: Environmental activist, entrepreneur and creator of MENOS 1 LIXO, a
movement and impact business through an environmental education platform. ... is also a columnist
for Glamour and Ela magazines, a defender of the UN Environment in the Mares Limpos campaign
and an advisor to Greenpeace Brasil, having been awarded by Geração Glamour in 2018 as the most
influential woman in the sustainability segment in 2017. User: see you soon. LIA: See you soon.

Table 4. Final ontology metrics after adding agreement and output couplings.

Before Agreement
Coupling Variation

Agreement
+ Output

Couplings
Variation

Categories 14 14 0% 14 0%

Instances 114 260 128% 298 161%

Relationships 52 52 0% 52 0%

Properties 122 269 120% 320 162%

Iterations 4 8 100% 8 100%

Another type of coupling is output coupling, which can be divided into subtype
coupling and mutual exclusion coupling. In these cases, two different classifiers receive
the same input. In subtype coupling, the classes involved are a subtype of the other, for
example, “person” and “actor”, which the classifiers must agree on. Since “actor” is a
subtype of “person”, when the two classifiers agree, we can increase confidence in this
knowledge. Mutual exclusion coupling is when the classes involved are mutually exclusive,
for example, “person” and “company”; the classifiers must, thus, disagree to increase
confidence in the knowledge.

Output coupling was added between the system instance producers, which produced
a further increase in the number of instances and properties while maintaining the number
of process iterations. The result was a total increase of 161% of instances, 162% of properties,
and 100% of iterations when compared to the same endless-learning process performed
without these couplings.

5. Conclusions

This work presents a framework for building a specific domain dialog system with a
knowledge base. We propose a common architecture for these systems, aiming at re-using mod-
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ule implementations when creating new instances for new similar domains, with this supported
by ontologies and semi-automatic development methods for facilitating the maintenance and
recreation of the project. When compared to the manual process, the automated process using
RPA achieved a relative reduction of 76%, from 37 to 9 h, to build an ontology.

Specific knowledge was modeled in the task, domain, and support ontologies for
the banking domain. Semi-automatic corpus generation and automatic data acquisition
using robotic process automation (RPA) were used to lessen the required effort to build this
specific domain dialog system. The never-ending learning proof of concept was described
for the acquisition of new financial event information collection.

As the main contribution of this work, the proposed scalable architecture for specific
domain dialog systems was proposed and used for the development of a conversational
agent for the banking domain. Researchers and practitioners are expected to use the
proposed architecture and specialize it for their specific domains by adjusting the training
datasets and ontologies but re-using the organization of the proposed architecture.

The proposed never-ending learning approach allows the system to continuously learn
over time by searching for knowledge when a question is not answered in a conversation.
Then, after the knowledge base is updated, the system can remind the user about the
pending question and respond, giving the perception of evolution over time. Further
similar questions could be answered immediately since the required knowledge would be
available in the dialog system ontology.

A dialog system for the banking domain in the Portuguese language was created
using the proposed framework as a demonstration of its application. A fully functional
implementation for mobile devices shows that it is possible to embed the dialog system in
a simpler device without sharing user data with third parties.

For dialog-oriented systems or very simple task-oriented systems, the use of BotBuilder
tools provides great speed in creating new chatbots with low data and development needs. This
framework can be applied to most task-oriented systems that use a dialog system as a solution.

Future work may expand the never-ending learning principles by further exploring
the coupled learning between tasks to increase the potential for discovering new knowledge
in past documents and explore other aspects of the original NELL experiment, such as
self-reflection. These opportunities for future research might lead to a more autonomous
conversational system and a better use of available data from the documents utilized.
Another consideration for future work is to use OpenAI GPT-3 (https://chat.openai.com/
(accessed on 21 December 2023)) in the named entity recognition and relationship identifi-
cation tasks in the proposed dialog system.

Another possibility is to evaluate the user experience of the conversational assis-
tants built with different tools by using specific study designs to compare various design
choices [29,30]. Relevant work presents a framework for the qualitative analysis of chatbot
dialogues in the customer service domain that was used to investigate key drivers of user
experience, such as response relevance and understanding user interaction patterns [31].

The scalability evaluation executed in this work focuses only on throughput. Future
research efforts must consider other relevant nonfunctional aspects, such as availability,
security, maintainability, and relevant trade-offs, possibly using the ATAM software engi-
neering method [32]. As security is relevant for dialog systems [33], it could be interesting
to consider a federated learning approach [34,35].

Another relevant research avenue is to deploy the proposed method with other domains
and languages. For this objective, one interesting opportunity is to use Wav2Vec version 2.0.
Wav2Vec are speech recognition models for which the principle is self-supervised learning,
which uses a large set of unlabeled data to learn good representations of the data; then, it learns
the task of transcribing audio by consuming a small number of labeled data. This solution
has multilingual models in which training is carried out with audio from different languages,
seeking to explore elements of transcription tasks that are universal. These models have lower
results than monolingual models for languages with many resources available but can be useful
for languages with fewer resources available for model training [36].

https://chat.openai.com/
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