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Abstract: The paper presents a technique of motion planning for autonomous vehicles (AV) based on
simultaneous trajectory and speed optimization. The method includes representing the trajectory by
a finite element (FE), determining trajectory parameters in Frenet coordinates, composing a model of
vehicle kinematics, defining optimization criteria and a cost function, forming a set of constraints, and
adapting the Gaussian N-point scheme for quadrature numerical integration. The study also defines
a set of minimum optimization parameters sufficient for making motion predictions with smooth
functions of the trajectory and speed. For this, piecewise functions with three degrees of freedom
(DOF) in FE’s nodes are implemented. Therefore, the high differentiability of the trajectory and speed
functions is ensured to obtain motion criteria such as linear and angular speeds, acceleration, and jerks
used in the cost function and constraints. To form the AV roadway position, the Frenet coordinate
system and two variable parameters are used: the reference path length and the lateral displacement
perpendicular to reference line’s tangent. The trajectory shape, then, depends only on the final
position of the AV’s mass center and the final reference’s curvature. The method uses geometric,
kinematic, dynamic, and physical constraints, some of which are related to hard restrictions and some
to soft restrictions. The planning technique involves parallel forecasting for several variants of the
AV maneuver followed by selecting the one corresponding to a specified criterion. The sequential
quadratic programming (SQP) technique is used to find the optimal solution. Graphs of trajectories,
speeds, accelerations, jerks, and other parameters are presented based on the simulation results.
Finally, the efficiency, rapidity, and prognosis quality are evaluated.

Keywords: autonomous vehicles; motion planning; nonlinear optimization; integral constraints

1. Introduction

Modern developments in the domain of autonomous vehicle (AV) motion planning
are distinguished by a wide range of proposed techniques and methods having advantages
and drawbacks depending on the forecasting goals under current conditions. The main
planning challenge concerns the need for simultaneously satisfying multiple requirements
that guarantee both the motion feasibility and its safety, including the controllability and
stability within the subsequent tracking process.

The basic planning task consists of generating a forecast of trajectory and speed
mode. On the one hand, it must conform to the principles of simplicity, smoothness, and
unambiguity. For these purposes, analytical functions of polynomial and trigonometric
types are often used [1], which change shape depending on parameters. The advantage of
this approach implies that, with known parameters, any trajectory’s point may be directly
computed. However, there are also problems associated with the fact that trajectories
represented by polynomials of small degrees do not provide high differentiability. For
large degrees, the polynomials may be unstable, and the sensitivity of DOFs corresponding
to higher derivatives increases. This complicates the optimization procedure since the
determined parameters, in this case, may differ by an order of magnitude.
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On the other hand, the trajectory curve must meet the requirements of continuity and
differentiability. Since the forecast optimality criteria themselves depend on the trajectory
curvature’s derivatives, it is also necessary to ensure the equality of these derivatives at
the point of changing planning cycles. In this case, most often it is impossible to ensure
the continuity of higher speed derivatives, as well as kinematic parameters based on them
such as yaw rate, angular acceleration, and jerks. In most of the existing techniques, these
aspects are neglected, which affects the irregular and intermittent nature [2] of the listed
parameters at transient points. However, these parameters are associated with vehicle
control systems and actuators. Therefore, it is desirable to ensure the continuity of their
functions and derivatives for transient processes.

To guide the AV on a roadway, two approaches may be used. The first one involves the
formation of roadway boundaries and motion zones in the Cartesian coordinate system [3].
In this case, a space available for predicting the AV movement may be obtained by limiting
motion zones for other traffic participants in such a way that a minimum safe distance is
guaranteed. However, most often in this case, there is a need for separating the planning
stage into sequential phases of determining the trajectory and distributing the speed mode.
Another approach allows for the consideration of the formation of AV motion in Frenet
coordinates [4,5]. In this case, usually, the midline of a road lane is in some way expressed
as a reference path function. Thus, instead of Cartesian coordinates, two Frenet coordinates
arise, such as the lane reference curve’s length and the lateral displacement perpendicular
to the reference curve’s tangent. In this case, it is much easier to work with spatial con-
straints by imposing them on the lateral displacement within the boundaries of a road
lane. However, we still need to make the transition to the AV’s local Cartesian system to
decompose the components of kinematic parameters into longitudinal and transversal ones.
Due to curvature, the full representation of the motion model in curvilinear coordinates
becomes more complicated. Therefore, in this work, we will use a mixed approach in which
there is a reference path curve in the Frenet coordinates, and the trajectory is predicted in
the Cartesian coordinates.

Forecasting the speed mode [6] involves obtaining several kinematic parameters (linear
and angular speeds, linear and angular accelerations, linear jerks) characterizing the AV
dynamics and providing direct ties with vehicle sensors’ data (accelerometers, gyroscopes,
radars), which allows for the monitoring and correcting of the AV control at the tracking
stage. These same parameters may be used as criteria for optimizing the AV motion. The
main task of speed planning aims at compromising the vehicle’s maximum performance,
safety, and motion smoothness.

To implement the above, two different approaches may be used. The first one is repre-
sented by discrete modeling [7], where a system of equations based on vehicle dynamics (or
kinematics) allows simultaneous optimization [8] of the trajectory and speed related differ-
entially to each other. However, to ensure good convergence of the numerical solution, it is
necessary to reduce the integration step, which increases iteration time. Another approach
proceeds from representing the trajectory and speed by piecewise analytical functions [9],
forms of which are known in advance and only the parameters that determine the nature
of these functions are optimized. In this case, there are no problems with step control, but
the motion can only be represented by a vehicle kinematic model.

Constraints are a separate issue. There are quite a number of restrictions stipulated
by both the parameter nature and the possibility of its assessment. Thus, geometric
restrictions [10] imply a non-violation of the roadway boundaries (permissible zone) and
keep safe positions relative to other traffic participants. Kinematic constraints concern
parameters based on speed [11] and its derivatives. Dynamic restrictions are determined
by limits imposed on the vehicle’s powertrain system to realize its traction potential. The
vehicle acceleration naturally decreases with speed, which must be reflected in the driving
mode being planned. Physical limitations are based on the tire’s maximum adhesion
property and the potential for motion stability. All these restrictions may be represented as
hard and/or soft constraints. In the first case, satisfying limiting conditions is mandatory
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and formed by additional linear or nonlinear equalities and inequalities. In the second case,
the restrictions themselves are included in the objective function [12], which determines
the influence of the criteria but allows for violations of the limits for exceptional reasons.
For example, this approach is appropriate in cases when a safe distance between vehicles
in the same lane is not ensured.

Obstacles: In real conditions, the AV must maneuver among moving and stationary
obstacles [13]. One of the main tasks on AV’s motion-planning strategy is to prevent
collisions and maintain safe distances [14]. The issue is complicated by the fact that it is
difficult to accurately estimate the motion directions and speeds of other participants for
a relatively long time. In this regard, it may be assumed that during AV’s maneuvering,
other vehicles barely change the nature of their movement. Thus, the task is to maximize
the distances between vehicles while maneuvering, considering vehicles’ safety contours.

This study continues a series of our research on developing algorithms for AV motion
planning. Initially, in paper [15], we outlined the main approaches to modeling trajectory
and speed modes based on the vehicle kinematics model. At the same time, the sequential
approach to optimizing the trajectory and speed was used. In the next research [16], we
stipulated an advantage of using integral forms of the equality constraints instead of point
ones. In articles [17], we tested various numerical integration schemes in optimization
problems of motion planning.

Based on the above, we shall consider a motion-planning technique that involves the
simultaneous prediction of trajectory and speed mode within a single finite element (FE)
of the variable reference length. At the same time, depending on the number of lanes and
presence of obstacles, trajectory variants are to be analyzed and estimated followed by
possible selection of an optimal strategy in specific initial conditions. The general strategy
of the technique is shown in Figure 1.
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2. Motion-Planning Concept

Let us assume that AV forms a motion trajectory relative to the midline of a lane on
which it is currently located [18,19] (Figure 2). Such a line may be obtained, for example,
by the cubic spline interpolation providing sufficient smoothness and representing the
curvature of a road section. If functional dependencies x = x(sr), y = y(sr) are built for a
section, then, varying the parameter sr relative to the initial path length sr0, it is possible to
determine the values xsr, ysr corresponding to the zero point of the lateral displacement L
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along the road width. Thus, the coordinates xf, yf of the AV mass center’s final position can
be calculated as

x f = xsr − L f sin
(

α f

)
, y f = ysr + L f cos

(
α f

)
(1)

where αf = the midline curve’s tangent slope at the point xsr, and Lf = AV mass center’s
lateral displacement at the final point.
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Since the transverse coordinate L is always perpendicular to the curve sr, the AV’s final
angular position on any lane has ideally the same value αf. However, the angle α actual
value may for various reasons deviate from the ideal value, which is associated with the
desired angle αd. In the transverse direction, AV may be located in any lane by introducing
such a parameter as the desired lateral displacement (position) Ld. Thus, the trajectory can
be represented as a piecewise polynomial function with the basis D = xf − x0.

Trajectory. Let us apply the Hermitian interpretation of Lagrange polynomials [20]
using basis functions and nodal degrees of freedom (DOFs). To model the trajectory as a
function y(x), the fifth-degree polynomial (p = 5) may be considered, which requires three
DOFs in a node. Then, y(x) may be expressed in the vector form

A =
(
c0 · · · cp

)T , X =
(
x0 · · · xp)T , y(x) = ATX, (2)

where cj = polynomial coefficient, j ∈ [0, p].
If define k = ((p + 1)/2 − 1) first derivatives of the vector X (where p is odd) and substitute

the x-coordinates of the initial (0) and final (D) nodes, the matrix B is composed as

B =



XT(0)
...

dkXT/dxk(0)
XT(D)

...
dkXT/dxk(D)


, BA = Qtr, A = B−1Qtr, F =

(
BT
)−1

X, (3)

where Qtr = set of trajectory nodal parameters.
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As a result, expressions of Equations (2) and (3) are linked in the form

y(x) =
(

B−1Qtr

)T
X = QT

tr

(
BT
)−1

X = QT
trF (4)

Considering one final element (FE) of the length D, the function y(x) may be repre-
sented by the sets of shape functions and DOF values. Then

Qtr =

 qtr(1)
...

qtr(p+1)

, F =

 f1
...

fp+1

, y(x) = QT
trF (5)

where fj = shape function and qj = weight coefficient or DOF, j ∈ [1, p+1].
If we assume x = ξD, where parameter ξ ∈ [0, 1], then the shape functions may be

derived through basis functions for an element of unit length. Thus, the basis functions Fξ

of the argument ξ ∈ [0, 1] are universal for the variable length D of a roadway segment.
Defining the vector D and matrix Dd

D =
(

D0 · · · Dk), Dd = diag
(
D D

)
(6)

where k = ((p + 1)/2 – 1).
Thus, the functions F of Equation (3) may be replaced by the basis functions of the

parameter ξ
F = DdFξ , y(x) = y(Qtr, D, ξ) = QT

trDdFξ (7)

Then, for the k-th derivative,

dky
dxk =

d
Ddξ

(
1

Dk−1 QT
trDd

dk−1Fξ

dξk−1

)
=

d
Ddξ

(
1

Dk−1 QT
trDd

dk−1Fξ

dξk−1

)
= QT

tr

(
Dd

Dk

)
dkFξ

dξk (8)

Speed Model can be organized in the same way as the trajectory. We assume that the
AV longitudinal speed Vζ is distributed along the trajectory projection on the x-coordinate.
According to Equations (3)–(8), the longitudinal component and its k-th derivative may be
expressed as follows

Vζ(x) = QT
spDdFξ ,

dkVζ

dxk = QT
sp

(
Dd

Dk

)
dkFξ

dξk (9)

where Qsp = set of speed nodal parameters.
Full set of parameters. Since we consider one segment with initial (0) and final (f)

points, each of them containing three DOFs, we need six variable parameters for each Qtr
and Qsp to simultaneously search the trajectory y(x) and speed distribution Vζ(x). Then,
introducing nodal vectors

qtr0 =

qtr(1)
qtr(2)
qtr(3)

 =


y0

dy
dx

∣∣∣
0

d2y
dx2

∣∣∣
0

, qtr f =

qtr(4)
qtr(5)
qtr(6)

 =


y f

dy
dx

∣∣∣
f

d2y
dx2

∣∣∣
f

, Qtr =

(
qtr0
qtr f

)

qsp0 =

qsp(1)
qsp(2)
qsp(3)

 =


Vζ0

dVζ

dx

∣∣∣
0

d2Vζ

dx2

∣∣∣∣
0

, qsp f =

qsp(4)
qsp(5)
qsp(6)

 =


Vζ f

dVζ

dx

∣∣∣
f

d2Vζ

dx2

∣∣∣∣
f

, Qsp =

(
qsp0
qsp f

)
,

(10)

The vectors Qtr and Qsp completely determine the configuration of the trajectory
and speed distributions within the segment D. Nevertheless, not all of their members are
variable parameters. Note that at the initial node the vectors qtr0, qsp0 are usually known
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from the previous solution. In turn, strict constraints may be imposed on the values of
vectors qtr0, qsp0, which reduces the number of parameters to be optimized.

Note that the nodal parameter yf is not independent in its pure form but is calculated
from Equation (1), where the parameters sr and L are involved. Their variation determines
a combination of yf and D. Thus, it is possible to form a set of variable parameters that best
reflect both the trajectory shape and the speed distribution.

q =

(
sr L f

dy
dx

∣∣∣
f

d2y
dx2

∣∣∣
f

Vζ f
dVζ

dx

∣∣∣
f

d2Vζ

dx2

∣∣∣∣
f

)T

(11)

In the case of the strict finite transverse displacement Lf and the corresponding angle
αf, these parameters depend only on the variable sr, and the set of Equation (11) is shortened

q =

(
sr

d2y
dx2

∣∣∣
f

Vζ f
dVζ

dx

∣∣∣
f

d2Vζ

dx2

∣∣∣∣
f

)T

(12)

Numerical Integration Technique. To simultaneously satisfy the rapidity and quality
of calculations, we shall use the numerical integration based on the N-point Gaussian
quadrature scheme. Assume that some integrand z(x) is considered within a segment
[xi−1, xi], then, expressing x = ξD∫ D

0
z(x)dx = D

∫ 1

0
z(Q, D, ξ)dξ ≈ D∑N

k=1 wkz(ξ(ϑk))det(J(ϑk)) (13)

where wk = integration weight in the k-th point, ϑk—k-th point in the master–element
coordinate system, J = Jacobian, k ∈ [1, N], and N = number of integration points.

For one-dimensional FE

ξ(ϑk) =
(ξ1 − ξ0)

2
(ϑk + 1) + ξ0 =

1
2
(ϑk + 1), det(J) =

ξ1 − ξ0

2
=

1
2

(14)

Denoting the vectors,

ϑ =

 ϑ1
...

ϑN

, w =

w1
...

wN

, ξ =

 ξ1
...

ξN


T

, z =

 z1
...

zN


T

(15)

The short expression for calculating the integral becomes

D
∫ 1

0
z(Q, D, ξ)dξ ≈ D

2
zw (16)

where D = section length and z = vector of integrands of 1 × N size.
In most cases, we will need not only final integral values but also intermediate ones

corresponding to the points xi (or ξi). That is, the integration must also be conducted on
the sections [xi−1, xi]. ∫ xi

xi−1
z(x)dx = D

∫ ξi
ξi−1

z(Dξ)dξ =

D∆ξ i
∫ 1

0 z(Dξ(ϑ))dϑ =
D
2 ∆ξ i∑

N
k=1 z(Dξi(ϑk))wk =

D
2 ∆ξ i∑

N
k=1 wkz

(
D, ξ i,k

)
= D

2 ∆ξ iz
T
i w

(17)

If we combine all increments ∆ξi in a row vector ∆ξ, then the sum of Equation (13) can
be obtained as follows ∫ D

0
z(x)dx =

D
2

∆ξdiag
(

zT
)

w (18)
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Planning Strategy in the Presence of Obstacles. Let us consider the AV motion in
the presence of other vehicles (Figure 3). We assume, for instance, that AV is moving along
the middle (2) lane and may perform three maneuver variants [21]: lane changes to the
first (1) and third (3) lanes and following the second lane. In terms of geometric sense,
such a rearrangement may be considered the best, which ensures keeping the greatest
distance from an obstacle. At the moment of starting the motion planning (1)–(4), AV fixes
the midline points of the current lane in such a way to form smooth conjugations (splines)
reflecting the road curvature. Then, considering the number of lanes, the longitudinal sr
and transverse L coordinates, it is possible to build a curvilinear grid of the road segment
space relative to which the motion is planned.
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By using radars, AV can obtain distances to objects and angles of measuring beams.
Then, the coordinates of vehicles’ initial positions may be calculated relative to the AV’s
xy coordinate system. To do this, we use the vehicle safety zones (contours) represented
by conditional circles. Thus, for a passenger vehicle, three round areas of radius r relative
to the front, middle, and rear vehicle parts are enough to form the safety contour. The
positions of the front and back parts’ centers are calculated as follows

xcp = xc + hpcos(ϕ), ycp = yc + hpsin(ϕ), p ∈ [ f , r] (19)

where xc, yc = coordinates of the vehicle’s mass center, hf, hr = distances to the conditional
centers of the vehicle’s front and rear parts, respectively, ϕ = yaw angle.

Thus, considering the radar measurements, the positions of other vehicles’ centers can
be estimated, and based on them and the predetermined road segment curvilinear grid, the
lateral displacements Li,0 can be found. This helps to determine the corresponding traffic
lane for each moving obstacle. If the lane’s midline as the vehicle’s current trajectory is
considered, then, similarly to AV, we can compose interpolation dependencies xi = xi(si),
yi = yi(si), i ∈ [1, Nv], where Nv is the number of fixed vehicles.

Therefore, we may estimate the vehicle motion parameters in discrete points over
time intervals ∆t and the total AV’s motion time tf. If vehicles’ speeds Vi are accepted
to be constants, then, the paths for the intervals ∆t are ∆si = Vi∆t and for the total time
si = Vitf. Knowing the paths, it is possible to determine coordinates xi, yi by the predefined
interpolation. Then, considering the radius of safety zones ri, the distance between the AV
(0) and an i-th obstacle vehicle can be evaluated as

di =
√(

xcp0 − xcpi
)2

+
(
ycp0 − ycpi

)2 − r0 − ri, p ∈ [ f , r] (20)

Note that, strictly speaking, to determine the vehicle mass center’s position, it is
necessary to identify a vehicle and estimate its overall dimensions and wheelbase, which
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somewhat complicates the calculations. In this regard, we assume that moving obstacles
behind AV may be conditionally defined by circles centered at the vehicles’ fronts, and
obstacles ahead of AV may be represented by circles centered at the vehicles’ rears. The
corresponding centers can be easily found by estimating the overall width of a moving
obstacle. Then, the parameters Li,0 can be replaced by Li,f and Li,r, respectively. Thus, the
trajectories of moving obstacles can be considered as the trajectories of the safety contour
circles’ centers.

Time. The time interval ∆ti between AV’s positions i − 1 and i can be calculated by
the integration, considering the trajectory s and speed V

∆ti =
∫ τi

τi−1

dτ =
∫ s(i)

s(i−1)

ds
V(s)

=
∫ xi

xi−1

dx
Vx(x)

=
∫ xi

xi−1

zti(x)dx, zti(x) =
1

Vx(x)
(21)

Each segment [xi−1, xi], in turn, may also be represented by a finite element corre-
sponding to a range [ξi−1, ξi] and again considered in the segment ϑ ∈ [0, 1]. Then∫ xi

xi−1

zti(x)dx = D
∫ ξi

ξi−1

zti(ξ)dξ = D∆ξ i

∫ 1

0
zti(Dξ(ϑ))dϑ (22)

Passing to numerical integration according to Equation (17), we obtain

∆ti = D
∆ξ i
2 ∑N

k=1 zti(Dξi(ϑk))wk = D
∆ξ i
2

zT
tiw (23)

Thus, it is possible to form a vector of time increments

∆t =
(
∆t1 · · · ∆tn

)T (24)

where n = number of intervals.
The vector of time points can be obtained by the accumulative addition:

t =
(
0 ∑1

i=1 ∆ti · · · ∑n
i=1 ∆ti

)T
, t f = ∑n

i=1 ∆ti (25)

Provided that the segment ξ ∈ [0, 1] is represented by the vector of increments ∆ξ, the
final time can also be obtained as follows

t f =
D
2

∆ξdiag
(

zT
t

)
w (26)

Spatial Constraints. The requirement of non-violating the roadway boundaries is
the main limiting factor. It can be used as a hard or soft constraint. In the first case, it
is assumed that there must be no safety contour exceeding the roadway boundaries. In
the second case, it is possible to allow the crossing of the solid marking line subject to a
critical approach to an obstacle. In this case, we shall use strict conditions. If the maximum
lateral coordinate relative to an AV’s initial position as LU (upper limit) is denoted for
moving leftward and as LL (lower limit) for the right bias, then the conditions for each
point p ∈ [0, f, r] of the central, front, and rear vehicle’s parts have the form

L0,p + r0 ≤ LU , L0,p − r0 ≥ LL (27)

In the case of riding on the same lane, the safety conditions can be enhanced by the
values LU and LL equal to half the lane width with the corresponding sign. As a result,
by setting the upper (left) and lower (right) boundaries, it is possible to limit the lateral
displacement for each trajectory variant. Note that the values of L0,p can be obtained
directly by interpolating the known coordinates from Equation (13).
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3. Motion-Modeling Technique
3.1. Basics of Trajectory Geometry

Let us briefly describe the main components of the vehicle trajectory geometry with
the ideal controllability based on the kinematic model.

The elementary arc length of the trajectory represented by function y(x) is

ds =
√

dx2 + dy2 =
√

1 + y′2x dx (28)

Then, the arc’s first derivative along the x-coordinate is

s′x =
ds
dx

=
√

1 + y′2x , ds = s′xdx (29)

The second derivative concerning the x-coordinate is

s′′x =
ds′x
dx

=
1
2

1√
1 + y′2x

d
dx

y′2x =
y′xy′′

x
s′x

(30)

The third derivative concerning the x-coordinate is

s′′′x =
1
s′x

(
y
′′2
x − s

′′2
x + y′xy′′′

x

)
=

1
s′x

((
y′′

x + s′′x
)(

y′′
x − s′′x

)
+ y′xy′′′

x
)

(31)

The derivative at any trajectory point is tied to the slope angle’s tangent

y′x = tan(α(x)), α(x) = arctan
(
y′x
)

(32)

The expressions of Equation (29), considering Equation (32), may be rewritten as follows:

s′x =
√

1 + tan2(α(x)) = sec(α(x)) = 1/cos(α(x)) (33)

The first derivative of the slope angle concerning the x-coordinate is

α′x =
dα

dx
=

d
dx

arctan
(
y′x
)
=

1

1 + (y′x)
2 y′′

x =
y′′

x

s′2x
(34)

The change of the tangent slope angle along the arc s length is the curvature K

K = α′s =
dα

ds
=

dα

dx
dx
ds

=
dα

dx
/

ds
dx

=
α′x
s′x

(35)

The second derivative concerning x is

α
′′
x =

d2α

dx2 =
d

dx

(
y′′

x

s′2x

)
=

y′′′
x

s′2x
− 2

y′′
x

s′3x

ds′x
dx

=
y′′′

x

s′2x
− 2Ks′′x (36)

The curvature’s change along the arc s is

dK
ds

=
dα′s
ds

=
d

dx

(
α′x
s′x

)
/

ds
dx

=
1
s′x

dK
dx

=
K′

x
s′x

(37)

In turn, the curvature’s change of along the x-coordinate is

K′
x =

dK
dx

=
1
s′x

(
y′′′

x

s′2x
− 2Ks′′x − Ks′′x

)
=

1
s′x

(
α
′′
x − Ks′′x

)
(38)
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The second derivative concerning the x-coordinate is

K′′
x =

d2K
dx2 =

1
s′x

(
y(4)x

s′2x
− 2s′′x

(
y′′′

x

s′3x
+ 2K′

x

)
− 3Ks′′′x

)
(39)

The instantaneous radius is defined as the reciprocal of the curvature

R = 1/K (40)

The central slip angle β characterizes the ratio between the lateral and longitudinal
components of the mass center speed and is evaluated as follows

β = arcsin(b/R) = arcsin(bK) (41)

The first derivative of β along the x-coordinate is

β′
x =

d
dx

(arcsin(bK)) =
b√

1 − (bK)2

dK
dx

= kβK′
x (42)

where the coefficient
kβ =

b√
1 − (bK)2

(43)

Its derivative is given by

k′βx =
dkβ

dx
= k3

βKK′
x (44)

Then, the second derivative of β concerning x is

β
′′
x =

d2β

dx2 =
dβ′

x
dx

=
d

dx
(
kβK′

x
)
= kβ

(
Kβ′2

x + K′′
x

)
(45)

The vehicle’s yaw angle ϕ is obtained through the tangent slope angle and the central
slip angle as follows

ϕ = α − β (46)

3.2. Basics of Vehicle Kinematics Model

The vehicle’s mass center trajectory is geometrically related to the longitudinal Vζ and
transverse Vµ speeds (Figure 2) based on the assumption that there is no tire’s sideslip. The
mass center’s absolute speed may be decomposed as follows

→
V = V

→
τ + 0

→
ν = Vζ

→
u ζ + Vµ

→
u µ = Vx

→
u x + Vy

→
u y (47)

where
→
τ ,

→
ν = natural coordinate system’s unit vectors,

→
u ζ ,

→
u µ = unit vectors of the vehicle

local coordinate system ζµ, and
→
u x,

→
u y, Vx, Vy = unit vectors and speed components of the

fixed (global) coordinate system xy.
The longitudinal speed Vζ and its k-th derivatives, according to Equation (9), is

expressed in the forms

Vζ(x) = QT
spDdFξ ,

dkVζ

dxk = QT
sp

(
Dd

Dk

)
dkFξ

dξk (48)

To obtain the kinematic parameters related to the AV dynamics, the following deriva-
tives concerning the time t are needed

dVζ

dt
=

dVζ

dx
dx
dt

=
dVζ

dx
Vx,

d2Vζ

dt2 =
d2Vζ

dx2 V2
x +

dVζ

dx
dVx

dx
Vx (49)
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The projection Vx and longitudinal speed Vζ are tied through the tangent angle α and
central slip angle β. Then,

V =
ds
dt

=
ds
dx

dx
dt

=
Vx

cos(α)
=

Vζ

cos(β)
, Vx = Vζ

cos(α)
cos(β)

(50)

The first derivative concerning the coordinate x is

dVx

dx
=

(
dVζ

dx
+ Vζ

(
dβ

dx
tan(β)− dα

dx
tan(α)

))
cos(α)
cos(β)

(51)

The lateral speed Vµ is defined by the longitudinal component Vζ and the central slip
angle β

Vµ = Vζtan(β) (52)

The derivatives concerning time and x-coordinate obtain

dVµ

dt =
dVµ

dx
dx
dt =

dVµ

dx Vx, dVµ

dx =
dVζ

dx tan(β) + Vζ
dβ
dx sec2(β),

d2Vµ

dt2 =

(
d2Vµ

dx2 Vx +
dVµ

dx
dVx
dx

)
Vx,

d2Vµ

dx2 =
d2Vζ

dx2 tan(β) +
(

Vζ
d2β

dx2 + 2 dβ
dx

(
dVζ

dx + Vµ
dβ
dx

))
sec2(β)

(53)

The yaw rate is the derivation of yaw angle ϕ = α – β. Thus, its view and derivative
component concerning the x-coordinate are

ω =
dϕ

dt
=

dϕ

dx
dx
dt

=
dϕ

dx
Vx,

dω

dx
=

d
dx

(
dϕ

dx
Vx

)
=

d2ϕ

dx2 Vx +
dVx

dx
dϕ

dx
, (54)

The angular acceleration ε is the derivative of the yaw rate ω concerning the time t

ε =
dω

dt
=

dω

dx
dx
dt

=
dω

dx
Vx =

d2ϕ

dx2 V2
x +

dVx

dx
ω (55)

The longitudinal and lateral accelerations in the vehicle’s local coordinates ζµ

→
a =

d
→
V

dt
=

(
aζ

aµ

)T
(→

u ζ
→
u µ

)
,
(

aζ

aµ

)
=

(
dVζ

dt − ωVµ
dVµ

dt + ωVζ

)
(56)

The longitudinal and lateral jerks in the vehicle’s local coordinates ζµ

→
j =

d
→
a

dt
=

(
jζ
jµ

)T
(→

u ζ
→
u µ

)
=

 d2Vζ

dt2 −
(

2 dVµ

dt + Vζ ω
)

ω − εVµ

d2Vµ

dt2 +
(

2 dVζ

dt − Vµω
)

ω + εVζ

T(→
u ζ
→
u µ

)
(57)

4. Optimization and Constraints
4.1. Optimization Criteria

Note that the criteria for finding an optimal solution can be conditionally divided into
dynamic and static. The first ones are generally time (speed) functions. Their common
impact is aimed at ensuring trajectory smoothness and maneuver rapidity. The static
criteria, in turn, are tied to parameters of the vehicle’s final position, being responsible for
the AV’s disposition on the lane and the course direction. Let us consider the criteria in
more detail.
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The longitudinal speed deviation relative to a preset upper-level VζU may be the main
“moving” factor of the AV model. The integral of the squared velocity deviation has
the form

IV =
∫ t f

0
(
VζU − Vζ

)2dt =
∫ s

0

(
VζU − Vζ

)2 ds
V =∫ D

0

(
VζU − Vζ

)2 dx
Vx(x) = D

∫ 1
0

(
VζU − Vζ

)2 dξ
Vx(x)

(58)

The integrand zV(ξ) is expressed through the speed nodal parameters Qsp

zV(ξ) =
(

VζU − Vζ

(
Qsp, D, ξ

))2
/Vx

(
Qsp, D, ξ

)
, zV = zV

(
Qsp, D, ξ

(
ϑT
))

(59)

Then,

IV ≈ D
2

∆ξzVw (60)

The longitudinal and lateral jerk criteria [22] include all the kinematic parameters con-
taining curvature and its derivatives. Thus, these criteria reflect the transient dynamics in
two directions. The longitudinal direction is to a greater extent associated with the vehicle
traction process, and the lateral direction is generally related to the steering control. The
common approach is as follows

Ijp =
∫ t f

0
j2pdt =

∫ s

0
j2p

ds
V

=
∫ D

0
j2p

dx
Vx(x)

= D
∫ 1

0
j2p

dξ

Vx(Dξ)
= D

∫ 1

0
zjp(ξ)dξ, p ∈ [ζ, µ] (61)

The integrand zjp(ξ) is determined according to Equations (14)–(16) and depends on
both trajectory Qtr and speed Qsp parameters, then, obtain

zjp(ξ) = j2p
(

Qtr, Qsp, D, ξ
)

/Vx

(
Qsp, D, ξ

)
, zjp = zjp

(
Qtr, Qsp, D, ξ

(
ϑT
))

(62)

Then,

Ijp ≈ D
2

∆ξzjpw (63)

Motion time T reflects final time costs and may be calculated as follows

It =
∫ t f

0
dt =

∫ s

0

ds
V(s)

=
∫ D

0

dx
Vx(x)

= D
∫ 1

0

dξ

Vx(Dξ)
= D

∫ 1

0
zT(ξ)dξ (64)

According to Equations (10) and (12), the integrand zT(ξ) and T value

zT(ξ) =
1

Vx

(
Qsp, D, ξ

) , zT = zT

(
Qtr, Qsp, D, ξ

(
ϑT
))

, T = IT ≈ D
2

∆ξzTw, (65)

The final lateral position Lf should best match the desired lateral displacement Ld to sat-
isfy the safe completion of maneuver and to control distances to the lane boundaries. Then,

IL =
(

L f − Ld

)2
(66)

The final tangent angle αf characterizes the vehicle control stability at the end of the
maneuver, directly affecting the safety of subsequent motion. The desired value αd must be
defined by the road curve’s tangent at the vehicle’s final position. Then

Iα =
(

α f − αd

)2
(67)

The position Ld and angle αf depend on the lane to which a maneuver is planned.
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Distances to moving obstacles. Let us assume that the distance between AV and a moving
obstacle changes continuously. Then, the integral of the distance square between AV and
i-th vehicle has the form

Sdi =
∫ t f

0
d2

i dt =
∫ s f

0
d2

i
ds

V(s)
=
∫ D

0
d2

i
dx

Vx(x)
= D

∫ 1

0

d2
i

Vx(Dξ)
dξ = D

∫ 1

0
zdi(ξ)dξ (68)

Using the schemes described above, it can be written

zdi(ξ) =
d2

i

(
Qtr, Qsp, D, ξ

)
Vx

(
Qsp, D, ξ

) , zdi = zdi

(
Qtr, Qsp, D, ξ

(
ϑT
))

, Sdi ≈
D
2

∆ξzdiw, (69)

Since each new motion variant is planned separately, only those n vehicles detected
by the AV sensory system on the destination lane are considered. Thus, the influence of
criterion is inversely proportional to the sum of integrals

Id = ∑n
i=1

1
Sdi

(70)

Cost Function Cf is formed as the sum of the weighted criteria indicated above. The
condition of minimizing the objective function has the view

C f = C f (q) = WTI(q) = WTI → min (71)

where q = vector of the search-for parameters; I = vector of the integral criteria; W = vector
of weight factors. Thus,

W =



WV
Wjζ
Wjµ
Wt
WL
Wα

Wd
Ws


, I = I(q) =



IV(q)
Ijζ(q)
Ijµ(q)
It(q)
IL(q)
Iα(q)
Id(q)
Is(q)


(72)

where WV, Wjζ , Wjµ, Wt, WL, Wα, Wd, Ws = weight coefficients for quadratic deviations of
the speed, longitudinal and lateral jerks, final time, final lateral offset, final angular position,
distances to obstacles, and final distance between vehicles at the end of maneuver, respectively.

4.2. Constraints

General approach. Kinematic, dynamic, and physical parameters of vehicle motion
may be restricted. Usually, parameters’ values are constrained in the control points. Nev-
ertheless, this does not guarantee the non-violation of limits between these points by a
considered function. If it is supposed that all the parameters are represented by smooth
functions, the integral approach to constraints may be implemented based on the same
Gaussian scheme applied for the cost function calculation. Let us consider the general tech-
nique for some parameter ψ, which must not exceed the upper ψU and lower ψL bounds.
Then, the sum of the areas between the upper limit and the ψ-function and between the
lower limit and the ψ-function must be strictly equal to the area within limits. That is, if the
ψ-function is determined relative to the time∫ t f

0
(ψU − ψL)dt =

∫ t f

0
|ψU − ψ|dt +

∫ t f

0
|ψ − ψL|dt (73)
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Each integral can be considered concerning the spatial coordinate by replacing the
time differential. Integral between upper and lower bounds (ul):∫ t f

0
(ψU − ψL)dt =

∫ s f

0
(ψU − ψL)

ds
V(s)

= D
∫ 1

0

(ψU − ψL)

Vx(Dξ)
dξ = D

∫ 1

0
z(ul)

ψ (ξ)dξ (74)

Similar to Equations (16)–(18),

z(ul)
ψ (ξ) =

(ψU − ψL)

Vx(Dξ)
, z(ul)

ψ = z(ul)
ψ

(
ξ
(

ϑT
))

, I(ul)
ψ ≈ D

2
∆ξz(ul)

ψj w, (75)

Integral between the upper bound and ψ-function (uf ):∫ t f

0
|ψU − ψ|dt =

∫ s f

0
|ψU − ψ| ds

V(s)
= D

∫ 1

0

|ψU − ψ|
Vx(Dξ)

dξ = D
∫ 1

0
z(u f )

ψ (ξ)dξ (76)

Thus,

z(u f )
ψ (ξ) =

|ψU − ψ|
Vx(Dξ)

, z(u f )
ψ = z(u f )

ψ

(
ξ
(

ϑT
))

, I(u f )
ψ ≈ D

2
∆ξz(u f )

ψ w, (77)

Integral between the ψ-function and lower bound (fl):∫ t f

0
|ψ − ψL|dt =

∫ s f

0
|ψ − ψL|

ds
V(s)

= D
∫ 1

0

|ψ − ψL|
Vx(Dξ)

dξ = D
∫ 1

0
z( f l)

ψ (ξ)dξ (78)

Thus,

z( f l)
ψ (ξ) =

|ψ − ψL|
Vx(Dξ)

, z( f l)
ψ = z( f l)

ψ

(
ξ
(

ϑT
))

, I( f l)
ψ ≈ D

2
∆ξz( f l)

ψ w, (79)

The requirement of nonlinear equality constraint within the segment D is expressed
as follows

cψ = I(ul)
ψ − I(u f )

ψ − I( f l)
ψ = 0 (80)

Kinematic constraints. Using the scheme above, we may compose a vector ck of
nonlinear integral constraints for a set of kinematic parameters ψk, considering vectors of
upper ψkU and lower ψkL limits.

ψk =


Vζ

ω
ε
jζ

, ψkU =


VζU
ωU
εU
jζU

, ψkL =


VζL
ωL
εL
jζL

, ck =


cVζ

cω

cε

cjζ

 (81)

Physical constraints. Subject to a relatively equal distribution of longitudinal and
transverse forces between the AV wheels, the critical speed Vζs criterion may be used
stipulated by limiting the stable motion depending on the trajectory’s curvature [21] and
tire-road adhesion. It can be derived as follows

Vζs =
√

gφµcos(β)/K (82)

where g = gravity acceleration constant, φµ = lateral adhesion coefficient.
If maximum tire-road adhesion is φmax and the adhesion in the longitudinal direction

requires a potential φζ , the remaining lateral adhesion potential is

φµ = φmax

√
1 −

(
φζ/φmax

)2 (83)
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The longitudinal φζ may be found through the equation of longitudinal dynamics in
the dimensionless form

φζ = aζ/g + fd + fr (84)

where fr = coefficient of total rolling resistance, and fd = specific drag force.
The longitudinal speed Vζ must not exceed a threshold according to the condition

Vζ < Vζs. Vζs may change in a range [Vζsmin, ∞). Thus, a rapidly saturating function may
be applied, for instance, χ(·) = tanh(·). Then, the condition similar to Equation (73) is∫ t f

0
χ
(
Vζs
)
dt =

∫ t f

0

∣∣χ(Vζs
)
− χ

(
Vζ

)∣∣dt +
∫ t f

0
χ
(
Vζ

)
dt (85)

Using Equations (74)–(80), it is possible to impose physical restrictions on the AV
speed. Then

ψp = Vζ , ψpU = Vζs, ψkL = 0, cp = cVζ (86)

A special case concerns the vehicle’s traction potential. The vehicle’s maximum
acceleration strictly depends on design features and decreases with growing speed. Thus, if
the vehicle’s speed–acceleration characteristic is predefined, the following condition must
be satisfied∫ Vζ(i)max

Vζ(i)min

(
aζU − aζL

)
dVζ =

∫ Vζ(i)max

Vζ(i)min

∣∣aζU − aζ

∣∣dVζ +
∫ Vζ(i)max

Vζ(i)min

∣∣aζ − aζL
∣∣dVζ (87)

where aζU, aζL = upper and lower limit values of acceleration achievable by the vehicle.
The general scheme for obtaining integrals is the same as Equations (74)–(80). Then,

the dynamic constraint has the form

ψd = aζ , ψdU = aζU , ψdL = aζL, cd = caζ (88)

Boundary constraints. Another type of constraint determines boundary conditions
of kinematic parameters. Since the initial (0) values defined in Equation (10) are known
or may be evaluated directly, one can require (but not necessarily), for example, that the
predicted final (f) values of acceleration and jerk would correspond to desirable values Aζf
and Jζf. That is,

ψb =

(
aζ f
jζ f

)
, ψb f =

(
Aζ f
Jζ f

)
, cb = ψb − ψb f = 0 (89)

Complete Set of Constraints. Combining all the parameters defined in the kine-
matic, physical, dynamic, and boundary constraints, the vectors of parameters, limits, and
nonlinear constraints are as follows

ψ =


ψk
ψp
ψd
ψb

, ψU =


ψkU
ψpU
ψdU
ψb0

, ψL =


ψkL
ψpL
ψdL
ψb f

, ceq =


ck
cp
cd
cb

 (90)

Initial conditions. If the sought-for parameters from the previous cycle are known,
they are automatically accepted as the initial ones for the next planning. To determine the
initial parameters qtr0 and qsp0, the expressions of Equations (32)–(40) and (49)–(57) are to
be used.

In Equation (10), the initial parameters for the first cycle are not set. To form geometric
nodal parameters, first, the nearest point [xr0, yr0] corresponding to the zero-path length sr0
is determined on the reference curve. This allows for the estimation of the initial distance
L0 to the reference provided that the center of the Cartesian coordinate system is tied to the
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vehicle’s mass center. Then, x0 = 0, y0 = 0. Assuming that at the initial time moment, AV
follows parallel to the reference,

dy
dx

∣∣∣∣
0
=

dyr

dxr

∣∣∣∣
sr=0

, subject to
dL
dx

∣∣∣∣
0
= 0 (91)

We determine the next initial parameter from the curvatures of the trajectory and
reference. By analogy with Equations (34) and (35)

Kr =
y′′

rx

s′3rx
, Kt =

y′′
tx

s′3tx
, Kt =

1
Rr − L

=
1

1−LKr
Kr

=
Kr

1 − LKr
(92)

where r, t = reference and trajectory, correspondingly.
Then,

d2y
dx2

∣∣∣∣
0
= y′′

tx = Kts′3tx, y′′
tx =

s′3tx
1 − Ly′′

rx/s′3rx

y′′
rx

s′3rx
=

y′′
rxs′3rx

s′3rx + Ly′′
rx

(93)

Therefore, due to Equations (29) and (91), for the points [xr0, yr0] и [x0, y0]

s′tx = s′rx, s′′tx = s′′rx (94)

To work with speed derivatives, we need the trajectory’s third derivative, which can
be obtained from Equation (93)

y′′′
tx =

d
dx

(
y′′

x s′3tx
s′3x + Ly′′

x

)
=

(
s′3txy′′′

x + 3y′′
x s′2txs′′tx

)(
s′3x + Ly′′

x
)
−
(
y′′

x s′3tx
)(

3s′2x s′′tx + y′′
x

dL
dx + Ly′′′

x

)
(
s′3x + Ly′′

x
)2 (95)

Or after considering Equation (91)

y′′′
tx =

s′2rx
((

s′rxy′′′
rx + 3y′′

rxs′′rx
)(

s′3rx + Ly′′
rx
)
− y′′

rxs′rx
(
3s′2rxs′′rx + Ly′′′

rx
))(

s′3rx + Ly′′
rx
)2 (96)

If the reference is mathematically predefined, the first three derivatives are easy to
obtain.

To define the initial speed parameters, the values Vζ0, aζ0, jζ0, and the expressions
Equations (47)–(57) are used.

5. Simulation

We use the data of the Audi A4 3.2 FSI [23] to represent the AV. All the calculations
are accomplished by using MATLAB tools [24]. The basic function to realize the optimiza-
tion procedure is fmincon. The five-point Gauss quadrature scheme is accepted for the
numerical integration, and the relative path step is ∆ξ = 0.1.

Let us define constraints and initial values. Speed

Vζ0 = 60
[

km
h

]
, VζU = 80

[
km
h

]
, VζL = 50

[
km
h

]
(97)

Acceleration

aζU = φmaxg
[m

s2

]
, aζL = −0.5

[m
s2

]
, aζ0 = aζ f = 0

[m
s2

]
, aζlim = aζlim

(
Vζ

)
(98)

where aζlim = function of the vehicle throttle response characteristic.
Jerk

jζU = 13
[m

s3

]
, jζL = −6.5

[m
s3

]
, jζ f = 0

[m
s3

]
, (99)
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Yaw rate

ωU = 0.5
[

rad
s

]
, ωL = −0.5

[
rad

s

]
(100)

Angular acceleration

εU = 3
[

rad
s2

]
, εL = −3

[
rad
s2

]
(101)

First, let us set the values of the weight coefficients W in Equation (72).

W =
(
3 1 1 10 103 103 5 10

)T (102)

Considering the order of variable parameters, the coefficient values were selected
based on the condition of the influence proportionality but with an emphasis on safety and
maneuver precision.

Let us define constraints and initial values. Speed

Vζ0 = 60
[

km
h

]
, VζU = 80

[
km
h

]
, VζL = 50

[
km
h

]
, (103)

Acceleration

aζU = φmaxg
[m

s2

]
, aζL = −0.5

[m
s2

]
, aζ0 = aζ f = 0

[m
s2

]
, aζlim = aζlim

(
Vζ

)
(104)

where aζlim = function of the vehicle throttle response characteristic.
Jerk

jζU = 13
[m

s3

]
, jζL = −6.5

[m
s3

]
, jζ f = 0

[m
s3

]
, (105)

Yaw rate

ωU = 0.5
[

rad
s

]
, ωL = −0.5

[
rad

s

]
(106)

Angular acceleration

εU = 3
[

rad
s2

]
, εL = −3

[
rad
s2

]
(107)

Experiment 1. Let us consider variants for the AV motion planning along a curved road
section with three lanes (Figure 4) under the condition of perfect adhesion with φmax = 0.85.
Note that many variants are possible regarding the lateral vehicle displacement L. However,
for the sake of compactness, we built three prediction variants related to the lane change
along the lanes’ midlines. The AV is surrounded by four moving obstacles denoted as vi,
i ∈ [1, 2, . . ., 4]. Further, Index 0 denotes the initial position, and f —is the final position.
The initial vehicles’ speeds were, respectively, Vi0 = (45, 50, 50, 60) km/h.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 26 
 

Jerk 𝑗 = 13 ,   𝑗 = −6.5 ,   𝑗 = 0 ,  (105)

Yaw rate 𝜔 = 0.5 𝑟𝑎𝑑𝑠 ,   𝜔 = −0.5 𝑟𝑎𝑑𝑠  (106)

Angular acceleration 𝜀 = 3 𝑟𝑎𝑑𝑠 ,   𝜀 = −3 𝑟𝑎𝑑𝑠  (107)

Experiment 1. Let us consider variants for the AV motion planning along a curved 
road section with three lanes (Figure 4) under the condition of perfect adhesion with φmax 
= 0.85. Note that many variants are possible regarding the lateral vehicle displacement L. 
However, for the sake of compactness, we built three prediction variants related to the 
lane change along the lanes’ midlines. The AV is surrounded by four moving obstacles 
denoted as vi, i ∈ [1, 2, …, 4]. Further, Index 0 denotes the initial position, and f - is the final 
position. The initial vehicles’ speeds were, respectively, Vi0 = (45, 50, 50, 60) km/h. 

 
Figure 4. Prediction of lane-change trajectories under the condition φmax = 0.85. 

As can be seen, moving to Lane 1 requires the greatest change in curvature and, ac-
cordingly, a larger basis than for passing to Lane 3. At the same time, the smallest change 
in curvature on Lane 2 and the distant position of the impeding vehicle allows for the 
maximum acceleration and length of the prediction basis. Note that while driving along 
Lane 2, the trajectory forecast does not tend to coincide with the centerline but is formed 
in such a way as to ensure the least curvature. 

Figure 5 depicts the results of forecasts for speeds and accelerations along with re-
strictions. The speed limits under the sideslip condition are shifted to the maneuver’s be-
ginning movement to Lane 1 and are shifted to the final phase for passing to Lane 3. The 
restrictions for following Lane 2 are significantly higher than the speed limit Vζmax and are 
not reflected in the figure’s boundaries. However, the speed in Lane 2 does not increase 
as the acceleration reaches the limit of the powertrain’s potential, and the final state of AV 
requires zero longitudinal acceleration. Note that the curvatures in the maneuvers’ final 
phases are approximately the same, which is reflected in the final values of lateral accel-
erations that are close in modules (Figure 5c). As seen in Figure 5d, not a single total ac-
celeration curve exceeds the limit amax by the adhesion properties. 

Figure 6 presents the kinematic and geometric parameters used to impose re-
strictions. As seen in Figure 6a, all the longitudinal jerk curves are well below the upper 
limit and do not exceed the lower limit. An important indicator is the smoothness and 
unambiguity of the yaw rate and acceleration curves (Figures 6b,c). This characterizes the 

Figure 4. Prediction of lane-change trajectories under the condition φmax = 0.85.



Appl. Sci. 2024, 14, 1579 18 of 24

As can be seen, moving to Lane 1 requires the greatest change in curvature and,
accordingly, a larger basis than for passing to Lane 3. At the same time, the smallest change
in curvature on Lane 2 and the distant position of the impeding vehicle allows for the
maximum acceleration and length of the prediction basis. Note that while driving along
Lane 2, the trajectory forecast does not tend to coincide with the centerline but is formed in
such a way as to ensure the least curvature.

Figure 5 depicts the results of forecasts for speeds and accelerations along with re-
strictions. The speed limits under the sideslip condition are shifted to the maneuver’s
beginning movement to Lane 1 and are shifted to the final phase for passing to Lane 3. The
restrictions for following Lane 2 are significantly higher than the speed limit Vζmax and are
not reflected in the figure’s boundaries. However, the speed in Lane 2 does not increase
as the acceleration reaches the limit of the powertrain’s potential, and the final state of
AV requires zero longitudinal acceleration. Note that the curvatures in the maneuvers’
final phases are approximately the same, which is reflected in the final values of lateral
accelerations that are close in modules (Figure 5c). As seen in Figure 5d, not a single total
acceleration curve exceeds the limit amax by the adhesion properties.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 26 
 

strict stability of the yaw angle and the absence of uncontrolled dynamic phenomena. Fig-
ure 6d shows that AV increases the distance from vehicles located behind and reduces 
gaps with the vehicles ahead while keeping safe spaces. 

 
Figure 5. Results of speed and dynamic indicators of forecasts for the lane maneuvers at φmax = 0.85: 
(a) longitudinal speeds and critical restrictions on adhesion conditions, (b) longitudinal accelera-
tions, (c) lateral accelerations, (d) total accelerations. 

Figure 5. Results of speed and dynamic indicators of forecasts for the lane maneuvers at φmax = 0.85:
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Figure 6 presents the kinematic and geometric parameters used to impose restrictions.
As seen in Figure 6a, all the longitudinal jerk curves are well below the upper limit and do
not exceed the lower limit. An important indicator is the smoothness and unambiguity of
the yaw rate and acceleration curves (Figure 6b,c). This characterizes the strict stability of
the yaw angle and the absence of uncontrolled dynamic phenomena. Figure 6d shows that
AV increases the distance from vehicles located behind and reduces gaps with the vehicles
ahead while keeping safe spaces.

Figure 7 reflects the geometric parameters characterizing the maneuvers’ trajectories.
As seen in Figure 7a, all curvature curves are extremely smooth and concordant with
the polynomial used for the trajectory model. The steering angle (Figure 7d) scales the
curvature due to the ideal kinematic model. The curvature derivatives (Figure 7b,c) are also
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smooth without intense oscillations and sharp spikes, characterizing a consistent speed
distribution along the trajectory’s curvature.
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Experiment 2. Now, we consider the motion-planning variants (Figure 8) under the
same conditions as for Experiment 1 but with worse adhesion φmax = 0.5. In this case,
more time and distance are needed to complete the maneuver since the traction potential is
limited by an external factor. Therefore, the length of the required path s is closer to the
upper limit of the reference sr length.
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Figure 8. Prediction of lane-change trajectories under the condition φmax = 0.5.

As seen, the nature of the maneuvers differs in phase. Thus, on Lane 2, there is no
significant change in curvature, and AV may be quickly accelerated. For the maneuver to
Lane 1, the intensity is shifted to the initial phase, and for the maneuver to Lane 2, it is
shifted to the final phase.

Figure 9 depicts the results of forecasting speeds and accelerations under the condition
of reduced tire-road adhesion. Accordingly, the critical speed values, caused by the locally
increased curvature, also decrease and limit the increase in AV speed for maneuvers to
Lanes 1 and 3 (Figure 9a). At the same time, the curvature of the trajectory for driving on
Lane 2 changes little, which allows the speed to rise since the critical one, in this case, is
greater than the preset maximum. The same is noted for longitudinal accelerations with a
difference that the vehicle, naturally, cannot realize its full traction potential. As seen in
Figure 9d, the maximum acceleration of the maneuver to Lane 1 is formed at the beginning
of the lane change, and for Maneuver 3 at the end. With that, accelerations do not exceed
the limit achievable under the conditions of full adhesion.
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Figure 10 presents the kinematic parameters used as constraint criteria. As seen, all
curves meet the requirements of smoothness and uniqueness, and their extremum values
are significantly less than the preset limit ones. The yaw rate and angular acceleration for
maneuvering along Lane 2 are noticeably lower than others due to the stability of the trajectory
curvature. This also allows using a wider range of the jerk than for passing to Lanes 1 and 3.
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Figure 11 shows the trajectory geometric parameters relative to the time. The greatest
work on vehicle control occurs during the maneuver to Lane 1. However, the adhesion
is reduced, the curves are stable, situated within the established limits, and the vehicle
control is completely consistent with the kinematic characteristics in Figure 10.
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6. Conclusions

The study has developed a technique for planning the AV motion ensuring simul-
taneous optimization of the trajectory and speed mode. The proposed technique is fully
workable and provides results that are adequate to the initial conditions and preset restric-
tions. Note that the obtained results are characterized for the AV with a drive type in which
traction is redistributed by all wheels, since the critical speed criterion is related to the
entire vehicle and not to a single drive axle. Also, in the calculations, it was assumed that
the minimum length of the maneuver trajectory should be greater than the AV’s stopping
distance from the initial speed.

Regarding the results of testing the technique, the following conclusions can be drawn.

1. A clear advantage is the use of a 5th-degree polynomial as a trajectory basis possessing
sufficient flexibility and good stability (i.e., predetermined trajectory shape), which
reduces the time required to optimize the trajectory model. All curves formed with the
participation of the trajectory model are characterized by smoothness, unambiguity,
and simplicity of form, providing a positive effect for the control stability at the
tracking stage.

2. The proposed technique is based on the minimum number of variable parameters (5–7)
necessary for high-quality prediction of the maneuver and its speed mode. Note
that despite the multiple optimization criteria, it is recommended to shift priorities
to control the maneuver’s accuracy (lateral displacement L) and safety (distance
between objects during lane changes and the final distance between vehicles within
the same lane).

3. The variation of the lateral displacement L within the lane boundaries allows for the
obtainment of several trajectory variants. However, in this study, we relied on minor
deviations from the lane’s centerline. In this regard, for simulation examples, only
three forecasting options were used. The priorities for decision-making on choosing
the best trajectory [25] can be the minimum travel time, maximum speed at the end
of the maneuver, the longest trajectory, minimum control costs, or a combination of
these. In this study, we do not focus on the problem of selecting a criterion since the
goal was to verify the technique itself in general.

4. For simulations, a device equipped with an Intel(R) Core(TM) i7-7500U CPU @
2.7 GHz, two cores, and 8 GB RAM on the 64-bit Windows 10 was used. The software
environment was MATLAB R2022b with the basic optimization function fmincon.
The average time to calculate one forecast is about 0.35–1.4 s depending on the set-
tings, declared accuracy, and initial conditions. The performance can be significantly
enhanced by optimizing the MATLAB code, using parallel computing, compiling to
the C/C++ language, and applying more efficient multi-core processors.

5. The accuracy of the constraints plays a key role in the solution convergence and
needed number of iterations. Due to the integral approach to equality constraints,
the sensitivity to the residual order increases. Thus, for the guaranteed convergence
of equality constraints on the criteria of critical speed, acceleration, and jerks, the
recommended accuracy should correspond to the order of 10−12.

6. The choice of a number of integration points for the Gaussian quadrature scheme and
some sections into which the finite element interval is divided significantly affects the
forecast performance. Multiple virtual simulations have revealed that the optimal
interval step is ∆ξ = 0.2... 0.25, and the number of integration points is N = 3... 5.

7. The following may be noted as disadvantages. When forecasts are subsequent, the
conjunction smoothness at transition nodes is ensured only for parameters that require
no more than the second derivative of the trajectory and speed. At the same time,
for some parameters, such as curvature derivative, angular acceleration, and jerk,
discontinuities of functions at nodes may appear. To eliminate these shortcomings, it
is necessary to shift the modeling emphasis from trajectory and velocity to the level of
the curvature’s and speed’s derivatives. This approach will be studied further.
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