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Abstract: To solve the problem of low accuracy in automatic concrete crack image segmentation and
the non-standardization of concrete crack image datasets, an exposure-based concrete crack image
capture scene characterization method was proposed, and the optimal exposure interval for crack
segmentation was presented by multiple scene image capture experiments. First, current public crack
datasets were collected and analyzed, and it was shown that improper spatial resolution, mislabeling,
overexposure, and defocus are frequent non-standardization problems in crack dataset production.
Through the analysis of the photoelectric principle in concrete crack imaging, an equivalent exposure
was set as a core indicator for scene characterization. Twenty-one indoor scenes were designed
by varying the illumination intensity and exposure time, and the experimental results showed
that an equivalent exposure can be a core control index for scene characterization. The grayscale
distribution law of concrete crack images was analyzed with four specimens’ images captured
indoors in 50 exposure scenes, and the segmentation accuracy of an image from each scene was
calculated through comparison with corresponding manually labeled binary files. The experiment’s
results revealed that 5~50 lx·s was the optimal equivalent exposure interval for concrete crack image
segmentation, in which better segmentation accuracy was achieved with an F1 score of up to 96.3%.

Keywords: concrete crack image segmentation; dataset standardization; optimal exposure interval;
photoelectricity theory

1. Introduction

Cracks are the most frequent defects in concrete structures, and their formation and
propagation significantly deteriorate the safety and durability of infrastructures [1]. The
accurate detection of the location and severity of cracks is crucial for the operational safety
and long-term performance of structures, which depend on the detection and quantification
of crack parameters, and machine vision-based crack detection technology has been widely
applied due to its high efficiency, convenience, and non-contact advantages [2]. Traditional
image processing methods (white-box methods) and artificial intelligence techniques (black-
box methods) are replacing manual inspection, measurement, and analysis [3] and have
drawn considerable attention from researchers.

White-box methods have the advantages of a low computational cost, traceability,
transparency, and interpretability; they do not require large volumes of crack image datasets,
and they have been widely used in crack image detection for more than a decade. Wang
introduced an algorithm for a multi-angle, multi-structure element morphological filter
based on morphological filter techniques, and the method could preserve details in images
and enhance the effectiveness of crack identification and extraction [4]. Xu et al. improved
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detection accuracy using the OTSU method and by adaptively setting Canny threshold
parameters [5]. Dow et al. proposed a skeleton-marker method to remove binary noise
and segment concrete cracks and achieved more reliable crack detection results than
previous methods [6]. The acquisition of concrete crack images often takes place in complex
environments, including illumination variations, stains, and oil residues on the cracks’
surfaces and, sometimes, outer object occlusion. Unfavorable environmental factors may
influence the value of the gray threshold, the area threshold, and the connectivity in image
processing and pose threats or challenges in crack detection and parameter calculation, all
of which limit the generalization capability of image segmentation [7].

In AI-based crack segmentation methods, the deep learning method demonstrates
excellent performance and has become popular as the mainstream method due to its high
accuracy, robustness, and strong generalization capabilities [8–12]. Liu et al. first applied
U-Net, a concrete crack segmentation method optimized with the Adam algorithm, and
achieved more accurate crack image segmentation than prior to its integration, with effec-
tiveness and robustness [8]. Xiang introduced a dual-coding network, DTrC-Net, and it
outperformed other state-of-the-art segmentation networks and exhibited superior general-
ization in complex scenes [7]. Su et al. proposed the CBAM-Unet algorithm in bridge crack
identification, which could effectively reduce detection costs and enhance efficiency [9]. Ren
et al. presented an improved deep fully convolutional neural network named CrackSegNet
with a higher accuracy and generalization capability, and it made tunnel detection and
monitoring efficient and cost-effective [10]. In another study, a combination of white-box
methods and black-box methods yielded superior pixel-level segmentation results [11].
Han et al. integrated deep learning with a digital image processing method in crack recog-
nition [12], and the model could automatically locate and extract cracks by means of a deep
convolutional neural network combined with local threshold image segmentation. Also,
this approach could precisely locate the maximum crack width’s position and calculate
its width.

Deep learning-based concrete crack segmentation depends on deep convolutional
neural network architecture, datasets, and evaluation metrics [13]. The dataset is the digital
basis for the data-driven image segmentation method, also called the data-dependent
image segmentation method, where dataset quality and quantity are equally important.
High-quality concrete crack dataset fabrication is labor-intensive and expensive and causes
the scarcity of large-scale datasets, which poses a great challenge to crack semantic seg-
mentation algorithms and limits their robustness and generalizability. As the accuracy of
the deep learning-based crack segmentation method is determined by dataset quality and
labeling fineness, the standardization of concrete crack image capture scene and dataset fab-
rication is in urgent demand, yet there are still no standards or characterization parameters
for concrete crack dataset production so far.

To standardize the concrete crack imaging scene and produce a high-quality dataset,
the objective of this paper is to provide more insight into the difference in concrete crack
image segmentability, with images from different exposure scenes, using current dataset
standardization analysis, a photoelectric principal study, scene core characterization index
selection, and indoor experimental validation. This paper is organized as follows: The
current pavement and concrete crack datasets are collected in Section 2 to analyze their
standardization levels. In Section 3, the photoelectric principle in concrete crack imaging
is analyzed, and equivalent exposure, as a key control index for concrete crack scene
characterization, is proposed and verified using images from 21 designed indoor scenes. In
Section 4, the mean values and standard deviations of image histograms are analyzed to
reveal the grayscale distribution law of concrete crack images from 50 equivalent exposure
scenes, and the segmentation accuracy of images in each scene is calculated and compared
to find out the optimal equivalent exposure interval for concrete crack image segmentation.
Finally, this study is concluded in Section 5.
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2. Dataset Scene Standardization Analysis

As the information carrier of infrastructure cracks, crack image datasets are prereq-
uisite for white-box and black-box methods based on crack image segmentation and are
of great importance to researchers [14–22]. Therefore, a series of crack image datasets
of different materials, including concrete, pavement asphalt, and metals, were designed
and produced. Although a number of public infrastructure crack image datasets were
released, the image capture devices, infrastructure materials, image sizes, image numbers,
and imaging environments of popular datasets are totally different, as list in Table 1, which
indicates that there is no standard rule for the selection of above factors.

Table 1. Public crack segmentation datasets.

Dataset Materials Quantity Resolution Device

DeepCrack [17] Hybrid 537 544 × 364 -
CFD [15] Pavement 320 480 × 320 iPhone5

CrackTree [18] Pavement 206 600 × 800 Area-array camera
TITS [19] Pavement 269 Multi 2D laser

Crack500 [20] Pavement 500 360 × 640 Mobile phone
GAPs384 [21] Pavement 384 1920 × 1080 2D laser
Crack3238 [7] Hybrid 3238 256 × 256 -

crack dataset [22] Concrete 776 297 × 306 Mobile phone

Image capture devices could be mainly categorized into three classes including hand-
held, vehicle-carried, and unmanned aerial vehicle-carried camera or laser radar [14], and
the type and resolution of capture devices are also different from each other. For example,
the capture devices of current public datasets in Table 1 are, respectively, an iPhone5 [15], a
mobile phone [20,22], an area-array camera [18], and a 2D laser [19,21]. The classification
hierarchy of these devices is very coarse and indistinct, which indicates that there is no
standard for crack capture device selection. It can also be seen that the resolution and
image number of each dataset are different, indicating non-standardization in the image
size and number of datasets.

Moreover, there are non-standardization problems in the image capture environment,
image sources, and image labeling in current public infrastructure crack image datasets.
In the dataset list in Table 1, only images in Crack3238 [7], DeepCrack [17], and TITS [19]
are high quality labeled, and there are mislabeling and incorrectness in other datasets.
The images in Figure 1 are typical non-standardization image samples from the datasets
in Table 1. In Figure 1a,b, the object building captured is too large, reasonable spatial
resolution could not be used, and there are unnecessary background images in the visual
field in the image, for example, the sky or unrelated buildings and objects. In Figure 1c,
the watermarked pavement crack image is from a network with an unrecognized spatial
resolution and capture device, and in Figure 1d, the out-of-focus pictures may have be
captured due to operational issues, such as shaking of the acquisition equipment, improper
shutter speed, and incorrect aperture. In Figure 1e,f, certain cracks are left unlabeled due to
overexposure.

In the theory of photography, image quality is greatly influenced by camera type,
image capture scene parameters including surrounding illumination intensity, wavelength
and angle, and image capture parameters such as shooting angle, shutter speed, and
aperture size. Insight into the photoelectric process of concrete crack image capture is
necessary to explore crack imaging scene standardization.
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3. Photoelectric Scene Design and Verification
3.1. The Photoelectric Principle and Concrete Crack Imaging

According to the principles of computational photography, the light energy that a
camera sensor receives is determined by external illumination intensity, shutter speed,
aperture size, shooting angle, and other camera capture parameters. The external light
intensity is the result of environmental illuminance and the surface reflection coefficient of
the object being photographed. If the energy loss through the lens is ignored, the radiant
illuminance unit on the object surface E(W·m−2) can be expressed as [23]:

E = L
π

4

(
d
f

)2
cos4 α (1)

where L(W·m−2·sr−1) is the emittance from the object face in the direction of the lens,
d(mm) is the aperture diameter, f (mm) is the image distance, and α(sr) is the off-axis angle.
The imaging process is physically a light, electrical, and numerical conversion process, and
the energy is the guiding variable throughout. In the entire image capturing process, the
energy captured per unit area on the image plane can be calculated as follows:

W = E · s = L
π

4

(
d
f

)2
cos4 α · s (2)

where s(ms) represents the exposure time. From Equation (2), it can be seen that the energy
that camera sensors can capture is in proportion to exposure, as determined by shutter
speed, aperture, and the camera’s sensitivity, which are the three pillars of exposure triangle
in photography. If the object surface follows the law of ideal diffuse reflection, the object
face emittance L depends linearly on the environmental illuminance Lin(lx) on the object
surface. The diffusive reflection coefficient of the object surface ρ, object face emittance L,
and environmental illuminance Lin approximately satisfy:

L = ρ · Lin (3)
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when the camera works within the linear range of the photoelectric sensor, the pixel value
Ip(px) approximately follows a linear relationship with Lin, ρ, and d2, and can be express as:

K =
π

4

(
1
f

)2
cos4 α (4)

Ip = K · K1 · ρ · d2 · Lin · s (5)

where K1 is the linearity coefficient of the camera. If the object surface reflection coefficient
ρ, aperture diameter d, image distance f, off-axis angle α, the camera linearity coefficient K1,
and other parameters are fixed, the image pixel intensity value is approximately satisfied
as follows:

Kc = ρ · d2 · K · K1 (6)

Ip = Kc · Lin · s (7)

According to Equation (7), it can be seen that the gray value of each image pixel is
linearly correlated with the external ambient illumination and exposure time. In Equations
(2)–(7), the precision of imaging can be assured on condition that the light electric transfer
of the photoelectric sensor works in the linear zone, and the error caused by noise, for
example, dark current, can be ignored. Also, the precision of the above equation should
be measured or validated using experiments only. Therefore, an equivalent exposure
method that changes ambient illumination intensity or changes exposure time can be used
to analyze the gray histogram distribution law of concrete in different illumination scenes.

3.2. Concrete Equivalent Exposure Scene Design and Validation
3.2.1. Equivalent Exposure Scene Design

According to Equation (7), the product of Lin and s can serve as the equivalent exposure
of the field environment, and equivalent exposure can be controlled by adjusting both
ambient illuminance and camera exposure time. Twenty-one scenes of equivalent exposure
were designed, as shown in Table 2. In Table 2, in the exposure time control scenes (EC),
the illuminance remained constant (100 lx), and the camera exposure time was set from
100 ms to 2500 ms every 120 ms. In the illumination control scenes (IC), the exposure time
remained constant (200 ms), and the ambient illumination varied from 50 lx to 1250 lx by
increments of 60 lx.

Table 2. Equivalent exposure scenes.

Scene
Number

Exposure Time Control Illumination Control
Equivalent

Exposure/lx·sIlluminance/lx Exposure
Time/ms

Exposure
Time/ms

Illuminance
Designed/lx

Illuminance
&de Facto/lx

1

100 ± 1

100

200

50 50.3 10
2 220 110 110.8 22
3 340 170 170.3 34
4 460 230 229.4 46
5 580 290 290.7 58
6 700 350 349.4 70
7 820 410 409.6 82
8 940 470 470.1 94
9 1060 530 529.9 106
10 1180 590 590.3 118
11 1300 650 650.2 130
12 1420 710 710 142
13 1540 770 770.1 154
14 1660 830 829.3 166
15 1780 890 890 178
16 1900 950 950.4 190
17 2020 1010 1010 202
18 2140 1070 1071 214
19 2260 1130 1130 226
20 2380 1190 1189 238
21 2500 1250 1250 250
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3.2.2. Experiment Devices and Setup

To validate photoelectric theory and equivalent exposure principles in concrete crack
imaging, an indoor image capture experiment of a 400 mm × 300 mm × 50 mm-sized
concrete specimen was conducted with acquisition resolution of 2400 pixels × 1600 pixels
in the specified area, as shown in Figure 2. The specified area was 240 mm × 160 mm, and
the image spatial resolution captured was 0.1 mm/pixel.
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Figure 2. Concrete specimen image area.

To achieve uniformly distributed illumination on the specimen surface, two LED lights
whose light intensity and location could be controlled were used, as shown in Figure 3.
Furthermore, five verification zones were set to ensure illumination uniformity, as shown
in Figure 2, of which the illumination was measured by a TES-1339R illuminometer. The
error of the measured and designed illumination values in each verification zone should be
less than 2 lx.
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Figure 3. Arrangement of the experimental devices.

The camera, lens, illuminometer, LED light, and concrete member were set up as
shown in Figure 3, and the device name, type, and parameters and the specification of the
devices and shooting are listed in Table 3. According to Equations (6) and (7), aperture was
considered constant and set to f/5.6, and the concrete specimen images were captured with
a spatial resolution of 0.1 mm/pixel.

3.2.3. Concrete Image Photoelectric Behavior

In the 21 equivalent exposure scenes, images from the exposure time control scene
and the corresponding illuminance control scene are theoretically identical, yet slight
difference exists between equivalent exposure scenes due to the difficulty in illumination
distribution uniformity on the specimen surface by LED illuminance control. Histograms
of each equivalent exposure scene of two control style groups are shown in Figure 4,
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and it can be seen that the concrete image histograms nearly follow the law of the normal
distribution curve, and there is a slight difference in the histograms in each equivalent scene.
Figure 4 indicates that the peak values and mean values of the image histograms showed no
significant difference in exposure time-controlled scenes and illumination-controlled scenes
at each equivalent exposure level. Therefore, the histograms for both control groups exhibit
remarkable similarity, which serves as additional validation of the equivalent exposure
scenario despite the control manner.

Table 3. Experimental devices and parameters.

Device Name Model Parameter and Specification

Camera QHY600

Shutter 40 us~3600 s
Resolution 9600 × 3194 pixels

Image format TIF
Bit depth 8/10/12/16

Lens Nikon AF Zoom-Nikkor
Aperture F2.8~22

Focal length 80~200 mm

Illuminometer TES-1339R
Measurement range 0.1~999,900 lx

Measurement speed five times per second
Resolution 0.01 lx
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Moreover, to further understand concrete image photoelectric behavior with expo-
sure changes, the relationships between the histogram mean value (HMV) and standard
deviation (HSD) changes with exposure are plotted in Figure 5. From Figure 5a, it can be
seen that in the low-exposure interval of 0–154 lx·s, the HMV is in linear proportion to
equivalent exposure, while in a higher exposure interval, greater than 154 lx·s, the HMV
remains at the maximum constant value of 65,535, which indicates extensive overexposure
in image capture. In Figure 5b, the HSD also changes linearly with equivalent exposure
in the low-exposure interval of 0–106 lx·s, but in a higher exposure interval, the HSD also
decreases nearly quadratically with equivalent exposure. According to imaging experience,
the HMV and HSD differences in the histograms were caused by the difficulty in uniform
illumination control in each scene, which was achieved by the variation in light intensity
and location shown in Figure 3.

By comparing the mean values and standard deviations of concrete image capture
from the 21 equivalent exposure scenes, it can be seen that images from the same exposure
scene are nearly identical, and equivalent exposure can be considered a core control index
for scene characterization.
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groups.

4. Optimal Exposure Scene Analysis

All machine vision applications are influenced by image contrast, which indicates the
difference in objects and is the basis for the image processing algorithm. Contrast is the
direct consequence of illumination or exposure. To explore the influence of exposure on
concrete crack image capture scenes and segmentation precision, images of four concrete
specimens, shown in Figure 6a–d,were captured indoors under 50 equivalent exposures.
The specimens were concrete boards with cracks except for specimen A, as shown in
Figure 6a. Considering the difficulties in controlling illumination intensity and uniformity,
the exposure time control method was applied in 50 different exposure scenes, shown in
Table 4, and the exposure time was set from 50 to 2500 ms with an increment of 50 ms. For
each specimen, one image was captured under each equivalent scene; in total, 200 images
were captured. In the scenes controlled by exposure time, the illumination was set to a
constant of 100 lx, and the image capture devices and verification zones were the same as
described in Section 3.
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Table 4. Equivalent exposure scenes.

Number Illumination/lx Exposure Time/ms Equivalent Exposure/lx·s
1

100 ± 1

50 5
2 100 10
3 150 15

. . . . . . . . .
48 2400 240
49 2450 245
50 2500 250
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4.1. Concrete Imaging Mechanism Analysis

In fifty equivalent exposure scenes, the illuminance at the imaging sensor was different
due to exposure time variation, and images of different gray levels were captured, as shown
in Figure 7a–h, which includes images captured in the scene with exposures of 5lx·s, 40lx·s,
75lx·s, 110lx·s, 145lx·s,180lx·s, 215lx·s, and 250lx·s, respectively. Figure 7a indicates obvious
underexposure of the image, and Figure 7e–h indicates overexposure, so images from these
exposure scenes did not have enough contrast for crack segmentation.
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To clarify and quantify the gray level distribution law of the concrete images from
different exposure scenes, image histograms from the first ten scenes are plotted in Figure 8,
from which the mean value µI and standard deviation σi of each image is calculated. The
normal distribution curves are:

f (x) =
1

σi
√

2π
e
− (x−µi)

2

2σ2
i (i = 1, 2, . . . 10) (8)

where i is the scene number. The normal distribution curves of the first ten exposure
scenes are plotted, in the case that overexposure existed in an image from larger equivalent
exposure scenes, compared with the corresponding histograms shown in Figure 9.
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Figure 9. Concrete image histogram and normal distribution curve of ten scenes.

The HMV and HSD variation under the 21 scenes in Section 3 and the 50 equivalent
exposure scenes in Table 4 are shown in Figure 10a,b. It can be seen that the two curves
of the HMV and HSD in different exposure scenes are closely correlated. In Figure 10, the
HMV curve goes up at a nearly constant gradient in the low-exposure interval until leveling
off at the cutoff point in the higher exposure interval. After the cutoff exposure point, the
HMV remains at the maximum constant value of 65,535. Figure 10 also shows more
exposure scenes to help represent the HMV and HSD variation with exposure precisely. For
the HMV exposure curve, the cut-off exposure point is 145 lx·s in 50 scenes instead of 154
lx·s, as in Figure 5, and for the HSD exposure curve, the cut-off exposure point is 115 lx·s
in 50 scenes instead of 106 lx·s, as in Figure 5. Also, the experiment results show that for
the HMV and exposure gradient, the cut-off exposure values are specimen-dependent,
depending on the reflective coefficient of the concrete surface according to Equation (6),
which is not discussed in this paper.
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4.2. Optimal Equivalent Exposure Analysis

In concrete crack image segmentation, there is a remarkable imbalance between con-
crete and the crack pixels in images, and the imbalance extent depends mainly on image
size. According to dataset image size in previous research, the size of 300 ×300 pixels for
image segmentation was used, and the histogram of specified size images showed a good
bimodal property, which is the basis for the Otsu method and iterative thresholding-based
segmentation. Figure 11a is the original gray image, Figure 11b is the segmented binary
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image produced by iterative thresholding, and Figure 11c is the ground-truth binary image
produced by manual labeling with LabelMe4.5.6 software.
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In segmentation accuracy metrics, precision, recall, and the F1 score are the most
popular indices and are defined as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

In Equations (9) and (10), true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) are the elements in the confusion matrix of the segmented image
and the ground truth image. The F1 score [24,25] is defined based on precision and recall
as follows:

F1 =
2 × Precison × Recall

Precison + Recall
(11)

Figure 12 illustrates the precision and recall of the image segmentation for three samples
under 50 exposure conditions. Referring to the precision and recall values in Table 5, it can
be seen that the precision and recall are both large within an equivalent exposure range of
5–80 lx·s, suggesting effective crack segmentation using digital image processing within
this range. Figure 13 reveals a similar law in the F1 scores of three specimens in relation
to equivalent exposure. The F1 scores decrease from their peaks downward by 0.5 with
the increase in exposure, where the optimal exposure is also 5~80 lx·s. In Figure 13, the
largest F1 scores, indicating the most effective distinction between concrete and cracks, are
achieved also within this exposure interval, where the scene is also the same as that marked
by a red cross in Figure 12. Figure 13 indicates that a higher exposure level adversely affects
crack detection accuracy. Moreover, the precision–recall curve and the F1 score of the three
specimens show that the segmentation accuracy properties are specimen-dependent even
in the same exposure scene, with the same image processing or segmentation method. The
property that segmentation accuracy depends on specimen is called segmentability, which
needs further exploration.

To be more specific, Table 5 presents the precision, recall, and F1 score values for the
first 30 groups of images in the equivalent exposures scenes for specimen D. it can be seen
that the F1 score values gradually decrease with the increase in equivalent exposure, and
the highest value reaches 96.3% in the exposure range of 5–50 lx·s.

Metric comparisons between the iterative thresholding segmentation method and
the ground truth of three specimens are plotted in Figure 14, and the TP, FP, FN, and TN
areas are colored with numbers. Panel (a) displays the original images with real cracks
and concrete pixel numbers, and panels (b) and (c) present the segmentation maps under
the low-exposure scenes of 5 lx·s and 10 lx·s. It can be seen that low exposure reduced
the contrast of the concrete crack images and resulted in false positives (FPs) and lead
to segmentation error. Panels (d) and (e) show the optimal segmentation maps of the
scenes achieving the highest F1 score, and the equivalent exposure interval is in the range
of 5~50 lx·s. Panels (f) and (g) show the segmentation result under the high-equivalent



Appl. Sci. 2024, 14, 1527 12 of 15

exposure scenes of 245 lx·s and 250 lx·s. The accuracy of crack segmentation decreases
in the high-exposure intervals, as higher exposure induces an increase in false negatives
(FNs), midsegments part of the cracks as concrete, and causes cracks to appear thinner. The
experimental results show that equivalent exposure is an important factor in characterizing
the concrete image capture scene, and 5~50 lx·s is the optimal equivalent exposure interval
for the best segmentation accuracy.
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Table 5. Segmentation metrics of the crack images from specimen D.

Equivalent Exposure/lx·s Precision Recall F1score

5 0.981 0.944 0.962
10 0.982 0.944 0.963
15 0.981 0.946 0.963
20 0.981 0.944 0.962
25 0.980 0.945 0.962
30 0.979 0.941 0.960
35 0.978 0.939 0.958
40 0.978 0.941 0.959
45 0.978 0.941 0.959
50 0.979 0.942 0.960
55 0.949 0.916 0.932
60 0.923 0.891 0.907
65 0.924 0.892 0.908
70 0.921 0.889 0.905
75 0.917 0.886 0.901
80 0.918 0.886 0.902
85 0.921 0.889 0.904
90 0.919 0.887 0.903
95 0.918 0.886 0.902

100 0.918 0.885 0.901
105 0.917 0.885 0.901
110 0.915 0.882 0.898
115 0.916 0.878 0.897
120 0.917 0.874 0.895
125 0.920 0.870 0.895
130 0.922 0.861 0.890
135 0.924 0.852 0.887
140 0.925 0.843 0.882
145 0.926 0.829 0.875
150 0.926 0.808 0.863
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From Figure 14, it can be seen that, within low-exposure intervals, a minor number of
false positives (FPs) frequently occur in crack image segmentation because the gray value
of the cracks is proximate to that of concrete. Conversely, within high-exposure intervals,
cracks are frequently misclassified as concrete and result in false negatives (FNs).

5. Conclusions

To standardize the concrete crack image capture scene and produce a high-quality
concrete crack image dataset, this paper presents exposure as the scene characterizing
parameter for concrete crack image capture based on a standardization investigation, the
analysis of current public concrete crack segmentation dataset, and a photoelectric principal
analysis. Through equivalent exposure scene design and validation, the optimal exposure
interval is proposed in 50 scenes. The main conclusions of this paper are drawn as follows:

(1) The analysis of present publicly accessible datasets showed that non-uniform image
capture devices, spatial resolution, image size and number, mislabeling, inappropriate
spatial resolution or unnecessary backgrounds, sourced images, out-of-focus images, and
motion blur are frequent problems. Thus, the standardization of concrete crack image
acquisition scenes is a great challenge for high-precision concrete detection.
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(2) Based on the photoelectric principle of the concrete crack imaging process, equiva-
lent exposure was taken as the scene characterization parameter for machine-vision-based
infrastructure crack detection. Twenty-one equivalent exposure scenes were designed,
and the law of image histograms, mean values, and standard deviations were analyzed
to validate the effectiveness of equivalent exposure or the equivalence of exposure time
control and illumination control in crack detection.

(3) Concrete crack segmentation of images from 50 equivalent exposure scenes revealed
that the highest segmentation precision happened within the 5–50 lx·s equivalent exposure
interval, and the F1 score could reach 96.3%. In addition, high exposure was detrimental to
concrete crack detection.

This paper found that the standardization of the concrete crack image scene was
significant. Optimal equivalent exposure was the core characterization index, which could
help to enhance crack segmentation accuracy. The factors that constitute the concrete
crack image scene were multiple and complex. In this paper, the experimental specimen
number was limited, the illumination was uniform, and the validation was an experiment
conducted indoors. More outdoor or onsite experiments should be carried out on more real
infrastructure members in complex illumination environments. In addition, the comprehen-
sive understanding of concrete crack imaging scene still needs further exploration. At the
same time, the dataset quality evaluation method and characteristic index are not totally
clear and should be further explored, and there are factors that influence the quality of
datasets, like imaging spatial resolution and image size, which still need more investigation
and validation with deep learning algorithms.
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