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Abstract: Similarity measures play a pivotal role in automatic techniques designed to analyse large
volumes of textual data. Conventional approaches, treating texts as paradigmatic examples of
unstructured data, tend to overlook their structural nuances, leading to a loss of valuable information.
In this paper, we propose a novel orthographic similarity measure tailored for the semi-structured
analysis of texts. We explore a graph-based representation for texts, where the graph’s structure is
shaped by a hierarchical decomposition of textual discourse units. Employing the concept of edit
distances, our orthographic similarity measure is computed hierarchically across all components in
this textual graph, integrating precomputed similarity values among lower-level nodes. The relevance
and applicability of the presented approach are illustrated by a real-world example, featuring texts
that exhibit intricate interconnections among their components. The resulting similarity scores,
between all different structural levels of the graph, allow for a deeper understanding of the (structural)
interconnections among texts and enhances the explainability of similarity measures as well as the
tools using them.

Keywords: text similarity; syntactic similarity; orthographic similarity; text analysis; graph databases

1. Introduction

With the rapid growth of data, and textual data in particular, the need for adequate
techniques to analyse and extract information from huge data volumes has grown sub-
stantially. In the case of textual data, the process of identifying and extracting relevant
information from unstructured text documents and transforming this information into
a structured representation for easy analysis is called text (data) mining [1]. Text min-
ing encompasses many techniques like text classification, text clustering, visualisation,
summarisation and information extraction, and it is applicable in many fields, including
but not limited to information retrieval, flexible query answering, artificial intelligence,
co-reference detection, statistics, linguistics or biomedical applications [2,3]. A crucial
component in most of these techniques is the measurement of similarity between (parts of)
the textual documents under consideration. The need for similarity measures also exists in
structured databases where co-referent record detection involves these similarity scores in
order to quantify the resemblance between individual attributes of those records.Whereas,
in information retrieval and flexible query answering, a similarity measure is required in
order to make a comparison between the data and a user query. The result of such similarity
measures is a value between 0 and 1 which indicates the degree of similarity among two
text elements, with a similarity score of 0 (resp. 1) indicating that the two elements are
completely dissimilar (resp. similar).

Text documents often display certain connections among (parts of) their textual con-
tent. For interconnected texts, which are texts that contain many such connections, the
identification and analysis of these connections hold significant importance. Imagine
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two texts where the only difference between them is that two consecutive sections are
switched. Traditional similarity measures, which compute a similarity based on a sequence
of characters or tokens, are not able to capture this structural difference, resulting in a poor
similarity score between these texts. Furthermore, based on this single similarity score,
no assumptions can be made about the similarity between parts of the texts, indicating
the loss of crucial information. Tools for analysing and mining (interconnected) texts can
greatly benefit from specific similarity measures where the different levels on which these
interconnections can occur are taken into account. Since traditional orthographic similarity
measures are not always able to adequately handle highly interconnected texts based on
their structure, this paper aims to propose a highly customisable method able to deal with
the nuances of highly structured and interconnected texts, based on the needs of (expert)
text analysis.

In this paper, we propose a novel way of calculating an orthographic similarity score
between texts, especially performant in handling interconnected texts. First, the textual
corpus is transformed into a graph-based text representation. The structure of this graph
is determined by the hierarchy of textual elements in a document (e.g., words, tokens,
sentences, paragraphs. . . ) where (parts of) the texts are represented by nodes and subgraphs.
On this graph, we then hierarchically calculate the orthographic similarity between all
elements on the same textual level. As a novelty, the similarity calculation between these
text elements incorporates the similarity scores among lower level text elements, computed
in the previous hierarchical steps. These (intermediate) similarity values are then all
included in the graph. In essence, this method can be construed as a generalised soft
measure over entire texts, transcending beyond the idea of only combining character- and
token-based measures [4]. The choice of the textual elements in the graph and the similarity
calculation on every textual level can be adjusted according to the characteristics of each
corpus, resulting in a highly customisable approach.

By using this novel method, text mining applications are not only limited to using our
proposed similarity score between top-level text elements; they can also refer to similarity
values between smaller parts of the text. The hierarchical computation of the similarity
scores and the availability of the similarity values between lower level text values greatly
contribute to the interpretability of the similarity measure as well as to the explainability
of text analysis and text mining applications (and artificial intelligence in general) using
this measure. Finally, the resulting graph, including all calculated similarity scores, can be
implemented in a graph database system. This does not only allow for easy reference in
text mining applications using the computed values but also allows for flexible querying
and efficient graph-based analytics on the corpus at hand.

This work is relevant for the analysis of texts, and especially interconnected texts,
in a language independent manner. In their current form, the proposed techniques are
better suited for small or medium-sized texts, but can be considered as a starting point
for a novel framework, capable of handling and analysing unstructured texts in a semi-
structured manner.

The remainder of this paper is structured as follows. First, related work is discussed
in Section 2. In Section 3, some preliminaries about similarity measures, (fuzzy) graphs
and graph databases are stated. The proposed graph structure for a textual corpus as
well as the process of transforming texts into this graph are described in Section 4. Next,
Section 5 describes the proposed hierarchical similarity algorithm used to determine the
orthographic similarity score between all nodes and subgraphs representing (parts of) the
corpus. Section 6 reports on the experiments, where the accuracy and performance of the
proposed method are quantified and discussed. Finally, in Section 7, the conclusions of our
work are formulated, and some directions for future research are proposed.

2. Related Work

A similarity score between two texts can be determined in several ways, including
orthographically or semantically [5,6]. Orthographic similarity is based on the resem-
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blance between individual characters or tokens, without taking into account the meaning
of the textual content or making assumptions on the used language [7]. Character-based
orthographic methods, like (Damerau–)Levenshtein [8,9], Jaro(–Winkler) [10,11] and N-
grams [12], determine the distance or similarity between two strings by comparing character
sequences. Token-based orthographic methods on the other hand, like the Jaccard Similar-
ity [13], Dice’s Coefficient [14], the Cosine Similarity [6], the Overlap Coefficient [6] or even
token-based adaptations of character-based methods, calculate a similarity between texts
based on a sequence or set of entire tokens. Some of these orthographic techniques result in
a distance rather than a similarity score. Since (normalised) distance and similarity are in
fact inverse functions, these two types of measurements can be used interchangeably.

Both character- and token-based similarity measures calculate the similarity score
based on one specific text element, i.e., either tokens or characters. Few techniques have
been proposed to combine both types of orthographic similarity measures into one. Such
composite techniques, commonly referred to as soft (similarity) measures, consider two
tokens to be equal not solely in a case of an exact match but also when the character-based
similarity between the two tokens is at least as high as a predefined threshold [4,5,15,16].
In fact, soft token-based measures do not apply an exact (or crisp) matching technique
but rather a near (or approximate) matching technique. In the case of name matching
for example, the soft cosine similarity, which combines both the cosine similarity and
N-grams, outperforms each individual component [17]. Another study shows that lever-
aging the dissimilarity between two tokens, calculated using a character-based measure
as the replacement cost in a soft token-based measure, has a great performance in search
applications [18].

In contrast to orthographic similarity measures, semantic similarity measures do rely
on the meaning of the textual content as well as assumptions made about the language in
which the text is written. Semantic measures can be corpus-based, knowledge-based or
a combination of both [19]. Corpus-based measures calculate a similarity value based on
information obtained from analysing large corpora. In Latent Semantic Analysis (LSA) [20],
for instance, a token-paragraph matrix is constructed to indicate the frequency of a specific
token’s usage in a given paragraph. Based on this matrix and the assumption that contextu-
ally similar tokens will occur in related pieces of text, a token vector is determined. Finally,
the similarity score between two tokens is determined by computing the cosine of the angle
between their respective token vectors. Other corpus-based techniques like Word2vec [21]
and Pairwise Mutual Information (PMI) [22] are based on the same principles.

Knowledge-based methods on the other hand determine a similarity score between
texts by utilising information derived from semantic networks. These semantic networks
are large lexical databases that store semantic relations between their contents. In the
case of the English language, WordNet [23] is one of the most popular semantic networks
available. Consider the depth of a word as the number of semantic links between the root
word of WordNet and that specific word. A possible method to determine a similarity
score between two words is based on the depth of both words and the depth of their lowest
common ancestor [24]. Since semantic methods rely on specific (large) corpora and/or on
assumptions about a particular language, their applicability is limited, making them less
general than orthographic measures.

Much research has already been carried out into text analysis based on graphs [25],
albeit mostly with a different objective than determining a similarity score. In order to
accurately handle the attribution of authorship for revised content in wiki environments,
a graph-based text representation, similar to the one described in this work, has been
proposed, where each revision is a graph that is hierarchically composed of tokens, sen-
tences, and paragraphs [26]. Other graph-based approaches for handling the authorship
attribution problem are based on text networks only storing word nodes, connected based
on their adjacency in the original text [27,28]. These so-called co-occurrence networks are
used in many text analysis applications to date, including text clustering and classifica-
tion [29–31]. Recent studies into graph-based text representations mostly enrich the text
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network’s structure by means of semantic properties, which differs from the approach in
this paper where we solely focus on the orthographic properties of textual documents.

Graph-based text representations also have a use in Natural Language Processing
(NLP). In this case, the textual graphs do not portray the hierarchical structure of a textual
document or the co-occurrence of words within a text but instead indicate the semantic
relations, by means of a semantic network, between objects within a specific text [25,32,33].

Traditional orthographic techniques, where the similarity calculation of entire texts
is generally based on sequences or sets of characters or tokens and the similarities among
them result in the loss of structural information of the texts under consideration. Especially
in the case of some highly structured or highly interconnected (short) texts, we believe that
current orthographic similarity measures are not always able to adequately compare texts
tuned to the needs of experts. In this paper, we propose advanced methods to handle texts
in a more structured way, in order to deal with the underlying structural information.

3. Preliminaries

This section provides a brief description of similarity measures between texts and
how they can be used to construct a fuzzy similarity relation on a set of textual documents.
Additionally, the characteristics of (fuzzy) graphs and graph databases are discussed
alongside a formal notation for these (fuzzy) graph databases.

3.1. Similarity Measures and Relations

Consider a set of texts T. A (textual) similarity measure is a function

sim : T × T → [0, 1] (1)

that quantifies the similarity between two texts and results in a value between 0 and 1.
The resulting similarity score indicates the degree of similarity, according to the specific
measure, between those two texts. A similarity score of 1 indicates that the two texts are
equal, whereas a score of 0 indicates that the two texts are fully dissimilar. In this paper, we
only consider similarity measures that are (i) reflexive

sim(x, x) = 1, ∀x ∈ T (2)

and (ii) symmetric
sim(x, y) = sim(y, x), ∀x, y ∈ T ∧ x ̸= y. (3)

A similarity measure only indicates the similarity score between two specific texts. In
order to model the pairwise similarity between all texts in T, we define a fuzzy similarity
relation [34] S̃ over T where S̃(x, y), x, y ∈ T has a membership grade of

µS̃(x, y) = sim(x, y). (4)

This fuzzy relation indicates the pairwise degree of similarity among the elements of
T, where, based on the assumptions made about similarity measures, the membership
function is also reflexive

µS̃(x, x) = 1, ∀x ∈ T (5)

and symmetric
µS̃(x, y) = µS̃(y, x), ∀x, y ∈ T ∧ x ̸= y. (6)

By representing the pairwise similarity between texts in a set T as a fuzzy relation S̃,
we can easily model (i) the text pairs which are completely similar by computing the core
of the fuzzy relation

core
(
S̃
)
=

{
(x, y)|(x, y) ∈ S̃ ∧ µS̃(x, y) = 1

}
, (7)
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(ii) the text pairs that share at least some degree of similarity (i.e., a similarity degree other
than zero) by computing the support of the fuzzy relation

supp
(
S̃
)
=

{
(x, y)|(x, y) ∈ S̃ ∧ µS̃(x, y) > 0

}
(8)

and (iii) the text pairs that exhibit a higher degree of similarity than a specified threshold α
by computing the α-cut of the fuzzy relation

S̃α =
{
(x, y)|(x, y) ∈ S̃ ∧ µS̃(x, y) ≥ α

}
. (9)

3.2. Graphs and Graph Databases

A graph G is a mathematical structure that represents a pair (N, E), where N represents
a set of nodes (or vertices), and E ⊆ N × N denotes a set of edges (or relationships)
connecting these nodes. Graph databases are structured like such graphs, unlike relational
databases where data are modelled and stored by means of relations. Additionally, graph
databases do not have a fixed database schema, allowing them to manage entities with
complex, variable data structures [35]. These graph-based database systems have shown
great performance in handling highly interconnected data, rendering them particularly
useful for storing the numerous similarities and interconnections between texts. In fact,
their native graph-like structure makes them the optimal tool for performing network
analysis on the links between the stored information or text documents [36].

Various extensions of the basic graph structure have been proposed for graph database
systems, including the (labelled) property graph. In a labelled property graph, each node
and relationship can be associated with one or more labels and can contain one or more
named properties that contain at least one value [35,37]. A formal notation of the labelled
property graph model is provided in Definition 1. This graph model has been adopted by
some of the most popular graph database systems like Neo4j [38], Amazon Neptune [39]
and Titan [40].

Definition 1 (labelled property graph [37,41]). Let P be a set of property names, V a set of
atomic values and L a set of labels. A labelled property graph G is a tuple (N, E, ρ, λN , λE, σ),
where

• N is a finite set of nodes;
• E is a finite set of edges;
• ρ : E→ N× N is a function used to associate each edge in E with a pair of nodes and indicate

its direction;
• λN : N → P(L), where P is the powerset operator, is a function that assigns a subset of

labels to specific nodes;
• λE : E→ L is a function that assigns a label to specific edges;
• σ : (N ∪ E)× P→ P(V) is a function that assigns a set of properties to vertices and edges.

In what follows, the formal notation for labelled property graphs (i.e., Definition 1) is
used to describe graphs as well as graph databases. The notations

Nl∈L = {n|n ∈ N, l ∈ λN(n)} (10)

and
El∈L = {e|e ∈ E, λE(e) = l} (11)

are shorthand notations to indicate a set of nodes or edges with a specific label l.

3.3. Fuzzy Graphs

Rosenfield has proposed an extension of basic graphs with the principles from fuzzy
set theory [42]. So-called fuzzy graphs are weighted graphs G̃

(
N, Ẽ

)
with N a set of nodes

and Ẽ a fuzzy relation indicating the relationships between elements of N, where the
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membership function µẼ is symmetrical [34,43]. The connectedness of a fuzzy graph is
relative to its basic graph G(N, E), with

E = supp
(
Ẽ
)
=

{
(n1, n2)|(n1, n2) ∈ N2, µẼ(n1, n2) > 0

}
. (12)

Moreover, the α-cut on the edges of a fuzzy graph is defined as

Eα = {(n1, n2)|(n1, n2) ∈ E, µẼ(n1, n2) ≥ α}. (13)

Minor adjustments are required to the labelled property graph model, described in
Definition 1, in order for it to become a fuzzy labelled property graph. A formal definition
of a fuzzy labelled property graph is provided in Definition 2. In practice, the fuzzy edges
can be implemented by a grade property which is assigned to the relationships. This grade
property then stores the membership grade for a specific relationship. For relationships
with a crisp nature, this property can be omitted.

Definition 2 (fuzzy labelled property graph [41,44]). A fuzzy labelled property graph is a
labelled property graph G̃(N, Ẽ, ρ, λN , λE, σ), where Ẽ is a fuzzy set [34] on E with membership
function µẼ(e), e ∈ E and E = supp(Ẽ), indicating the fuzzy edges. The α-cut over G̃α is a
labelled property graph G(N, Ẽα, ρ, λN , λE, σ) with Ẽα = {e|e ∈ E, µẼ(e) ≥ α}.

4. Representing a Textual Corpus as a Graph

Before proposing our novel similarity measure between two texts, we introduce the
graph-based representation on which our similarity measure is computed. In this section,
we first describe how texts can be structured as a hierarchy of textual elements. Next, we
propose a graph model where the content of the texts is partitioned into smaller textual
units based on the hierarchical properties of the corpus. Each text element is represented
by either a node or a subgraph in the resulting graph. Lastly, the process of transforming a
text into this graph representation is explained.

4.1. Hierarchical Decomposition of Textual Documents

Textual documents usually display some kind of hierarchical structure of textual
elements. We define these textual elements as the textual components that constitute a text.
These components all have an associated unit of discourse, including but not limited to
words, tokens, sentences, (half)verses, paragraphs, sections, chapters, full documents, etc.
For example, a possible textual decomposition for this paper, which in itself represents the
top level element of the hierarchy, consists of one or more sections. Each of these sections
comprises at least one paragraph, and in turn, all of these paragraphs are composed of one
or more sentences, which in turn are made up of one or more tokens. As another example,
poems and lyrics have a possible hierarchical decomposition of the poem (or lyric) as a
whole, which is hierarchically composed of verses and tokens.

The hierarchical decomposition of a text, or of all the texts in a corpus, is defined by
an ordered list of discourse units

L = [l0, l1, . . . , ln], (14)

where each li, 0 ≤ i ≤ n depicts the unit of a textual component. In this paper, we
also refer to these units as labels for textual elements. The size of the list |L| is equal
to the number of hierarchical levels in the decomposition of a text, and li+1 is the label
of the textual component which is hierarchically higher than the elements with label
li, 0 ≤ i ≤ n. Revisiting the examples described above, a possible decomposition of this
paper is L = [token, sentence, paragraph, section, document] and of a poem or lyric is
L = [token, verse, document].

Naturally, there is no fixed hierarchical decomposition for every (type of) text or corpus,
as one can always add or remove an (intermediate) level. The most suitable decomposition
depends on the context in which the text is used and can be determined through expert
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knowledge, empirical analysis or visual inspection of the texts at hand. For interconnected
texts that exhibit a high level of interconnectivity between certain parts of the texts, an
interesting decomposition would be based on the text elements where these numerous
connections occur.

Hereafter, we will refer to texts elements with a label li ∈ L as the higher (resp. lower)
level text elements in comparison with texts elements with label lj when i > j (resp. i < j).
The top level elements of a hierarchy have a label l|L|−1 = ln, and the lowest level elements
have a label l0.

4.2. Graph Representation of a Textual Corpus

We propose a graph model to represent a set of texts, where the content of each text
is partitioned into smaller textual components. The units of these textual components
are based on a given hierarchical decomposition of the texts, as described in Section 4.1.
Each text element is assigned to a node with a corresponding label and connected by
numbered edges either to higher-level elements, in which this element occurs, or to lower-
level elements, of which this element is made up, or both. For example, in a text with
decomposition L = [token, verse, document], a verse node is connected to the document
nodes in which this verse occurs and to the token nodes that make up this verse. Only
the nodes that represent the smallest unit within the hierarchy store the actual textual
content. The textual content in higher-level text elements can then be reconstructed from
their subgraph by traversing down to the lowest-level components. Moreover, textual
components with the exact same content are represented by the same nodes in the graph.
Hence, a basic notion of similarity between (parts of) texts can be deducted simply from
the structure of the proposed textual graph. A formal definition of this graph model is
provided in Definition 3.

Definition 3 (graph-based text model). Let L be an ordered list of labels denoting the hierarchical
structure of the texts in a corpus, as described in Section 4.1. The graph model for representing texts
is a fuzzy labelled property graph G̃

(
N, Ẽ, ρ, λN , λE, σ

)
and is defined by the following:

• The set N consists of all nodes representing a textual element of a text in T and is a composition
of the subsets representing textual components with a specific label, i.e., N =

⋃
l∈L Nl . The

subsets Nl∈L are pairwise disjointed.
• The set of edges Ẽ = ẼCONTAINS represents the relationships of containment between textual

elements, with µẼ(e) = 1, e ∈ supp
(
Ẽ
)
.

• The relationships in ẼCONTAINS are mapped on the corresponding nodes by the ρ function
ρ(e) ∈ Nli+1

× Nli , with e ∈ supp
(
ẼCONTAINS

)
and li+1, li ∈ L. This mapping indicates

which nodes with a lower-hierarchy label li are contained in a node with label li+1.
• The rank property, indicating the rank of a textual node within its higher-level text element, is

assigned as σ(e, rank) ∈ N, e ∈ supp
(
ẼCONTAINS

)
. This property is required to reconstruct a

certain text based on its graph-representation.
• Top-level nodes n ∈ Nl|L|−1

, which represent an entire textual document, are assigned a unique
id by σ(n, id) ∈ N.

• The lowest nodes in the hierarchy, which are nodes n ∈ Nl0 , store the actual textual information
in a text property by σ(n, text) ∈ Tl0 . Here, Tl0 represents all the unique text elements from
texts in T at hierarchical level l0. The full texts or text elements with intermediate labels can
be reconstructed from their subgraph by traversing down to the lowest-level elements.

Additionally, two or more textual elements, except for the top-level elements, that contain
the exact same content and have the same hierarchical level are represented by the same node.
Consequently, these nodes can have multiple relationships of containment to nodes with a higher-
level label. Top-level elements, on the other hand, are always represented by distinct nodes, each
assigned a unique identifier, such that each text in the graph is uniquely identifiable.

Starting from a set of texts T, the graph-based representation for this corpus, adhering
to Definition 3, can be constructed using Algorithm 1. The algorithm starts from an empty
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fuzzy graph and adds each text document individually to the graph. First, a preprocessing
step allows the texts to be altered or simplified before they are inserted into the graph. Next,
for each of these texts, a node is created with the label of the highest-level element (l|L|−1).
This node serves as the root node for a specific text and is also assigned a unique identifier.

Algorithm 1 Graph-based text model construction algorithm.

Input: A set of text documents T and a hierarchical list of units L = [l0, l1, . . . , ln]
Output: A fuzzy graph G̃

(
N, Ẽ, ρ, λN , λE, σ

)
representing the documents in T

1: Create empty fuzzy graph G̃
(

N, Ẽ, ρ, λN , λE, σ
)

▷ G̃ is a global object
2: for all t ∈ T do
3: t← PREPROCESS(t)
4: i← |L| − 1
5: Create node n
6: σ(n, id)← UNIQUEID()
7: λN(n)← {li}
8: COMPUTECHILDNODES(t, i− 1, n)
9: N ← N ∪ {n}

10: end for
11: return G̃

(
N, Ẽ, ρ, λN , λE, σ

)
From this root node, the lower levels of the text document are computed in a recursive

manner by means of Algorithm 2. For each intermediate level of the hierarchical decom-
position L, the text element is split up into smaller elements. The approach for splitting
text elements into these smaller components depends on the current unit of discourse li
and can be decided upon during implementation. For example, in the case of words, the
string can be split based on white spaces within the text. For tokens or sentences, on the
other hand, tokenisation [45] or sentence segmentation [46] methods can be used. Next, for
each of these smaller components sj, it is checked whether or not a node with an identical
label representing the exact same textual content as sj already exists. Should this be the
case, the already existing node is linked to the parent node, and no further operations or
recursive steps are required. Conversely, in the absence of such node, a new node with the
corresponding label is created. In case the recursion has reached the lowest label (i.e., when
i = 0), the node is associated with the actual textual content, and the recursion is finished.
In all other cases, the ComputeChildNodes procedure is recursively called to compute the
lower-level text elements at level i− 1. Lastly, the newly created node is connected to its
parent node and is added to the graph.

When the recursion, which is started in Algorithm 1, is completed, the root node of
a text document is also added to the graph. This entire process is repeated until all text
documents are incorporated into the graph. The resulting graph is then returned at the
end of the algorithm. In order to illustrate the graph model from Definition 3 and the
construction procedure in Algorithm 1, a simple example of a corpus of two small texts is
given in Example 1.

Example 1. Consider a set of two slightly different texts

T = {“What is this? A first text to analyse.”, “What is this? A second text to analyse.”}

and a list of textual units L = [Word, Sentence, Text], where elements with the label Text
represent a text as a whole. Executing Algorithm 1 on this example results in the graph-based text
representation displayed in Figure 1. In this example, the texts are segmented in sentences and,
subsequently, the sentences are split into words based on white spaces. Moreover, the texts undergo
preprocessing involving the removal of punctuation and the transformation of uppercase letters into
lowercase letters.
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Algorithm 2 Recursive procedure to construct the different levels of the graph model.

1: procedure COMPUTECHILDNODES(t, i, p)
2: S← SPLIT(t, i) ▷ Text splitting is based on the current discourse unit
3: for j← 0, |S| − 1 do
4: if a node already exists on level i that represents sj then
5: Define that existing node as n
6: else
7: Create node n
8: λN(n)← {li}
9: if i > 0 then

10: COMPUTECHILDNODES(sj, i− 1, n)
11: else
12: σ(n, text)← sj
13: end if
14: N ← N ∪ {n}
15: end if
16: Create edge e
17: ρ(e)← (p, n)
18: σ(e, rank)← j
19: λE(e)← CONTAINS
20: Ẽ← Ẽ ∪ {e}
21: µẼ(e)← 1.0
22: end for
23: end procedure

Figure 1. A graph-based text representation for the texts in Example 1. Word nodes are indicated in
green and display their text property, whereas Sentence nodes are indicated in yellow, and Text
nodes, including their numeric id property, are indicated in blue. The values of the rank property are
displayed on the edges.

The first sentence of both texts (left) is represented by a single sentence node, signifying that
both (preprocessed) sentences are orthographically identical. The second sentence on the other hand,
differs by two words, resulting in a distinct sentence node for each text. In fact, when both texts
consist of orthographically identical words, the graph’s structure inherently provides an indication
of the similarity between the texts.
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Additional text documents can still be included into the graph after its initial construc-
tion. This can simply be achieved by re-executing Algorithm 1, with the set T consisting
of one or more new text documents, and instead of creating a new graph, the algorithm
should use the already constructed graph G̃.

5. A Hierarchical Orthographic Similarity Measure for Graph-Based Text Representations

Now that a graph model is in place, representing an entire textual corpus, we propose
a novel hierarchical orthographic similarity measure for these graph-based text represen-
tations. Analogous to the construction of the textual graph, as proposed in Section 4.2,
the hierarchical computation is performed in a bottom-up manner. In Section 5.1, we first
propose a string-based similarity measure that computes a pairwise similarity between
all nodes representing the smallest textual components in the graph. Next, in Section 5.2,
we propose a node-based similarity measure, where a similarity score is hierarchically
determined between all nodes situated at the same level. This is achieved by utilising the
similarity values between lower-level nodes, calculated in a preceding step. As a result, the
graph model for texts is extended with relationships that denote the similarity between all
text elements at the same level and between the full texts in the corpus. In Section 5.3, we
describe the full computation of our proposed similarity measure and revisit our example
from the previous section. A graphical overview of the proposed similarity measure is
provided in Figure 2.

5.1. String-Based Similarity Measure

A first step in the hierarchical calculation of the proposed similarity measure consists
of calculating the pairwise similarity between all nodes that represent the smallest textual
components in the graph. Since these nodes actually contain textual content, a string-based
similarity measure is employed. As a similarity measure, we propose a character-based
method that is based on the edit distance between two strings.

Calculating this pairwise similarity measure between all lowest-level node pairs,
(n1, n2) ∈ N2

l0
starts by determining the edit distance between the texts contained by those

nodes. In this paper, the edit distance is defined as the minimum cumulative cost of edit
operations necessary to transform one string into another. The supported edit operations
are the insertion, deletion and replacement of a single character, as well as the transposition
between two consecutive characters. A formal definition of this string-based edit distance,
which is inspired by the Damerau–Levenshtein distance [8], is provided in Definition 4.
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Figure 2. A graphical overview of the different steps to calculate the hierarchical similarity measure between textual components in the graph model. Starting
from a textual corpus represented by our proposed graph model, a string-based similarity is calculated between the stored texts in the nodes representing the
smallest textual components (green section). Next, the pairwise similarity between all other nodes of the same level are hierarchically computed using a node-based
similarity measure (red section). As a result, a textual graph is achieved that is extended with similarity scores between all textual components sharing the same unit
of discourse.
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Definition 4 (string-based edit distance). Let insertions (I), deletions (D) and replacements (R)
of a single character and transpositions (T) between two consecutive characters be the allowed edit
operations. The edit distance between two character strings a and b is recursively defined by the
function ds

a,b(i, j), whose value is the minimum cost between the prefix of a up to the i-th character
and the prefix of b up to the j-th character.

ds
a,b(i, j) =



max(i, j)cI,D , if min(i, j) = 0

min


ds

a,b(i− 1, j) + cI,D (I),

ds
a,b(i, j− 1) + cI,D (D),

ds
a,b(i− 1, j− 1) + 1(ai ̸=bj)

cR (R),

ds
a,b(i− 2, j− 2) + cT (T)

 ,
if i, j > 1
∧ ai = bj−1

∧ ai−1 = bj

min


ds

a,b(i− 1, j) + cI,D (I),

ds
a,b(i, j− 1) + cI,D (D),

ds
a,b(i− 1, j− 1) + 1(ai ̸=bj)

cR (R)

 , otherwise

(15)

The cost for each edit operation is represented by c∗ ∈ [0, 1], where ∗ is a placeholder for one of
the edit operations {(I, D), R, T}, and 1 is the indicator function.

The cost for the insertion and deletion operations must be equal in order to ensure a
symmetric edit distance [47]. When all costs are equal to 1, this edit distance corresponds to
the Damerau–Levenshtein edit distance [8]. This proposed string-based edit distance can
only be considered a metric when each cost c∗ is larger than 0. In instances where the cost
of any edit operation is 0, the resulting distance between distinct strings can be 0, thereby
deviating from the defining properties of a metric [48].

Consider s1 = σ(n1, text) and s2 = σ(n2, text) as the strings represented by the nodes
n1 and n2. The edit distance between those strings is found by the recursive application
of Equation (15) and results in a positive real number between 0 and the maximal length
(in characters) of both texts (i.e., max(|s1|, |s2|)), depending on the assigned costs for each
supported edit operation. As this edit distance indicates dissimilarity rather than similarity
between two strings, Equation (16) is required to convert this dissimilarity into a similarity
score within the required bounds [0, 1]. Note that, since the defined edit distance and
the conversion to a similarity are both symmetric, the resulting similarity measure is also
symmetric. The calculation of this similarity measure is illustrated in Example 2.

sims(s1, s2) = 1−
ds

s1,s2
(|s1|, |s2|)

max(|s1|, |s2|)
(16)

Example 2. Consider two strings s1 = RELEVANT and (conveniently misspelled) s2 = ELEPHATN
and all costs cI,D = cR = cT = 1. The minimal edit distance between these two strings can be
identified by once performing each of the four supported edit operations, as shown in Figure 3, and is
ds

s1,s2
(|s1|, |s2|) = 4. The similarity score is determined by Equation (16) and is sims(s1, s2) = 0.5.

The time complexity of a single edit distance calculation between two strings is
O(|s1| · |s2|) and relates to the length of both strings. Since the string-based edit distance is
computed on the lowest-level text elements, the strings under consideration are often short
and therefore have a manageable execution time. The time complexity of calculating the
edit distance on all nodes in Nl0 , on the other hand, is O

(
m2), with m equal to the amount

of nodes
∣∣Nl0

∣∣, which can result in performance issues for a very large corpus.
To ascertain the edit distance between two strings, denoted as s1 and s2, a matrix

to store all intermediary distances between the prefixes of those strings is required. The
dimensions of said matrix are determined by the respective lengths of the aforementioned
strings. The implementation can, however, be optimised to store the intermediate results
using only two rows, where both rows have the same length as the longest string. As a
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result, the space complexity of a single edit distance calculation is O(max(|s1|, |s2|)). The
space required to store all calculated similarities between all nodes in Nl0 is O(m2), where
m is equal to the amount nodes at that base level of the hierarchy.

E L E V NA_

E L E P NTA

T

_ H

R

Figure 3. A visual representation of the edit operations required to transform the string RELEVANT
into the string ELEPHATN. Deletions are indicated in red, replacements in orange, insertions in green
and transpositions by crossing arrows.

Finally, after calculating the similarity scores between all node pairs (n1, n2), these
similarities are also incorporated into the graph. For that purpose, a new fuzzy edge e is
created with label λE(e) = SIMILAR_TO for each obtained similarity score. The membership
grade for this new edge is equal to the obtained similarity score

µẼ(e) = sims(σ(n1, text), σ(n2, text)). (17)

This new edge is then associated with the related nodes ρ(e) = (n1, n2). Since this similarity
measure is symmetric, this edge can be interpreted as an undirected edge and is only
stored once.

5.2. Node-Based Similarity Measure

As a next step in the calculation of our proposed similarity measure, we calculate the
pairwise similarity scores between higher-level text elements in a hierarchical manner. The
hierarchical computation follows the order of the hierarchical decomposition, as presented
in Section 4.1, starting with all pairs (n1, n2) ∈ N2

l1
. The similarity calculation between

all pairs of nodes at the same hierarchical level is repeated for every subsequent level
until the similarities between all node pairs (n1, n2) ∈ N2

ln representing the entire texts
are determined. Just like the string-based similarity measure proposed in the previous
section, the node-based similarity measure is based on the edit distance principle. In fact,
the node-based similarity measure diverges in only three aspects from the edit distance
described in Definition 4.

5.2.1. Child Nodes Instead of Characters

A first difference compared to the edit distance calculation from the previous section
is that the node-based edit distance defines its operations on the nodes in a subgraph rather
than considering characters in a string. Consider a node n ∈ Nli , 0 < i < |L|. The edit
distance is calculated on the ordered list of child nodes of n

child(n) = Kn = [k0, k1, . . . , km], (18)

where k j ∈ Nli−1
and ρ

(
ej
)
=

(
n, k j

)
, with ej ∈ supp

(
ẼCONTAINS

)
and j = σ

(
ej, rank

)
.

Additionally, the number of children m + 1 of n (i.e., | child(n)|) is equal to the number of
relationships in ẼCONTAINS between the node n and individual elements of Nli−1

.

5.2.2. Fuzzy Transposition Matching

Another difference is related to how we determine whether or not a transposition
between two consecutive elements actually occurs. In contrast to the string-based edit
distance, where a transposition between two consecutive characters is detected in case
of an exact match, the node-based edit distance identifies a transposition between two
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consecutive child nodes by means of a fuzzy match, according to a fixed threshold value
r ∈ [0, 1]. Consider two nodes n1, n2 ∈ Nli , 0 ≤ i < |L|. A fuzzy match between these
nodes occurs when

match(n1, n2) = µẼ(e) ≥ r, (19)

with the edge between both nodes e ∈ ẼSIMILAR_TO and ρ(e) = (n1, n2).

5.2.3. Adaptive Replacement Costs

A third and final distinction from the string-based edit distance lies in how the cost
of a replacement between child nodes is determined. In the string-based edit distance,
a replacement between two characters has a fixed cost cR. The replacement cost in this
node-based edit distance is determined by the dissimilarity between a child node and
its replacement. This dissimilarity is acquired by subtracting the similarity between two
nodes from 1. Additionally, we propose to introduce a similarity threshold t ∈ [0, 1] as an
additional way to deal with orthographic inconsistencies in a corpus. Before calculating
the dissimilarity, the similarity between child nodes is assumed to be fully similar (i.e., a
similarity score of 1) when the similarity is greater than or equal to the threshold t.

Consider two nodes n1, n2 ∈ Nli , 0 ≤ i < |L|. The cost of a replacement between these
two nodes is determined by the membership function between them

cR(n1, n2) = 1− (t⇒Go µẼ(e)), (20)

where ρ(e) = (n1, n2) and e ∈ ẼSIMILAR_TO. The similarity threshold t is enforced by means
of the Gödel R-implication as defined in Equation (21) [49].

p⇒Go q =

{
1 if p ≤ q
q otherwise

(21)

5.2.4. Node-Based Similarity Calculation

Based on the string-based edit distance, described in Section 5.1, and the adaptations
described in the previous sections, a full definition for the node-based edit distance is
proposed in Definition 5. This edit distance is computed as the minimum cumulative cost
of the edit operations required to transform a text element, represented by its child nodes,
into another.

Definition 5 (node-based edit distance). Let insertions (I), deletions (D) and replacements (R)
of a single node and transpositions (T) between two consecutive nodes be the allowed edit operations.
The node-based edit distance between two ordered lists of nodes a and b is recursively defined by the
function dn

a,b(i, j), the value of which is the minimum cost between the prefix of a up to the i-th node
and the prefix of b up to the j-th node.

dn
a,b(i, j) =



max(i, j)cI,D , if min(i, j) = 0

min


dn

a,b(i− 1, j) + cI,D (I),

dn
a,b(i, j− 1) + cI,D (D),

dn
a,b(i− 1, j− 1) + 1(ai ̸=bj)

cR
(
ai, bj

)
(R),

dn
a,b(i− 2, j− 2) + cT (T)

 ,
if i, j > 1
∧ match

(
ai, bj−1

)
∧ match

(
ai−1, bj

)

min


dn

a,b(i− 1, j) + cI,D (I),

dn
a,b(i, j− 1) + cI,D (D),

dn
a,b(i− 1, j− 1) + 1(ai ̸=bj)

cR
(
ai, bj

)
(R)

 , otherwise

(22)

The predefined costs for insertions, deletions of single nodes and transpositions of two con-
secutive nodes are represented by cI,D, cT ∈ [1, 0]. The predefined similarity threshold, utilised
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to determine the cost of a replacement, and the predefined fuzzy matching threshold, employed to
identify transpositions between consecutive nodes, are represented by t, r ∈ [0, 1], respectively.

Much like the string-based edit distance, this node-based edit distance can only be
considered a metric when all edit operation costs are larger than 0. For the replacement cost,
this is only the case when the similarity threshold is equal to 1 and when the underlying
similarity measure is equal to 0 only when considering the exact same child nodes.

Consider two nodes n1, n2 ∈ Nli , 0 < i < |L| and their ordered lists of child nodes
Kn1 = child(n1) and Kn2 = child(n2) for which the similarity scores between these child
nodes have been predetermined. Just like the string-based edit distance, the node-based edit
distance is a measure of dissimilarity and has to be transformed into a similarity measure.
This transformation is achieved through the application of the (symmetric) Equation (23).

simn(n1, n2) = 1−
dn

Kn1 ,Kn2
(|Kn1 |, |Kn2 |)

max(|Kn1 |, |Kn2 |)
(23)

We can now show the following properties of this node-based similarity measure.

Proposition 1. The node-based similarity in Equation (23) is reflexive:

simn(n1, n1) = 1, ∀n1 ∈ Ni, ∀0 < i < |L|

Proof. Consider Kn1 = child(n1) as the ordered sequence of children of the node n1. The
node-based edit distance in Equation (22) results in dn

Kn1 ,Kn1
(|Kn1 |, |Kn1 |) = 0 since no

transformations are required to transform Kn1 into itself. It follows that Equation (23)
results in a similarity score of 1.

Proposition 2. The node-based similarity in Equation (23) is symmetric:

simn(n1, n2) = simn(n2, n1), ∀n1, n2 ∈ Ni, ∀0 < i < |L|

Proof. Proof by induction on i, the level in the hierarchy.

Base step: If i = 0, similarity is computed with the string-based similarity (Equation (16)),
where the underlying string-based edit distance is symmetric by definition [47]. Since the
max operator is also symmetric, it follows that the string-based similarity is symmetric,
which settles the base case.
Inductive step: Assume that the similarity measure at level i ≥ 0 is symmetric, we prove
that the node-based similarity at level i + 1 is also symmetric. Since it is clear that the max
operator is symmetric, this suffices to prove that the underlying node-based edit distance
used in Equation (23) is symmetric. An edit distance is symmetric when it has a reverse
operation for every edit operation with the same cost [47]. Insertions and deletions are
reverse operations of each other and have the same fixed cost as stated in Definition 5.
Replacements, on the other hand, are their own reverse operations. The cost of replace-
ments, as shown by Equation (20), depends on the similarity scores between nodes at
level i. Since the similarity measure at level i is symmetric, it follows that the costs of
reversed replacement operations for the same child nodes are equal to each other. Finally,
transpositions always have a fixed cost and are the reverse operations of themselves if their
fuzzy match operator is symmetric. Because this operator, as stated in Equation (19), is
fully determined by the similarity scores at level i, it is also symmetric. By showing that the
four edit operations always have a reversed operation with the same cost, it follows that
the node-based edit distance and consequently the node-based similarity are symmetric.

The calculation of the proposed node-based similarity measure is now illustrated in
Example 3.
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Example 3. Consider a set of two slightly different texts

T = {“This is a test sentence too.”, “Is this a tset sentence?”},

with a hierarchical decomposition into L = [Word, Sentence] and a typo for the word “test” in the
second text. The graph-based text representation for this small corpus is displayed in Figure 4. The
relevant similarity scores between words have already been determined. In this example, we assume
that the costs for the edit operations, the similarity threshold and the fuzzy match threshold for the
node-based edit distance are all set equal to 1.

To calculate the similarity, it is necessary to first determine the edit distance between the child
nodes. Based on the edit operation costs, the minimum edit distance for this example is found by (i) a
transposition between the first two nodes, with a cost of 1, (ii) a replacement of the word “test” with
the word “tset”, with a cost equal to the dissimilarity between those words (i.e., 0.25), and (iii) an
insertion (or deletion) of the last node, with a cost of 1. As a result, the edit distance equals 2.25,
and the similarity, as per Equation (23), equals 0.625.

Now imagine another scenario where the similarity threshold t is 0.75 leading to a replacement
cost of 0 between the words “test” and “tset”. Therefore, the similarity score between the two
sentences results in 0.666 . . ..

Figure 4. A visual representation of the two sentences in Example 3. The yellow nodes (with id)
represent Sentence nodes, whereas the green nodes (with text) represent the Word nodes. The values
of the rank property are shown on the directed edges between different levels of the graph, and the
similarity values are indicated on the undirected edges between the same level text elements. Only
the relevant similarity scores between word nodes are displayed.

The time complexity of a single node-based edit distance calculation between node n1
and n2 is related to the length of both lists of child nodes and is equal to
O(|child(n1)| · |child(n2)|). Since the amount of child nodes at any level of the hierar-
chy depends on the hierarchical decomposition of the considered texts, the execution time
can be kept within reasonable bounds by adopting a hierarchical decomposition that results
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in a short list of child nodes. Additionally, much like the string-based similarity measure,
the time complexity of calculating the similarities on all nodes in Nli , with 0 < i < |L| and
m equal to the amount of nodes in Nli , is O(m2).

The space requirements of the node-based edit distance are equal to the space com-
plexities of the string-based edit distance, as described in Section 5.1, except for the space
complexity of a single node-based edit distance calculation, which now relates to the length
of two child node lists instead of to the length of two strings.

5.3. Graph-Based Text Model with Similarities

With the various components of our similarity measure in place, we can now describe
our proposed hierarchical orthographic similarity measure in full. The procedure for the
computation of the similarity values between all text elements, and most importantly
between all full texts, is provided in Algorithm 3.

Algorithm 3 Similarity calculation in the graph-based text representation.

Input: A fuzzy graph G̃
(

N, Ẽ, ρ, λN , λE, σ
)

representing the texts in a corpus
Output: The fuzzy graph G̃ with the calculated similarity scores

1: for i← 0, |L| − 1 do
2: Determine parameters cI,D, cR and cT or cI,D, cT , r and t
3: for all (n1, n2) ∈ N2

li
do

4: if i = 0 then
5: s = sims(σ(n1, text), σ(n2, text))
6: else
7: s = simn(n1, n2)
8: end if
9: Create edge e

10: ρ(e)← (n1, n2)
11: λE(e)← SIMILAR_TO
12: Ẽ← Ẽ ∪ {e}
13: µẼ(e)← s
14: end for
15: end for
16: return G̃

(
N, Ẽ, ρ, λN , λE, σ

)
In this algorithm, we hierarchically compute the pairwise similarity for all node pairs

sharing a specific label. For the lowest-level text elements, the string-based similarity
proposed in Section 5.1 is used. The similarities between all other text elements sharing the
same label are determined by the node-based similarity, as described in Section 5.2. Note
that the parameters cI,D, cR and cT for the string-based similarity and parameters cI,D, cT , r
and t for the node-based similarity may vary at each level within the hierarchy but remain
fixed throughout the calculations within a specific level. As a result, each parameter at every
level of the hierarchical calculation can be fine-tuned, either through expert knowledge
or empirical analysis, to suit the specifics of a given corpus. Once the similarity between
two nodes is determined, a new edge is created to indicate the similarity between those
two elements. As the similarity measure between two nodes is symmetric, only a single
undirected edge is created between the nodes. Upon completion of the procedure, the
graph-based text representation is returned, including the similarity scores between all
elements within the same discourse unit. As an illustration, the result of the hierarchical
computation between two texts is provided in Example 4.

Example 4. In Figure 5, we revisit our textual graph from Example 1 and display the similarity
scores between all text elements that are required to compute the similarity between both full texts.
For the calculation of this example, all parameters cI,D, cR, cT , t and r are equal to 1 for every level.
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Figure 5. Subset of the graph-based text representation for the texts in Example 1 after computing the
similarities between all elements. Word nodes are indicated in green and display their text property,
while Sentence nodes are indicated in yellow, and Text nodes, including their numeric id property,
are indicated in blue. The values of the rank property are shown on the directed edges (grey) between
different levels of the graph, and the similarity values are indicated on the undirected edges (black)
between the same level text elements. To avoid clouding the image, only the relevant similarity
relationships are displayed.

The time required to calculate the the similarities between all nodes on every level
of the graph is equal to the sum of the calculation time at every level of the hierarchy. In
Sections 5.1 and 5.2, we concluded that the time required for every level is O(ni), where
ni is equal to the amount of nodes at a specific level

∣∣Nli

∣∣ and 0 ≤ i < |L|. Since the
time complexity is dominated by the largest term, the overall time complexity is equal to
O
(
maxi n2

i
)
.

The space complexity of the complete algorithm, on the other hand, is equal to the
largest space requirement among the different hierarchical levels. As a result, the space
complexity is also equal to O

(
maxi n2

i
)
.

After the initial computation of the similarity values between text elements in the
graph, there remains the possibility of incorporating additional text documents into this
graph. First, the new texts should be included into the graph as described in Section 4.2.
Then, only the additional similarity values between the newly added nodes and all existing
nodes at the same hierarchical level should be computed in the same manner as outlined in
Algorithm 3.

6. Experiments

In this section, we demonstrate and motivate the relevance of the proposed technique
by its use as a research tool for the analysis of ancient texts and compare it to another
state-of-the-art soft measure. In Section 6.1, we illustrate the characteristics of Byzantine
book epigrams [50], the corpus used as a dataset in the following experiments. Then,
we discuss the graph-based text representation of this corpus and the methods used in
the experiments in Section 6.2. In Section 6.3, we describe the setup of the experiments
alongside the methods employed for evaluating the proposed similarity measure. Next,
we list and discus the results of our experiments in Section 6.4. Lastly, in Section 6.5, we
provide an illustrative example, where we show the interactive capabilities of the proposed
graph model implemented in a graph database.
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6.1. Dataset: Byzantine Book Epigrams

Byzantine book epigrams are poems nestled in the margins of medieval Greek
manuscripts. They are typically short and tell the reader more about, for instance, the
manuscript’s content, the individuals involved in its production or even the emotions
experienced by the scribe upon completing the manuscript. These epigrams are typically
known to be orthographically inconsistent texts with a complex tradition. That is a tradition,
or in other words the transmission of the texts throughout history, in which texts were
split-up, (re)combined or elseways reworked during their copying process. As a result of
this complex tradition, where combinations of words and (half)verses are often re-used
throughout a variety of epigrams, the corpus of Byzantine book epigrams displays an
expansive amount of interconnections among its texts [41,50].

The orthographic irregularities displayed in these book epigrams arise not solely
from factors like spelling and transcription errors, unstandardised punctuation, and text
wrapping. They are also caused by the evolution of the Greek language. Particularly
noteworthy is the phonetic evolution known as itacism. Itacism denotes the shift of the
classical pronunciation of the vowels ι, η, υ, ῃ and the diphthongs ει, οι converging towards
the pronunciation of i. This results in a corpus where all the aforementioned vowels and
diphthongs are used interchangeably [41,50,51]. The complex and interconnected nature of
these Byzantine book epigrams makes them an ideal corpus for evaluating the capabilities
of the proposed similarity measure.

The Database of Byzantine Book Epigrams (DBBE) (https://dbbe.ugent.be, accessed
on 1 February 2024) [50,52] is composed of experts and contains an extensive collection
of Byzantine book epigrams, complemented by manually composed groups of similar
texts. These groups of similar texts within the DBBE serve as a ground truth for evaluating
the proposed similarity measure. Two categories of such groups exist in the DBBE: those
comprising similar epigrams and those composing similar verses. Since these groups are
manually composed by experts, they include texts that are only partially known or variants
of a text where synonyms are used.

For the experiments, a representative subset for each category of these groups is
carefully identified by experts and exported from the DBBE dataset. The subset of verses is
composed of the verses contained in the verse groups with identifiers 15681, 15470, 14667,
11233, 14852, 12251, 15904, 14932, 14802, 10671, 4634, 15377, 12290, 14866, 15278, 12121,
13035, 15327, 6342, 5549, 445, 2520, 3949, 5354, 5840, 6353, 9033, 10869, 12122, 15261, 15652
and 14872, resulting in a subset of 750 verses to be compared. Additionally, the subset of
epigrams is composed of the epigram groups with identifiers 2148, 2150, 4245, 2326, 3147,
3436, 4152, 4155, 5030, 5248, 6473, 1953, 6475, 1862, 1982, 2225, 3987, 2311, 31190, 3762, and
2054, resulting in a subset consisting of 500 epigrams.

Because of the complex orthographic characteristics of Byzantine book epigrams, the
original epigrams and verses from the selected datasets need to undergo preprocessing
before we use them in our experiments in order to standardise the texts and reduce noise.
First, all uppercase letters are converted to their lowercase counterparts. The next step
involves the removal of any punctuation or other special characters. All accents and other
diacritical marks are then stripped off, because of the frequent occurrence of unstandardised
accentuation in these epigrams [41,50]. In the fourth and final step, all vowels η, υ, ῃ and the
diphthongs ει, οι are systematically replaced with ι in order to tackle with the phenomenon
of itacism.

6.2. Methods

In the experiments, two methods for text similarity are considered. The first method is
the similarity measure proposed in this paper, with different values for various parameters.
Before the similarity scores can be determined, the corpus must be transformed into
a graph-based representation. The transformation of a set T, representing a corpus of
Byzantine book epigrams, into the required graph representation is accomplished through

https://dbbe.ugent.be
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Algorithm 1. To successfully execute this algorithm, certain design decisions, related to the
given corpus, must first be made.

As discussed in the previous section, words, half verses and verses are the key textual
elements contributing to the interconnected nature of Byzantine book epigrams. Given that
half verses are not stored in the DBBE and no (well-performing) automatic method for their
identification exists, the discourse units that make up the hierarchical decomposition of
epigrams, and therefore define the structure of the graph, are L = [Word, Verse, Epigram].

As a last step in defining the graph representation, the procedures for segmenting
the text documents into smaller components need to be determined. Given that the DBBE
stores epigrams as a list of verses, extracting the verses directly from the database is
a straightforward process. Conversely, the identification of words is accomplished by
partitioning the verses based on white spaces.

Based on this graph representation, we have implemented our approach using two
Neo4j (https://www.neo4j.org, accessed on 1 February 2024) databases: one for the subset
of verses and one for the subset of epigrams. The proposed hierarchical similarity measure
for Byzantine book epigrams is implemented as a Neo4j plugin (the Java code for this Neo4j
plugin can be found at https://github.com/MaximeDeforche/DBBESimilarity, accessed
on 1 February 2024) and can be executed on the graph (database) by providing it with valid
cost and threshold values for every level of the hierarchical decomposition.

The second method we include in the experiments is a state-of-the-art soft similarity
measure that combines the idea of token-based and character-based similarity [15,16]. More
specifically, this method computes the similarity between two texts by first transforming
each text into a bag of tokens. Then, each token from the first bag is compared with each
token from the second bag by means of a token matcher. The result of this comparison
is a similarity score for both tokens. All token similarities are stored in a matrix that is
used to compute a leximax-optimal assignment between tokens from both bags. Based
on this assignment, a sequence of scores is obtained, and this sequence is aggregated into
a final score by using a weighted minimum. The weights are computed by means of a
parameterised quantifier function. Because of this two-step methodology, where one first
computes similarities on the level of tokens and then on the level of bags, the method is
called a two-level string matcher.

The two-level string matcher has some properties that are relevant to mention in
the context of the experiments we report. First, by using a bag model, it neglects the
order of tokens in a text completely. Second, the token matcher can account for spelling
errors on the level of tokens, for example, by using edit distances to compare tokens. The
original method, however, uses a dedicated token matcher that is designed to be fast and
to produce similarity matrices that are sparse. Third, if two bags of tokens have different
cardinalities, a quantifier function allows us to model the influence of the difference in
cardinality on the final similarity. The choice of this function can influence the effectiveness
of the two-level matcher significantly [16], and it therefore needs to be chosen with care.
An implementation of the two-level string matcher is available in Java as part of the ledc-
framework (https://ledc.ugent.be/, accessed on 1 February 2024) and can be found on
GitLab (https://gitlab.com/ledc/ledc-match, accessed on 1 February 2024).

6.3. Experiment Setup

In the first experiment, we want to assess the capabilities and usefulness of our
proposed method. For each of the two Neo4j databases, we have conducted three distinct
similarity calculations, each with different parameter settings. The three sets of parameter
values are listed in Table 1, where the parameters used for the Word level relate to the
parameters of the string-based edit distance in Equation (15). The parameters used for the
Verse and Epigram levels, on the other hand, relate to the parameters of the node-based
edit distance in Equation (22). The first parameter set resembles the default values for all
parameters, whereas the other two parameter sets reduce the cost for edit operations, as
well as lower the thresholds for similarity and transposition matching. These adjustments

https://www.neo4j.org
https://github.com/MaximeDeforche/DBBESimilarity
https://ledc.ugent.be/
https://gitlab.com/ledc/ledc-match
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increase the tolerance for certain (minor) differences between texts as a way to optimise the
similarity measure for the given corpus.

Table 1. Different sets of parameter values for the first experiment.

Level Parameter Default Custom 1 Custom 2

Word
cI,D 1.0 0.9 0.8
cT 1.0 0.9 0.0
cR 1.0 1.0 1.0

Verse

cI,D 1.0 0.9 0.8
cT 1.0 0.0 0.0
t 1.0 0.9 0.8
r 1.0 0.8 0.7

Epigram

cI,D 1.0 0.95 0.85
cT 1.0 0.0 0.0
t 1.0 0.9 0.8
r 1.0 0.8 0.7

In the second experiment, we compute similarities on both datasets with the two-level
string matcher. We did so with two different token matchers. The first token matcher is
the default token matcher for the two-level string matcher [15]. Using this default matcher
yields sparse similarity matrices, resulting in faster resolution of assignments. In the
current experiment, however, this might also lead to many pairs of tokens that are wrongly
assigned a similarity of zero. To deal with this, we also use a token matcher that is based
on the Damerau distance. This second token matcher is the same as the one that we used
on the Word-level in our approach, with the exception that distances above 3 resulted in a
similarity of 0. The latter was necessary to ensure that the two-level string matcher finished
within a reasonable time.

Next to the token matcher, we must also choose a quantifier function for weight
computation. We found empirically that the default parameters of this function are too
strict in the scope of the current experiment, and that better results were obtained when
setting the main quantifier parameter α to 0.9.

The results of both experiments can be expressed by means of a fuzzy similarity
relation S̃, representing the pairwise similarity between two epigrams or verses. In order
to compare the resulting similarities in both experiments against the crisp definition of
similar texts in the ground truth, which are assigned by experts, we perform an α-cut on
the resulting fuzzy similarity relation S̃. For each remaining pair of verses or epigrams in
the relation (after the α-cut), it is checked whether the verse or epigram pair is also similar
according to the ground truth. If this is the case, it leads to a true positive (TP), and when it
is not the case, it results in a false positive (FP). Likewise, all pairs of verses and epigrams
that were pruned by the α-cut are checked in the same manner. Pruned pairs linking two
verses or epigrams that are similar according to the ground truth are counted as false
negatives (FN), whereas the others are counted as true negatives (TN). These four values
enable the calculation of various quality measures offering insight into the performance of
the different similarity measures concerning individual verses or full epigrams, according
to the provided parameter values and a given α value.

As a first quality measure, we calculate the recall of the proposed similarity measure

recall =
TP

TP + FN
, (24)

where the fraction of successfully identified similar texts is determined. Secondly, we
calculate the precision:

precision =
TP

TP + FP
. (25)
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The precision depicts the fraction of correctly identified similar texts among all identified
similar texts. As a third and last quality measure, we compute the F1-score. This is the
harmonic mean of the precision and recall:

F1-score = 2 · precision · recall
precision + recall

. (26)

The F1-score provides us with a single value that indicates an overall performance of the
similarity measure, balancing precision and recall into a single measure.

For each similarity calculation in both experiments, we have calculated these quality
measures for a set of nine distinct α values, ranging from 0.1 till 0.9. Ultimately, the
quality measures are computed for 54 different situations in the first experiment and for
36 situations in the second experiment.

6.4. Results

Table 2 showcases the results of the calculated quality measures for the verse and
epigram test sets and three distinct parameter sets in our first experiment. In each column,
the highest value for each performance measure is highlighted in bold. Additionally, the
F1-score results for verses and epigrams are visualised by plots in Figure 6a and Figure 6b,
respectively.

Table 2. Summary of experimental results of the first experiment using the proposed similarity
measure. The employed parameter sets are listed in Table 1. The highest scores for each column are
indicated in bold.

Similarity Parameters Threshold α
Verses Epigrams

Precision Recall F1-Score Precision Recall F1-Score

Default

0.1 0.1627 0.9984 0.2797 0.1638 0.9904 0.2811
0.2 0.4305 0.9932 0.6007 0.5387 0.9741 0.6937
0.3 0.8831 0.9831 0.9304 0.5741 0.9499 0.7156
0.4 0.9609 0.9715 0.9661 0.6049 0.9147 0.7283
0.5 0.9782 0.9417 0.9596 0.6687 0.8589 0.7520
0.6 0.9986 0.8688 0.9292 0.7745 0.7757 0.7751
0.7 1.0000 0.7452 0.8540 0.8559 0.6796 0.7576
0.8 1.0000 0.6059 0.7546 0.8786 0.5599 0.6840
0.9 1.0000 0.3398 0.5072 0.9365 0.3778 0.5384

Custom 1

0.1 0.1455 1.0000 0.2540 0.0889 0.9998 0.1632
0.2 0.2112 0.9951 0.3485 0.3515 0.9829 0.5178
0.3 0.6899 0.9910 0.8135 0.5636 0.9574 0.7095
0.4 0.9518 0.9833 0.9673 0.5992 0.9318 0.7294
0.5 0.9718 0.9621 0.9669 0.6492 0.8923 0.7518
0.6 0.9978 0.8980 0.9453 0.7424 0.8123 0.7758
0.7 0.9999 0.7885 0.8817 0.8759 0.7187 0.7896
0.8 1.0000 0.6442 0.7836 0.8895 0.5977 0.7150
0.9 1.0000 0.3643 0.5340 0.9731 0.4354 0.6016

Custom 2

0.1 0.1447 1.0000 0.2529 0.0798 1.0000 0.1478
0.2 0.1502 1.0000 0.2611 0.0998 0.9998 0.1815
0.3 0.3028 0.9948 0.4642 0.5155 0.9800 0.6756
0.4 0.8616 0.9895 0.9211 0.5727 0.9562 0.7163
0.5 0.9633 0.9777 0.9704 0.6041 0.9236 0.7305
0.6 0.9854 0.9343 0.9592 0.6555 0.8634 0.7452
0.7 0.9995 0.8576 0.9231 0.7255 0.7954 0.7588
0.8 1.0000 0.7065 0.8280 0.8834 0.6882 0.7737
0.9 1.0000 0.4253 0.5968 0.8873 0.5352 0.6677
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(a) (b)

Figure 6. Plots comparing the F1-scores of the verse and epigram subsets for all three parameter sets
of the first experiment and the best scoring measure from the second experiment. The F1-scores are
shown for all α values. (a) F1-score verses; (b) F1-score epigrams.

In the case of verses, we observe the same trend across all three parameter sets. For
low α values, we find a very high recall but a very low precision. This suggests that (nearly)
all similar texts are detected, albeit at the expense of misclassifying numerous text pairs as
similar. With high α values, we observe the reverse scenario, coupled with a slightly higher
F1-score. The peak overall performance for verses is achieved with the third, most tolerant
parameter set (i.e., the second custom parameter set) and an α threshold of 0.5.

For epigrams, the resulting values are generally lower in comparison to verses, yet the
same trend can be observed across the three parameter sets. The lower scores are explained
by the fact that these epigrams can structurally vary in more ways than the individual
verses, coupled with the increased potential for orthographic inconsistencies in longer
texts. Overall, the best score for the epigram test set is achieved by using the second set of
parameters with an α value of 0.7.

In general, the choice of the hierarchical decomposition of a text and the parameters
choices for each level in the hierarchical computation of the similarity can significantly
influence the performance of the similarity measure. The high customisability of the pro-
posed method provides the flexibility to fine-tune numerous parameters when determining
the optimal parameter set for a given corpus. This adaptability also empowers researchers
to carefully select each parameter based on the specific requirements of a textual analysis.
Furthermore, the possibility to chose an α value allows us to indicate whether we want to
identify more similar texts (higher recall), be more certain about the identified text pairs
(higher precision) or strike a balance between the two. Lastly, it is noteworthy that using
more tolerant parameter sets can, up to some point, enhance the overall performance of
the similarity measure and the similarity scores between genuinely similar texts. However,
making the parameter sets too tolerant for structural and orthographic variations between
texts results in a suboptimal performance of the proposed measure.

Considering the fact that not all possible orthographic inconsistencies can be automati-
cally dealt with and that the expert-based similarity groups, which serve as the ground truth,
include texts that are only partially complete and/or contain variations where synonyms
are used, the proposed orthographic similarity measure shows encouraging results.

Table 3 lists the computed quality measures for the verse and epigram test sets in
the second experiment. In each column, the highest value for each performance measure
is highlighted in bold. Additionally, the F1-scores for verses and epigrams of the best
performing similarity measure are also visualised in Figure 6a and Figure 6b, respectively.
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Table 3. Summary of experimental results of the second experiment using a two-level string matcher.
The highest scores for each column are indicated in bold.

Similarity Parameters Threshold α
Verses Epigrams

Precision Recall F1-Score Precision Recall F1-Score

Two-Level (Damerau)

0.1 0.9992 0.4860 0.6539 0.6798 0.6559 0.6676
0.2 0.9992 0.4860 0.6539 0.6797 0.6557 0.6675
0.3 0.9992 0.4860 0.6539 0.6797 0.6556 0.6674
0.4 0.9999 0.4788 0.6476 0.6783 0.6294 0.6529
0.5 0.9999 0.4788 0.6476 0.6739 0.6158 0.6435
0.6 1.0000 0.4688 0.6383 0.6799 0.6062 0.6409
0.7 1.0000 0.3952 0.5665 0.7097 0.5438 0.6158
0.8 1.0000 0.3192 0.4840 0.7208 0.4536 0.5568
0.9 1.0000 0.1694 0.2898 0.8115 0.3019 0.4401

Two-Level (Default)

0.1 1.0000 0.2738 0.4299 0.7383 0.4236 0.5383
0.2 1.0000 0.2734 0.4294 0.7394 0.4210 0.5365
0.3 1.0000 0.2733 0.4293 0.7391 0.4193 0.5351
0.4 1.0000 0.2729 0.4288 0.7372 0.4154 0.5313
0.5 1.0000 0.2728 0.4287 0.7328 0.4051 0.5218
0.6 1.0000 0.2724 0.4281 0.7316 0.4025 0.5193
0.7 1.0000 0.2621 0.4153 0.7276 0.3666 0.4875
0.8 1.0000 0.2544 0.4056 0.7488 0.3576 0.4840
0.9 1.0000 0.2488 0.3985 0.7476 0.3460 0.4731

A first thing to notice in this second experiment is that the overall precision in all
similarity calculations is quite high, or almost perfect in the case of verses, and is not heavily
affected by the choice of the α-threshold. This is a direct result of the weighted minimum that
is used in the bag-level similarity computation of the two-level string matcher. In addition,
this method focuses strongly on words with a high similarity among them and penalises
word similarities that are (too) low. As a result, we miss quite a lot of interconnections
between the compared texts. This effect is only magnified by the fact that we are dealing
with a corpus characterised by its large amount of orthographic inconsistencies, which also
explains the lower recall values.

Secondly, the difference between the default implementation and the implementation
using the Damerau distance measure is noteworthy. By introducing an underlying measure
that heavily relies on the structure of the text, like the Damerau distance, we can greatly
improve the recall of the two-level string matcher, with only a slight loss in precision. Since
the second-level of the two-level string matcher still uses a bag of tokens approach, unlike
the more structured method in the proposed similarity measure, we can explain the lower
results in comparison to the first experiment, especially in the case of verses.

In general, we can conclude that the similarity measure proposed in this paper is better
at handling the corpus used in this experiment, especially when looking at the overall
F1-scores. When comparing the F1-scores of the second experiment to the ones of the first
experiment, we notice that the proposed method outperforms the second method starting
from α > 0.3.

The success of the proposed method for this corpus can be explained by two factors,
with the first being related to the prioritisation of the structure of the texts. By hierar-
chically diving texts into important structural components and by employing an edit
distance-based measure on every level of the hierarchy, we are able to handle the structural
similarities among texts. The second factor is related to the high customisability of the
proposed measure, allowing for the required tolerance for a corpus with many orthographic
inconsistencies.
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6.5. Illustrative Example

In addition to a quantitative analysis, we present an illustrative example showcasing
the capabilities of the proposed measure as a hands-on research tool. For this example,
we have implemented the proposed graph model as a graph database and utilised the
interactive and visual tool from Neo4j, called Bloom (https://neo4j.com/product/bloom/,
accessed on 1 February 2024), to explore and analyse the data.

As the dataset in this example we have imported three groups of similar epigrams
into the Neo4j graph database. The data are imported using the same method outlined in
Section 6.2, and similarities are calculated with the default parameters. All three groups
contain epigrams that are variations of the four-verse epigram presented in Table 4. A first
group, with identifier 4245, comprises four-verse epigrams that feature minor deviations
from the referenced epigram. The second group, with identifier 2150, primarily consists of
three-verse epigrams representing variants of verses 1, 2 and 4 in Table 4, respectively. The
last group, that has identifier 2148, contains two-verse epigrams that are variations of the
first and last verse of the referenced epigram [52].

Table 4. Textual content of epigram 20482.

Epigram 20482 [52]

1. ὥσπερ ξένοι χαίροντες ἰδεῖν πατρίδα

2. καὶ οἱ θαλαττεύοντες εὑρεῖν λιμένα

3. καὶ οἱ στρατευόμενοι ἰδεῖν τό κέρδος,

4. οὕτω καὶ οἱ γράφοντες ἰδεῖν βιβλίου τέλος.

Using the Neo4j interactive tool, we have queried the database to display all epigrams
and the similarity relationships between them with a similarity score of at least 0.9. The
outcome of this query is displayed in Figure 7, where we can clearly distinguish four
different groups of nodes representing epigrams. In order not to cloud the image, nodes
that are not connected to any of the four groups of nodes have been omitted. These outliers
represent epigrams for which the text is barely known and, as such, do not display a high
similarity with the epigrams that are part of a node group after executing the query. Upon
closer examination of the query results, we observed that the leftmost group of nodes
predominantly corresponds to the original group of four-verse epigrams. The bottom
group of nodes relates to the original group of three-verse epigrams, and the rightmost
group of nodes primarily corresponds to the original group of two-verse epigrams.

Upon further investigation, it becomes evident that the sparsely connected group of
nodes in the middle of the image also comprises epigrams associated with the original
group featuring two-verse epigrams. The epigrams in this fourth node group exhibit a
common variation compared to the other two-verse epigrams. This variation is substantial
enough that the similarity scores between the epigrams from these distinct node groups fall
below the specified threshold of 0.9. Neo4j’s interactive environment facilitates a detailed
investigation by allowing us to expand the epigram nodes into their hierarchical compo-
nents. Figure 8 shows the expanded view of an epigram from this fourth node group (left)
and an epigram from the other node group representing the two-verse epigrams (right).

https://neo4j.com/product/bloom/
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Figure 7. Overview of all similarity relationships between epigrams with a similarity score larger
than or equal to 0.9. This screenshot is made from the interactive visualisation software from Neo4j

This image reveals a subtle spelling variation in a word within the verses ranked 1.
A more significant variation occurs in the verses ranked 0, where the last two words are
swapped, and the left epigram uses the word βλεπιν instead of ιδιν, which are synonymous.
Upon examining other epigrams from both groups, it becomes apparent that this larger
variation in the first verse distinguishes the original group of two-verse epigrams into two
separate groups of nodes.

This example demonstrates a potential application for the proposed graph model when
implemented in a graph database system. The visual and interactive query capabilities of a
graph database, paired with the proposed graph model, provide an ideal research tool for
exploring and analysing (the connections within) a given corpus or computing graph-based
statistics on textual data. Furthermore, by delving into the underlying structure of the texts
and the similarities among these smaller text elements, the overall similarity score between
two entire text documents becomes more interpretable compared to a similarity measure
calculated solely on a sequence of characters and/or tokens.
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Figure 8. The expanded visualisation of two epigrams each consisting of two verses. Word nodes
are indicated in green, whereas Verse nodes and Epigram nodes are indicated in yellow and blue,
respectively. The values of the rank property are shown on the directed edges (grey) between the
nodes at different levels of the graph.

7. Conclusions and Future Work

In this paper, we proposed a novel orthographic similarity measure designed for
handling interconnected texts. We began by discussing the hierarchical decomposition of
texts into textual components based on the discourse units within a given textual corpus. We
then proposed a graph-based text representation where different types of nodes correspond
to different discourse units of such a hierarchical decomposition, where the smallest textual
elements are represented by nodes storing the actual textual data. Higher-level textual
elements are represented by subgraphs, where the original text can be reconstructed by
traversing down to the smallest textual components. By representing the identical textual
content with a single node, a basic notion of similarity between texts can be deducted from
the resulting graph structure.

Building on this graph representation, we proposed a method for hierarchically com-
puting pairwise similarity scores between all textual components on the same level of the
graph. This procedure, which found its origin in edit distances between strings, starts by
determining pairwise string-based similarity scores between the lowest-level text elements.
As a novelty, the pairwise similarities between higher-level nodes with the same label are
hierarchically computed using a node-based edit distance that incorporates the precom-
puted similarity values between lower-level nodes. This hierarchical procedure is repeated
until the similarity between the top-level elements, representing entire text documents, are
determined.

The resulting graph-based text representation, along with the computed similarity
scores, opens up avenues for developing novel text analysis or mining applications that
leverage the structural information of texts and the similarities among text components.
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Since the intermediate similarity scores are also stored in the graph, the computation
of the overall similarity scores can be easily interpreted and therefore contributes to the
explainability of artificial intelligence applications using this measure. Moreover, the
resulting graph can be implemented in a graph database system, enabling flexible and
nuanced queries for textual analysis as well as the computation of graph-based statistics
on texts.

The usefulness and performance of these novel techniques were determined by means
of a corpus of Byzantine book epigrams, showcasing effectiveness on highly interconnected
and orthographically inconsistent texts. A quantitative analysis demonstrated the proposed
technique’s performance on these complex texts as well as how they relate to a state-of-the-
art soft similarity measure, only considering two levels of textual components. Additionally,
a hands-on example illustrated the similarity measure’s potential as a research tool for
visually and interactively analysing textual data and the connections among them. As the
methods proposed in this paper aim to handle texts by leveraging their underlying structure,
it serves as an initial step toward establishing a framework for handling unstructured texts
in a semi-structured manner.

Given its orthographic and highly customisable nature, this approach extends beyond
Byzantine book epigrams and can also be applied to analyse other short textual documents,
such as, abstracts, lyrics or short product descriptions, as well as texts written in different
languages. This technique can later be extended and tested to handle larger types of
text documents.

In future work, we plan to explore the extension of this hierarchical similarity measure
to other orthographic or semantic measures. When different similarity scores between
nodes are stored in the graph, we will also investigate methods to aggregate two or more
of these measures in the hierarchical computations or in flexible queries. Furthermore, we
will investigate existing new text mining techniques, including clustering or classification
methods, and asses how they can be adapted to leverage this innovative hierarchical
similarity measure.
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