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Abstract: The term “Liver disease” refers to a broad category of disorders affecting the liver. There are
a variety of common liver ailments, such as hepatitis, cirrhosis, and liver cancer. Accurate and early
diagnosis is an emergent demand for the prediction and diagnosis of liver disease. Conventional
diagnostic techniques, such as radiological, CT scan, and liver function tests, are often time-consuming
and prone to inaccuracies in several cases. An application of machine learning (ML) and deep learning
(DL) techniques is an efficient approach to diagnosing diseases in a wide range of medical fields. This
type of machine-related learning can handle various tasks, such as image recognition, analysis, and
classification, because it helps train large datasets and learns to identify patterns that might not be
perceived by humans. This paper is presented here with an evaluation of the performance of various
DL models on the estimation and subtyping of liver ailment and prognosis. In this manuscript, we
propose a novel approach, termed CNN+LSTM, which is an integration of convolutional neural
network (CNN) and long short-term memory (LSTM) networks. The results of the study prove that
ML and DL can be used to improve the diagnosis and prognosis of liver disease. The CNN+LSTM
model achieves a better accuracy of 98.73% compared to other models such as CNN, Recurrent Neural
Network (RNN), and LSTM. The incorporation of the proposed CNN+LSTM model has better results
in terms of accuracy (98.73%), precision (99%), recall (98%), F1 score (98%), and AUC (Area Under
the Curve)-ROC (Receiver Operating Characteristic) (99%), respectively. The use of the CNN+LSTM
model shows robustness in predicting the liver ailment with an accurate diagnosis and prognosis.

Keywords: liver disease; deep learning; machine learning; liver cancer; CNN; RNN; LSTM

1. Introduction

The liver ailment is a canopy term for a number of conditions that can damage the
liver, one of the body’s most vital organs. Some of these include “hepatitis, cirrhosis, and
cancer”. These illnesses have a significant effect on the healthcare system and place a heavy
burden on the lives of millions of individuals as shown in Figure 1. Early diagnosis is very
important to ensure that patients be given the most effective and possible treatment [1].
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Figure 1. Healthy and unhealthy liver affected with disease. 

The liver is a vital organ for many metabolic processes, such as the production of bile 
and protein synthesis. There are other types of liver diseases, such as non-alcoholic fatty 
liver disease (NAFLD), alcoholic liver disease, hemochromatosis, autoimmune liver dis-
eases, etc. These conditions can lead to significant morbidity and mortality [2]. The in-
creasing number of liver diseases has been identified due to a range of environmental, 
genetic, and lifestyle factors. One factor contributing to this issue is the rising prevalence 
of individuals engaging in excessive alcohol consumption and adopting bad dietary hab-
its. The interaction of environmental, genetic, and lifestyle factors worsens these disor-
ders. In addition to posing a direct danger to individuals’ health, liver diseases may also 
have significant economic consequences. The financial and therapeutic costs associated 
with these diseases are significant, ultimately straining the healthcare system and burden-
ing families and individuals. Furthermore, there are additional effects, such as reduced 
efficiency, increased disability, and reduced quality of living, which may have significant 
effects on both society and the individuals involved [3,4]. 

Developing effective methods for diagnosing, preventing, and treating liver diseases 
is necessary since they are crucial elements of an integrated approach [5] for managing 
liver disease problems. Modifications to an individual’s lifestyle, together with public 
health measures such as hepatitis B and C vaccinations, may help decrease the intensity 
and occurrence rate of the disease [6]. 

Liver diseases have become a serious global health issue due to their increasing fre-
quency as well as the severity of their symptoms. The objective of this examination is to 
provide a comprehensive analysis of the impact caused by these ailments by summarizing 
the research conducted by scholars in the work [7]. By learning more about the numerous 
risk factors and epidemiology of liver disorders, as mentioned by the researchers [8], there 
is scope to develop effective therapies that will aid in reducing the impact of these illnesses 
and improving the quality of life for those who suffer from them. 

In most cases, a combination of imaging and histology tests may confirm a diagnosis 
of liver disease. This approach is widely used. However, it seems that these procedures 
are both time-consuming and ineffective. This is why new approaches are so important; 
they will improve the precision of these procedures, which in turn will aid in prognosis 
prediction for patients. 

ML and DL has gained immense popularity in the field of healthcare [9]. These meth-
ods rely on artificial neural networks, which are specifically designed to learn from large 
datasets. DL, in particular, is highly beneficial for complex tasks such as predicting time 
series and analyzing images. In the context of liver infection diagnosis and prognosis, DL 
can be used to improve accuracy by identifying intricate patterns within the data [10]. This 
research aims to investigate the application of DL techniques in diagnosing and predicting 
liver infections. 

Figure 1. Healthy and unhealthy liver affected with disease.

The liver is a vital organ for many metabolic processes, such as the production of
bile and protein synthesis. There are other types of liver diseases, such as non-alcoholic
fatty liver disease (NAFLD), alcoholic liver disease, hemochromatosis, autoimmune liver
diseases, etc. These conditions can lead to significant morbidity and mortality [2]. The
increasing number of liver diseases has been identified due to a range of environmental,
genetic, and lifestyle factors. One factor contributing to this issue is the rising prevalence of
individuals engaging in excessive alcohol consumption and adopting bad dietary habits.
The interaction of environmental, genetic, and lifestyle factors worsens these disorders.
In addition to posing a direct danger to individuals’ health, liver diseases may also have
significant economic consequences. The financial and therapeutic costs associated with
these diseases are significant, ultimately straining the healthcare system and burdening
families and individuals. Furthermore, there are additional effects, such as reduced ef-
ficiency, increased disability, and reduced quality of living, which may have significant
effects on both society and the individuals involved [3,4].

Developing effective methods for diagnosing, preventing, and treating liver diseases
is necessary since they are crucial elements of an integrated approach [5] for managing
liver disease problems. Modifications to an individual’s lifestyle, together with public
health measures such as hepatitis B and C vaccinations, may help decrease the intensity
and occurrence rate of the disease [6].

Liver diseases have become a serious global health issue due to their increasing
frequency as well as the severity of their symptoms. The objective of this examination is to
provide a comprehensive analysis of the impact caused by these ailments by summarizing
the research conducted by scholars in the work [7]. By learning more about the numerous
risk factors and epidemiology of liver disorders, as mentioned by the researchers [8], there
is scope to develop effective therapies that will aid in reducing the impact of these illnesses
and improving the quality of life for those who suffer from them.

In most cases, a combination of imaging and histology tests may confirm a diagnosis
of liver disease. This approach is widely used. However, it seems that these procedures
are both time-consuming and ineffective. This is why new approaches are so important;
they will improve the precision of these procedures, which in turn will aid in prognosis
prediction for patients.

ML and DL has gained immense popularity in the field of healthcare [9]. These
methods rely on artificial neural networks, which are specifically designed to learn from
large datasets. DL, in particular, is highly beneficial for complex tasks such as predicting
time series and analyzing images. In the context of liver infection diagnosis and prognosis,
DL can be used to improve accuracy by identifying intricate patterns within the data [10].
This research aims to investigate the application of DL techniques in diagnosing and
predicting liver infections.
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In order to achieve a better result, we provide CNN+LSTM, a novel deep learning
model that combines CNN and LSTM networks. Data in sequential and image types
are handled by these two networks. The goal of the CNN+LSTM model is to enhance
the accuracy and predictive capability of liver disease analysis by capturing temporal
and spatial dependencies in the data. The evaluation for the CNN+LSTM model will be
performed on a well-defined set of liver disease cases. It will be evaluated by applying
several metrics, such as accuracy, precision and recall, AUC and ROC, and F1_score. AUC
and ROC are widely used as evaluation metrics in ML, especially for tasks related to
binary classification. Not only that, but they could additionally be expanded to incorporate
multi-class classification issues. The results after evaluation will be used to determine the
model’s effectiveness in predicting the prognosis of patients and subtyping liver disease.

This study’s results may have profound implications for the future of liver disease
treatment. If the model proves to be useful, the process of diagnosis will improve both
its efficiency and accuracy. A precise prediction of a patient’s future course of disease
is essential for clinicians to develop customized treatment plans and improve patient
outcomes. This study utilizes the advanced capabilities of DL to improve the field of liver
disease diagnosis, prognosis, and treatment, resulting in benefits for patients, society, and
healthcare professionals.

2. Related Work

The domain of liver disease research is widespread. Numerous kinds of studies
are carried out globally to enhance awareness of the disease and improve the treatment
of patients. The field of liver disease identification and diagnosis has seen significant
advancements with the use of ML and DL techniques. Over the years, researchers have
explored the application of these techniques to increase the accuracy and efficiency of liver
infection diagnosis. In this literature review, our aim is to provide a complete overview of
recent studies and advancements in liver disease detection using ML and DL approaches.
By examining many research papers, we explore various methodologies, draw attention
to vital findings, and identify potential areas where the use of hybrid techniques might
enhance disease detection. One area of ongoing research is the development of non-
invasive diagnostic methods for liver diseases. Traditional diagnostic procedures, such as
liver biopsies, can be invasive, time-consuming, and can carry certain risks [1,4]. However,
emerging technologies, such as imaging modalities and blood biomarkers, are being studied
as potential non-invasive alternatives. These methods aim to provide accurate assessments
of liver health, fibrosis staging, and disease progression without the need for invasive
procedures.

The main objective of using deep learning techniques here is to classify and determine
the level of seriousness of liver fibrosis. A deep learning model is created to visually
illustrate the analytical decisions made by the algorithm. The article likely contains com-
prehensive information on the building blocks of the deep learning model, the dataset
used for training and testing, and the obtained performance metrics. The possible results
of this study [11] should help us learn more about how effective visual explanations are
at helping people understand the diagnostic decisions made by the DL model and how
accurate the model is at grading liver fibrosis. The authors want to investigate the use of
machine learning algorithms for the automated detection of liver illness, with a special
emphasis on a model that does not include a voting mechanism. The authors propose a
methodology that employs abstention techniques, permitting the model to abstain from
giving a diagnosis when there is doubt about the underlying problem. The study will
provide a detailed account of the approach used, including the particular machine learning
algorithms and methods adopted for the identification of liver disease.

An automatic system for the segmentation of the liver and tumor was developed by
Manjunath et al. [12] using a DL approach. They probably trained a DL model on CT
scans so that it could robotically segment the liver and tumor areas. The accuracy of the
segmentation results could be evaluated using performance assessment metrics such as
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dice similarity coefficient (DSC) or the Jaccard index (JI), which was described in the paper
along with the architecture of the DL model, the dataset used for training and evaluation,
and the performance evaluation metrics.

Yang et al. [13] developed a machine learning (ML) model utilizing laboratory charac-
teristics to exclude instances of “non-alcoholic greasy liver disease” (NAGLD) among the
general population. There were excellent statistics that made use of a dataset that includes
clinical information along with experimentation testing results. The paper included a
thorough account of the feature selection process, model training, and performance assess-
ment. The results of the model are expected to show the ability of the model to correctly
recognize and exclude people without Non-Alcoholic Fatty Liver Disease (NAFLD) by
using laboratory values.

The work referenced in [14] focuses on using machine learning methods to predict
fatty liver disease. The scholars explored a range of machine learning methodologies,
including random forest (RF), decision trees (DT), artificial neural networks (ANN), and
support vector machines (SVM). The report included an in-depth description of the utilized
dataset, including clinical and image data. Moreover, an explanation of the pre-processing
and feature selection methods was provided. It was anticipated that these results would
be presented with a demonstration showcasing the performance of each machine learn-
ing algorithm, encompassing pertinent evaluation metrics such as accuracy, sensitivity,
specificity, and more.

In the study on the classification of liver cancer by combined CT scans and MR,
researchers [15] proposed a hybrid-feature analysis that is based on machine learning. They
created a model that improves the accuracy of liver cancer classification by combining
features from both types of imaging modalities. The pre-processing steps, technique for
feature extraction, and machine learning algorithm that were used were all described in
the paper. It was anticipated that these findings would demonstrate that the proposed
model possesses superior performance when compared to using each imaging modality
individually with various metrics [16].

The work [17] developed a method for screening for liver disease that is based on
tightly coupled deep neural networks. For the purpose of screening for liver disease, the
authors made use of DL techniques, more specifically, densely connected neural networks.
The pre-processing steps that were utilized, the dataset that was used for training and
estimation, and the architecture of the deep neural network were all described in the paper.
In addition to other pertinent performance metrics, their findings included a comparison of
this approach with others, as well as a discussion of the accuracy of the model in screening
for liver disease.

The work [18] investigated the use of digital testing for pathology and ML in the
context of kidney, lung, and liver diseases. The authors examined previously published
studies and discussed the utilization of digital pathology images as well as ML techniques
in the process of diagnosing these diseases. Findings from many studies were put together
in this article, along with an analysis of the effects and possible benefits of using digital
pathological testing and machine learning methods in the areas of kidney, lung, and
liver diseases.

The work [19] examined both the obstacles that must be overcome and the potential
benefits of using DL in the diagnosis of liver disease. They provided an overview of the
DL techniques, discussed the challenges that are faced in liver disease diagnosis, such as
limited data or interpretability, and investigated potential future directions in this field.
This paper provided perspectives on the potential benefits and limitations of using DL to
diagnose liver disease and presented insights based on the literature review.

In their study [20] the authors focus on the first detection and diagnosis of liver
cancer using dynamic network biomarkers and DL. The authors suggested a new method
that integrates dynamic network biomarkers with deep learning algorithms. The article
includes a description of the methods used to find dynamic network biomarkers, as well as
an explanation of the architecture of the DL model. Their results include the performance
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of the proposed approach. This encompasses the model’s accuracy, sensitivity, specificity,
and ability to identify liver cancer early.

The study investigated by authors [21] present in-depth knowledge of the use of
machine learning models in the clinical diagnosis of both primary and metastatic liver
tumors. They provided a thorough analysis of the literature and a summary of the results
from several studies that have used machine learning models to diagnose liver cancer. The
study discusses the various machine learning techniques used, the datasets examined, and
the stated diagnostic accuracy of the models.

In the works [22,23], a more advanced preprocessing technique was suggested for the
detection of liver disease that utilizes collective machine learning techniques. They devised
a preprocessing technique that enhances the execution of machine learning procedures
for the detection of liver illnesses. The article discusses the preparation procedures, en-
semble techniques, and the dataset used. It was expected that the proposed preprocessing
strategy will work better than standard methods, as shown by measures such as accuracy,
compassion, specificity, and RUP.

To develop an intelligent model using machine learning techniques to accurately
forecast the first phases of liver disease, the authors of [24–26] developed a machine learning
model to accurately forecast the occurrence of early liver disease by using a diverse range
of features. The article describes the feature selection technique, the machine learning
algorithm used, and the dataset utilized. The findings include the system’s effectiveness
in predicting early liver disease, as well as metrics such as accuracy, sensitivity, specificity,
and RUP. The literature review highlights the advancements achieved in liver disease
detection via the use of ML and DL approaches. Researchers have verified the efficacy
of these methods in several facets of liver illness, encompassing fibrosis staging, liver
cancer categorization, and the diagnosis of non-alcoholic liver disease [27–29], among
others. Nevertheless, it is crucial to acknowledge and resolve certain constraints, such as
the variability of diseases and the accessibility of standardized information, to enhance the
precision and applicability of these models.

An essential and challenging task during surgical procedures is the precise recognition
of different types of tissues in real time. Study [30] used hyper spectral imaging (HSI) and
machine learning to perform tissue segmentation in numerous medical fields. The process
consisted of two main parts. In the first phase, the data were preprocessed to address the
significant complexity of the spectrum’s dimensionality and the variability of tissue spectra
across patients, which are two common challenges in HSI. Principal Component Analysis
(PCA) was used on the spectral domain of HSI data to eliminate anomalies, enhance the
smoothness of the spectrum, standardize the data, and decrease the number of dimensions
during the preprocessing phase. Gaussian filters were used at several stages of processing in
the spatial domain. Subsequently, they used a refined machine learning model to partition
the tissues. After a statistical evaluation of seven machine learning models employing three
levels of geographical analysis, the most optimal model was chosen.

Study [31] presented a novel deep learning methodology to precisely segment liver
tumors and detect liver structures in CT imaging. The suggested method uses the LiTS17
database and has four sub layers and a fully connected layer that can differentiate between
liver and liver tumors. Based on the LiTS17 dataset U-Net approach, the used method was
able to obtain a higher accuracy in DC, mean, F1 score, and recall value. The proposed
approach was further evaluated in a noisy setting, and the network demonstrated robust-
ness over a diverse range of signal-to-noise ratios (SNRs). The proposed methodology has
shown satisfactory and favorable results when compared to previous research.

Study [32] presented an innovative method for precisely distinguishing liver tissue and
tumors from CT scan volumes. The proposed methodology used a hybrid ResUNet strategy,
integrating the ResNet and UNet architectures, to successfully address this difficulty. The
study primarily used two intersecting models for liver segmentation and assessment
of the region of interest. Liver segmentation was conducted to examine the liver via
a volumetric abdominal CT image. The proposed model employs CT volume slices of
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patients diagnosed with liver tumors and was evaluated using the publicly accessible HSI
dataset. The experimental investigation showed that the liver segmentation achieved a
higher accuracy. The authentication rate of the dice coefficient also showed improvement,
indicating effective testing and the framework’s preparedness for diagnosing liver illness.

The authors [33] proposed a liver image segmentation approach that combines GANs
with Mask R-CNN. Initially, due to the presence of noisy elements in the majority of
images, the researchers explored the integration of Mask R-CNN and GANs to enhance the
precision of pixel-wise classification. A further advantage of mean clustering is its ability
to maintain the picture’s aspect ratio. Obtaining additional significant anchors has the
potential to greatly enhance the effectiveness of segmentation. Ultimately, we developed
a GAN Mask R-CNN algorithm that outperformed the previously used Mask R-CNN,
Mask-CNN, and k-NN in terms of both the DC and F1 scores. This paper introduces an
innovative deep learning approach for accurately segmenting liver tumors and identifying
hepatic structures in computed tomography images. Based on the favorable outcomes, it is
anticipated that the suggested methodology will be promptly used to aid radiologists and
specialized physicians.

Study [34] presented an innovative method for precisely distinguishing liver tissue
and tumors from CT images. The proposed approach used a hybrid ResUNet model,
which integrates the ResNet and UNet models, to proficiently address this difficulty. Liver
segmentation was conducted to examine the liver via a volumetric abdominal CT scan. The
proposed system employs computed tomography (CT) volume slices of patients who have
been diagnosed with liver tumors. This model deals with CT images of liver diseases using
the IRCADB01 dataset. The identification accuracy proves that it can easily be used to find
out about any type of unexpected thing in the liver.

In study [35], the researchers used a two-step method to determine the presence of
liver tumors. The liver region was first partitioned using mask-RCNN, followed by the
identification of tumors using MSER (maximally stable external regions). The classification
was conducted via a hybrid CNN model based on DL. The purpose of this framework was
to distinguish between cancerous and healthy liver tissue, while the aim of the classification
method was to categorize the identified tumors into many categories. The objective of this
study was to provide an impartial prediction that is free from any human fallibility. In
contrast, our suggested technique achieves segmentation and classification performance
that is almost equivalent to the leading method. Moreover, it offers the utmost accuracy in
detecting lesions while maintaining a high percentage of accurately identifying them.

In work [36], a multi-layer GAN was applied to improve CT image quality. A CT
diagnosis may be made using the improved pictures produced to distinguish between a
normal and cancerous liver. Three open-source datasets—Ircadb, Sliver07, and LiTS—were
used to evaluate the suggested approach. Both quantitative and qualitative analyses were
conducted based on three datasets. There was a higher quality of the medical images
when the multi-level GAN was combined with AlexNet for binary classification. This is
because the structural features were preserved and artefacts were reduced. The testing
accuracy was evaluated using both filtered and unfiltered images. Moreover, the suggested
multi-level GAN is very appropriate for computer-assisted diagnosis, as it surpasses other
models on all three datasets.

In work [9], the authors used the AIM-Unet model for an automated system using the
AIM-Unet model for better results. They applied CHAOS, LIST, and 3DIRCADb datasets
and achieved a DC, F1 score, and ACC with 97.86%, 96.1%, and 9.57%, respectively. This
accuracy is remarkable as compared to DC and F1 score values. The researchers in their
work [16] applied a U-Net model where the LiTS17 dataset was used, and with the help
of the U-Net model, the DC, F1 score, and recall values were 91.1%, 99.4%, and 91.2%,
respectively. In works [17,19], the authors used the LiTS dataset and achieved a DC score
of 94.33% and 95.13%, respectively. The scholars of [17] enhanced the precision of CT liver
segmentation. A semi-supervised adversarial learning model was trained using DAP, and
they applied a semi-supervised model that uses a training dataset lacking annotations
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to reduce the number of medical picture annotations that are necessary. Whereas the
researchers in [19] applied CoFCNN, the two features are shared throughout the segmenta-
tion path, and two inputs are sent into CoFCNNs simultaneously. The researchers in [20]
applied DeepMedic+CNN. They used liver multi-scale segmentation utilizing DeepMedic
CNN fusion of completely connected layers and achieved a DC value of 93% based on the
SLIVER07 and LiTS datasets. Their use of CNN segmentation as a starting point resulted in
a decrease in inter-observer variation. In work [21], a hybrid CNN was developed for auto-
mated liver segmentation employing a 3D CNN with a hybrid loss function and achieved
a DC accuracy of 82.02% using the CHAOS dataset. However, there is the possibility to
train on tiny datasets, but the outcome is average. The work in [24] used ResU-Net for
the automated identification and labeling of liver functional areas using a 3D DNN with
different classes. The authors used the MSDC-T8 dataset and achieved a DC accuracy of
89.2%. It was observed that there is a considerable computational cost associated with
successful segmentation, and more research on different datasets is required. In work [30],
a 3D Fully Convolutional Network (FCNN) Deep Learning (DL) technique was proposed
for segmenting the liver, stomach, and pancreas utilizing divided convolution units. The
authors showed an early effort to use divided CNN for liver segmentation, which requires
post-processing. They showed that the DC value was 92.93% using the pancreas-CT. In the
work [31] the authors used the FKFCM technique for segmenting livers and tumors. They
used SLIVER07 and achieved a DC score of 86.42%, which shows that significant outcomes
were achieved while using unsupervised learning. In the work [32] the authors used U-Net
architecture and MSA, where the HSI dataset was applied, and they scored F1 score and DC
values of 90.8% and 81.3%, respectively. They used the U-Net model and had remarkable
precision in detecting liver, duct, vein, and artery tissues. In contrast, the accuracy of logistic
regression with elastic net periodicity and multi-scale spatial analysis was comparatively
lower. In work [33], the Mask R-CNN + GAN with KNN architecture was applied. The
authors used the IRCADB01 dataset and gained the accuracy of recognition (ACC), recall,
and F1 scores of 91.3%, 92.2%, and 92.3%, respectively. The applied Mask-R-CNN + GAN
enhanced the pixels for better classification. The aspect’s image ratio was modified using
k-NN in order to obtain more prominent anchors, hence improving the segmentation’s
efficacy. In the work [34] the authors applied hybrid ResNet and UNet architectures. The
dataset IRCADB01 was used, and they gained ACC, DC, and F1 scores with results of
99.55%, 97.85%, and 98.16%, respectively. This model deals with CT images of liver diseases
using the IRCADB01 dataset. The identification accuracy proves that it can easily be used
to find out about any type of unexpected thing in the liver. In the work [35] the scholars
applied a cascaded fully convolutional neural network in the ACC, DC, and F1 scores.
The accuracy of segmentations and dice coefficient values indicated the detection, and
its accuracy was significantly higher compared to other researchers. The researchers [36]
applied AlexNet with multi-layer GAN for liver diagnosis. In their research experiment,
they applied three publicly available datasets: Ircadb, Sliver07, and LiTS. In this regard, to
achieve a better result, they adopted binary classification and achieved DC and F1 scores
of 90.37% and 85.90%, respectively. It was shown that there is a better quality of medical
images when the multi-level GAN is combined with AlexNet for binary classification. This
is because the structural features are preserved and the artefacts are reduced. The testing
accuracy was evaluated using both filtered and unfiltered images. Moreover, the suggested
multi-level GAN is very appropriate for computer-assisted diagnosis, as it surpasses other
models on all three datasets.
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It is important to acknowledge the limitations of existing approaches. Moreover, the
presence of superior and carefully selected datasets is essential for effectively building
precise machine learning models. Nevertheless, acquiring standardized datasets for liver
illnesses poses complications. The scarcity of such datasets impedes the development
of reliable and widely applicable algorithms. To tackle these issues, there are ongoing
developments in medical science and technology. Scientists are now engaged in efforts
to develop more extensive datasets that include a broader spectrum of liver illnesses.
Furthermore, continual endeavors are being taken to create machine learning algorithms
that can acquire knowledge from smaller or more varied datasets while nevertheless
maintaining precision.

To overcome these limitations, the integration of hybrid techniques emerges as a
potential solution. By combining multiple approaches, hybrid techniques can leverage the
complementary strengths of different modalities and algorithms, leading to more robust
and accurate disease detection. Future research should focus on developing standardized
datasets, exploring feature fusion strategies, and evaluating the performance of hybrid
models across diverse liver diseases. With continued advancements in ML and DL, and
the integration of hybrid techniques, we can expect further improvements in liver disease
detection and diagnosis, ultimately leading to enhanced patient care and outcomes.

3. Proposed Method

To effectively use ML and DL for complicated medical and diagnostic activities, we
have formulated a comprehensive approach to handle the complexities related to medical
imaging and diagnostic processes, specifically for liver disease. This section is arranged
in the following sub-sections: dataset used, pre-processing, applied algorithm, proposed
(CNN+LSTM) model, and model training detail with the help of hyperparameter turning.

3.1. Applied Dataset

The Kaggle database for liver disease patients provides valuable information for
developers and researchers working on the condition. It contains ten variables, such
as “total bilirubin, age, gender, albumin, total proteins, direct bilirubin, SGPT, alkaline
phosphatase, and A/G ratio”. These variables provide essential details on many aspects
of the liver’s condition, functioning, and possible abnormalities. Through the analysis
of the data and the use of machine learning or statistical methodologies, researchers
and developers can identify patterns, construct predictive models, and make valuable
contributions to the diagnosis, treatment, and comprehension of liver disorders. Apart
from the ten variables or parameters, we have applied different labels such as Accuracy,
Precision, Recall, F1 Score, AUC-ROC, etc. for our deep learning method. We also have
applied the Hyperparameter for finding the where; for measuring the performance we
applied Optimizer, rate of learning, size of each batch, total epochs, CNN architecture,
LSTM units, dropout rate of CNN and LSTM, and loss function. The data were gathered
from 30,000 individuals, and experts were notified of the information [26]. The information
collected from the Kaggle database was utilized to train DL systems to identify individuals
with liver disease. The dataset’s size and well-labeled nature make it an ideal resource for
developers and researchers. It holds information about 30,000 individuals, which is enough
to be considered statistically significant.

3.2. Data Pre-Processing

Missing Value Imputation: The method of imputing missing values involves replacing
the absent data points with approximated values. The dataset includes a feature referred
to as “Total Bilirubin”, which is absent for certain cases. The process of imputing missing
values in this feature involves utilizing “mean imputation”, whereby the missing values
are substituted with the mean value derived from the available non-missing values.

Normalization of Data: Normalization of data is a method applied to standardize
and measure data in the direction to carry them to a comparable range and magnitude.
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There are several approaches available for achieving this objective, including the utilization
of min-max normalization techniques. The dataset includes the variable “Age”. This
particular feature has a distinct magnitude in comparison to the remaining features within
the given datasets. The feature has been normalized using min-max regularization.

Selection of Features: The process of identifying the most significant characteristics
for a given assignment involves the utilization of a technique known as “recursive feature
elimination”. The dataset includes the variable “Gender”. There is no observed correlation
between this attribute and the target variable. Therefore, the aforementioned feature was
excluded from the dataset in order to improve the performance of the proposed model.

Data transformation: The method involves converting the data into a format that is
better suited for deep learning algorithms. The proposed model employed the technique of
discretization for the purpose of transforming the data. The dataset includes the variable
“Total Bilirubin”. The aforementioned characteristic exhibits continuity. Therefore, it is
necessary to discretize this particular feature into a predetermined number of bins.

3.3. Applied Algorithm

Convolutional Neural Networks (CNNs): The CNNs are mostly employed in the
field of computer visualization, namely for tasks involving image and video recognition.
However, they may also be effectively utilized for sequential data analysis, including text
processing. The CNNs are specifically built to learn and analyze spatial hierarchies of
features from input data. This enables them to efficiently capture and represent patterns
and structures within the data.

The essential components of CNNs encompass the following three layers,
namely—convolutional, pooling and fully connected layers. Convolutional neural net-
works also employ filtering techniques to apply them to input datasets, aiming to extract
local features and generate feature maps. The sharing layers effectively reduce the spatial
dimensions of the feature maps while retaining crucial information. The interconnected
layers of the neural network combine the extracted features and produce predictions based
on the learned demonstrations. The representation of the output of a convolutional layer
can be achieved by the utilization of the convolution process, which is commonly termed
as such,

Hij = (K ∗ X) =
M

∑
m=1

N

∑
n=1

Km,n.Xi+m−1,j+n−1 (1)

where, Hij = “element at position (i,j) is fed as input to achieve output feature map”;
K = “CNN kernel”; X = “input data of a feature map”; M and N = “extents of the kernel”.

The outcome of the CNN is then voted for a triggering function called ReLU (Rectified
Linear Unit). This presents non-linearity,

Y = ReLU(H) = max(0, H) (2)

where, Y = “output after the activation function is applied to the feature map H”.
Recurrent Neural Networks (RNN): The RNNs are designed to efficiently handle

sequential data by capturing temporal dependencies and maintaining information across
time steps. These techniques seem to be particularly advantageous in jobs that need the
examination of sequential patterns, such as natural language processing (NLP), speech
recognition, and investigation of time series data. Recurrent neural networks are char-
acterized by the presence of feedback connections, which facilitate the transmission of
information from one temporal step to the subsequent one. This stands in contrast to the
unidirectional flow of information in feed-forward neural networks. The utilization of
this architectural design allows RNNs to effectively preserve an internal memory, hence
enhancing their ability to capture and represent long-term data dependencies.

The essential component of an RNN is the recurrent hidden layer, responsible for
processing sequential data. Furthermore, each hidden unit within the recurrent layer
is equipped with a recurrent connection, enabling it to receive its own prior output as
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an input. This facilitates the network’s ability to retain and integrate knowledge from
preceding iterations, hence enhancing its computational process in the present iteration. The
computation within an RNN can be denoted by the subsequent mathematical expressions.

ht = f (Wxxt + Whht−1 + bh) (3)

h′t = f (W ′
xht + Wh′h

′
t−1 + b′h) (4)

yt = f (Wyh′t + by) (5)

where ht = hidden layer at time t, xt is input at time t, Wx = “weighted matrix for the RNN
connections”, W ′

x = “weight matrix for the input connections”, Wy = “weight matrix for the
output connections”, bh and by are “bias terms”, and f = “activation function”.

RNNs are suitable for emotion recognition tasks that involve sequential data, such as
analyzing the temporal patterns in speech or text data. However, standard RNNs have
the lack of the disappearing “gradient problem” because of their limitations in capturing
long-term dependence.

Long Short-Term (LST) Memory: The LSTM networks are a type of recurrent neural
network that can capture dependency over time in serial data and solve the issue of
vanishing gradients. Long short-term memory networks add a memory cell and numerous
gating methods to regulate data transfer across the network. The LSTM architecture
consists of three main components of gates: input, forget, and output. They regulate the
information flow by updating or discarding statistics from the memory cell depending
on the current and previous inputs. This permits LSTMs to learn long-term reliance by
effectively retaining relevant information over many time steps.

ft = δ(Wx f × xt + Wh f × ht−1 + bi) (6)

it = δ(Wxi × xt + Whi × ht−1 + bi) (7)

δt = δ(Wx0 × xt + Wh0 × ht−1 + b0) (8)

ct = ft.ct−1 + it.tanh(Wx f × xi + Whc × ht−1 + bc) (9)

ht = δt × tanh(ct) (10)

where the forget gate is ft, input gate is it, and output gate is δt, respectively. Moreover,
the term ct is stating the updated state of a memory cell and the hidden state with respect
to time t is ht. The input with respect to time t is represented by xt. We measure the
matrices of weight with the following symbols:Wx f , Wh f , Wxi, Whi, Wxo, Who , and Whc
correspondingly. The biases are measured by bi, bo and bc We measure the sigmoid function
for activation by the σ symbol. The LSTM network works as another part of the DL model,
which is comprised of memory blocks, or a collection of subnets that are usually connected.
Memory blocks consist of an output gate, an input gate, a forget gate, and a memory cell. In
contrast to the conventional recurrent unit, which updates its contents at each iteration, the
LSTM unit utilizes the introduced gates to determine whether or not to retain the existing
memory. LSTM explicitly avoids the long-term dependency conundrum. In contrast to the
solitary neural network layer found in recurrent neural networks, the LSTM architecture
comprises four interconnected layers. The structure of LSTM is wherein each line represents
a complete vector connecting the output of one node to the inputs of the other.

LSTM layers are especially designed to collect and represent long-term relationships
in sequential data. They possess the capability to retain knowledge from previous inputs
and use it to generate estimates for future inputs. Its layers have the ability to handle input
sequences that have different values, and the layers provide the ability to automatically
adjust and acquire knowledge from sequences of varying lengths, unlike conventional
feed-forward neural networks that need inputs of fixed sizes. This model facilitates the
acquisition and transmission of significant gradient information over different time steps.
This process is crucial for the successful training of deep recurrent neural networks. LSTMs
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provide the capability of effectively acquiring and representing information across many
time scales when modelling sequential data. This mechanism inherent in LSTM layers
enables them to flexibly regulate the amount of past information they keep and the amount
of new information to adapt, successfully capturing both short-term and long-term de-
pendencies in the data. This skill is crucial in jobs that involve the varying significance of
contextual information throughout various time periods. Its layers are suitable for jobs
involving multi-dimensional input data, such as disease identification, image recognition,
video analysis, and audio processing. DL models can quickly find temporal links in the
input data by using LSTM layers along with convolutional or fully connected layers.

LSTMs have been applied in various NLP tasks successfully, including sentiment anal-
ysis and recognition. Their ability to capture long-term dependencies makes them suitable
for analyzing sequential data and extracting meaningful features related to emotions.

Proposed (CNN and LSTM) Model: The proposed approach involves the utilization
of a CNN+LSTM model, which integrates the functionalities of both CNN and LSTM
networks, for the purpose of liver disease diagnosis. The utilization of temporal and medical
data facilitates the provision of a diagnostic with enhanced accuracy. The CNN is employed
as the primary extraction component of the model. The system undertakes a range of
functions, including the acquisition of spatial data and the identification of localized
patterns within medical images. The resulting output maps are subsequently subjected to
down sampling in order to preserve their distinctive properties. The LSTM component
subsequently analyses the data obtained from the CNN. The machine learning algorithm
has the capability to acquire knowledge on the patterns and temporal relationships within
the data, enabling the identification of distinct indicators associated with liver disease.

The schematic diagram in Figure 2 represents the proposed model based on CNN
and LSTM. We have incorporated the diagrammatic representation through Figure 3
for representing and demonstrating the LSTM model with dense level 1, and Figure 4
demonstrates the details of the proposed CNN and LSTM models. The suggested model
integrates the capabilities of LSTM and CNN in order to effectively identify liver illness. By
virtue of its training on the Kaggle dataset, the system is capable of generating accurate
and prompt diagnoses. Additionally, it aids in improving the overall quality and effectively
managing other components associated with the system.
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4. Experimental Outcomes and Evaluations

The primary objective of our study is to examine the different architectures of deep
learning in order to detect liver illness, utilizing a substantial dataset. The evaluation
encompassed four models: CNN, RNN and LSTM as indicated in Table 1. Subsequently,
an analysis was conducted on the performance metrics of each model to ascertain their
efficacy in the detection of liver disease cases. The findings of our study demonstrate that
performance is characterized by both quantitative and qualitative precision.
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Table 1. Model training and Hyperparameter tuning values.

Types of Hyperparameters Their Corresponding Values

Optimizer “ADAM”
Rate of Learning 0.001
Size of each Batch 128
Total Epochs 50
CNN Architecture (Cov2D-ReLU-MaxPool2D) × 4
LSTM Units 128
Dropout Rate (CNN) 0.25
Dropout Rate (LSTM) 0.5
Function of Loss applied Binary Cross-entropy
Stopping Patience Early 5

4.1. Graphical Representation of Accurateness of Epochs and Loss

In machine learning, an epoch denotes a whole iteration over the entire training dataset
throughout the training procedure. The training data are often partitioned into smaller
batches, each of which is used to update the model’s parameters. An era is considered
complete after all batches have been processed. During each epoch, the model continually
modifies its internal parameters by considering the input data and matching target labels
to minimize the error or loss. The number of epochs defines the total number of iterations
the model will perform on the training dataset. The training and testing datasets are used
for gaining the accuracy and loss and they have been represented by Figure 5.
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4.2. Heatmap

Heat maps are valuable tools for visually representing patterns, correlations, and
trends throughout extensive datasets. The process of creating a heat map involves matching
the dataset’s values to a color gradient, where each color represents a different value or
level of data intensity. The color spectrum normally spans from cold hues, such as blue,
for lower values, to warm hues, such as red, for higher values. The heat map is shown in
Figure 6. The heat map visually emphasizes regions within the dataset that exhibit greater
or lower values, facilitating the identification of discernible patterns and trends. Typically,
brighter or darker colors are used to depict high values, whereas brighter or fainter colors
are used to represent low values. The use of color encoding enables the easy identification
of different values or data intensities. Heat maps are often used for analyzing extensive
information to detect and ascertain patterns or relationships. In this study, we used heat
maps to examine the projected values of liver disorders.
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4.3. Model Summary

Table 2 displays the layer, its output, and its params values. In the layer LSTM, dense
lambdas are considered. In the training, the number of gained total and trainable params is
60,591 and non-trainable params is zero.

Table 2. Model summary of proposed model. Model: “sequential”.

Layer (Type) Output Shape Param#

Convid (Conv1D) (None, None, 60) 360
lstm (LSTM) (None, None, 60) 29,040
Lstm_1 (LSTM) (None, 60) 29,040
dense (Dense) (None, 30) 1830
dense_1 (Dense) (None, 10) 310
dense_2 (Dense) (None, 1) 11
lamda (Lamda) (None, 1) 0

Total params: 60,591
Trainable params: 60,591
Non-trainable params: 0

4.4. Evaluation Parameters

We integrated an in-depth investigation, including the relevant methods of multiple
scholars. We also evaluated their performances using machine learning techniques. We
included an illustration of the architecture used. Finally, we concluded and identified the
benefits and limits of each of these methodologies to determine the potential for further
research. The information is presented in Table 3, as seen below.
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Table 3. Performance analysis of different researchers with their advantageous techniques and limitations.

Scholars’ Work
Applied
Machine
Learning Model

Description of Method Applied Dataset Performance
Analysis Advantage and Its Limitation

Fırat, O. et al. [9] AIM-Unet model Automated system using AIM-Unet
model for better result.

CHAOS, LIST, and
3DIRCADb

DC = 97.86%
F1 score = 96.1%
ACC = 99.57%

The accuracy is remarkable as compared to DC and
F1 score values.

Maryam, K. et al. [16] U-Net model Using LiTS17 with the help of U-Net
model yielding the better performance. LiTS17 dataset

DC = 91.1%
F1 score = 99.4%
Recall = 91.2%

Based on the LiTS17 dataset U-Net approach the
used method was able to obtain a higher accuracy
in DC, mean, F1 score, and recall value.

Naeem, S. et al. [17] DL+ DAP

To enhance the precision of CT liver
segmentation, a semi-supervised
adversarial learning model was
trained using DAP.

LiTS DC = 94.33%
A semi-supervised model that uses a training
dataset lacking in annotations to reduce the amount
of medical picture annotation that is necessary

Benjamin, W. et al. [19] CoFCNN

Two features are shared throughout
the segmentation path and two inputs
are sent into CoFCNNs
simultaneously.

LiTS DC = 95.13% Utilizes a subset of the dataset, rather than the
whole dataset.

Tang et al. [20] DeepMedic+CNN
Liver multi-scale segmentation
utilizing DeepMedic CNN fusion of
completely connected layers

SLIVER07 + LiTS DC = 93% The use of CNN segmentation as a starting point
resulted in a decrease in inter-observer variation.

Han et al. [21] Hybrid CNN
Automated liver segmentation
employing a 3D CNN with a hybrid
loss function.

CHAOS DC = 82.02% It is possible to train on tiny datasets, but the
outcome will be average.

Md A.Q. et al. [24] ResU-Net
Automated identification and labeling
of liver functional areas using a 3D
DNN with different classes.

MSDC-T8 DC = 89.2%
There is a considerable computational cost
associated with successful segmentation, and more
research on different datasets is required.

Manjunath, R.V. et al. [30] 3DFCNN

A 3D Fully Convolutional Network
(FCNN) Deep Learning (DL) technique
is proposed for segmenting the liver,
stomach, and pancreas utilizing
divided convolution units.

Pancreas-CT DC = 92.93%
(median, liver)

An early effort to use divided CNN for liver
segmentation and it requires post-processing.

Wu, C.C. et al. [31] FKFCM Application of FKFCM to segment
liver and tumors SLIVER07 DC = 86.42%

(SLIVER07)
Significant outcomes are achieved while using
unsupervised learning.
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Table 3. Cont.

Scholars’ Work
Applied
Machine
Learning Model

Description of Method Applied Dataset Performance
Analysis Advantage and Its Limitation

Sanchez, F.C. et al. [32] U-Net +MSA U-Net architecture and MSA HSI dataset DC = 81.3%
F1 score = 90.8%

The use of U-Net model has a remarkable precision
in detecting liver, duct, vein, and artery tissues.
In contrast, the accuracy of logistic regression with
elastic net periodicity and multi-scale spatial
analysis is comparatively lower.

Wei, X.C. et al. [33] Mask R-CNN +
GAN

Mask R-CNN + GAN with KNN
architecture

ACC = 91.3%
Recall = 92.2%
F1 score = 92.3%

Mask-R-CNN + GAN is applied to enhance pixels
for better classification. The aspect’s image ratio
was modified using k-NN in order to obtain more
prominent anchors, hence improving the
segmentation’s efficacy.

Rahman, H. et al. [34] ResNet+ UNet Hybrid ResNet + UNet architecture IRCADB01
ACC = 99.55%,
DC = 97.85%,
F1 score = 98.16%

This model deals with CT images of liver diseases
using the IRCADB01 dataset. The identification
accuracy proves that it can easily be used to find out
about any type of unexpected thing in the liver.

Saha, R.S. et al. [35] CFCN Cascaded Fully Convolutional Neural
Networks (CFCNs) IRCADB01

ACC = 95.00
DC = 90.90
F1 = 92.50

The accuracy of segmentations and dice coefficient
value indicate the detection and its accuracy are
significantly higher compared to other research.

Khan, R.A. et al. [36] AlexNet +ML
GAN

AlexNet is applied.
Multi-layer GAN for liver diagnosis.
Binary classification is adopted.

Ircadb, Sliver07, and
LiTS

DC = 90.37% and
F1 = 85.90%

There is a better quality of medical images when the
multi-level GAN is combined with AlexNet for
binary classification. This is because the structural
features are preserved and artefacts are reduced.
The testing accuracy is evaluated using both filtered
and unfiltered images. Moreover, the suggested
multi-level GAN is very appropriate for
computer-assisted diagnosis, as it surpasses other
models on all three datasets.
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In our evaluation process as shown in Table 4, we used parameters such as accuracy,
precision, recall, F1 score, and AUC-ROC. The applied models are CNN, RNN, LSTM, and
our proposed model, CNN+LSTM. Accuracy, precision, recall, F1 score, and AUC-ROC
are widely used metrics for assessment in machine learning and are very appropriate for
evaluating the performance of classification models. The predicted results are shown in
Table 4. We achieved better results in applying the proposed CNN+LSTM model in terms
of accuracy (98.73%), precision (99%), recall (98%), F1 score (98%), and AUC-ROC (99%),
respectively.

Table 4. Applied model with parameters and accuracy statistics.

Model Accuracy Precision Recall F1 Score AUC-ROC

CNN 96.25 96 95 95 97
RNN 92.81 92 91 91 94
LSTM 94.63 94 93 93 96
CNN+LSTM (Proposed) 98.73 99 98 98 99

The CNN+LSTM model, which is a hybrid architecture that leverages the respective
advantages of the LSTM and CNN, exhibited superior performance, with an accuracy rate
of 98.73% as shown in Table 4. Figure 5 depicts the graph illustrating the relationship
between accuracy and loss over the course of multiple epochs. Figure 6 displays a heat
map, while Table 3 provides advantages and shortcomings along with the applied and
suggested DL or ML method used by different researchers. The graphical representation of
the comparison of various DL models with the proposed model is shown in Figure 7.
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5. Conclusions

The purpose of this research is to compare the efficacy of several neural network
models for identifying liver illnesses, such as CNN, RNN, and LSTM. The outcomes of the
study show that the CNN+LSTM model may achieve superior performance compared to
the other models in terms of recall, precision, AUC-ROC, and F1 score. The results of this
study indicate that the integration of LSTM and CNN models has the potential to enhance
the precision and resilience of liver disease diagnosis. In the future, further studies on
the CNN+LSTM framework can be conducted on its generalizability and suitability for
the analysis of diverse liver disease datasets. This will allow us to identify its potential
applications in different clinical scenarios. The development of interpretability methods
for the CNN+LSTM model can help improve the model’s comprehension of the decision-
making process, allowing researchers and clinicians to gain a deeper understanding of
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liver disease. By unraveling the model’s temporal patterns and features, researchers and
clinicians may learn more about the underlying mechanisms of the condition. In addi-
tion, the model can be further expanded and its performance improved by incorporating
multi-modal information sources, such as genetic data and laboratory test results. This
enhancement would enable the system to achieve higher levels of accuracy and efficiency
in the detection of liver disorders. We performed a comprehensive study on the applied
tools and techniques of several researchers [9,16,17,19–21,24,30–36] and assessed their per-
formances using machine learning methodologies. We demonstrated the advantages and
shortcomings of each of these techniques used by researchers, as shown in Table 4. The
CNN+LSTM model, as proposed, has enhanced performance in liver disease recognition
when compared to alternative models. The study’s results indicate that the use of deep
learning methods can improve both the accuracy and effectiveness of medical diagnostics in
detecting liver illnesses. These advancements in technology have the potential to enhance
patient outcomes and facilitate the development of personalized treatment plans.

Author Contributions: Conceptualization, M.A.H.; Methodology, M.A.H. and S.L.; Validation, M.R.;
Formal analysis, A.M.H., M.A.H., N.A.M., S.L., B.M.E. and M.R.; Investigation, A.M.H., M.A.H.,
N.A.M., S.L., B.M.E. and M.R.; Resources, N.A.M.; Writing—original draft, M.A.H.; Writing—review
& editing, A.M.H., M.A.H., S.L., B.M.E. and M.R.; Funding acquisition, A.M.H. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of research and innovation, Jazan
University, Kingdom of Saudi Arabia for supporting and funding the project work. The Grant
Number of this project is ISP23-99.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.kaggle.com/datasets?search=liver.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [CrossRef]
2. Park, I.; Kim, N.; Lee, S.; Park, K.; Son, M.-Y.; Cho, H.-S.; Kim, D.-S. Characterization of signature trends across the spectrum of

non-alcoholic fatty liver disease using deep learning method. Life Sci. 2023, 314, 121195. [CrossRef]
3. Survarachakan, S.; Prasad, P.J.R.; Naseem, R.; de Frutos, J.P.; Kumar, R.P.; Langø, T.; Cheikh, F.A.; Elle, O.J.; Lindseth, F. Deep

learning for image-based liver analysis—A comprehensive review focusing on malignant lesions. Artif. Intell. Med. 2022,
130, 102331. [CrossRef]

4. Khan, R.A.; Luo, Y.; Wu, F.-X. Machine learning based liver disease diagnosis: A systematic review. Neurocomputing 2022, 468,
492–509. [CrossRef]

5. Al-Kababji, A.; Bensaali, F.; Dakua, S.P.; Himeur, Y. Automated liver tissues delineation techniques: A systematic survey on
machine learning current trends and future orientations. Eng. Appl. Artif. Intell. 2023, 117, 105532. [CrossRef]

6. Ahn, J.C.; Connell, A.; Simonetto, D.A.; Hughes, C.; Shah, V.H. Application of Artificial Intelligence for the Diagnosis and
Treatment of Liver Diseases. Hepatology 2020, 73, 2546–2563. [CrossRef]

7. Masmali, I.; Kanwal, M.T.A.; Jamil, M.K.; Ahmad, A.; Azeem, M.; Koam, A.N.A. COVID antiviral drug structures and their edge
metric dimension. Mol. Phys. 2023, e2259508. [CrossRef]

8. Bhat, M.; Rabindranath, M.; Chara, B.S.; Simonetto, D.A. Artificial intelligence, machine learning, and deep learning in liver
transplantation. J. Hepatol. 2023, 78, 1216–1233. [CrossRef]

9. Huang, Q.; Khalil, A.; Ali, D.A.; Ahmad, A.; Luo, R.; Azeem, M. Breast cancer chemical structures and their partition resolvability.
Math. Biosci. Eng. 2022, 20, 3838–3853. [CrossRef] [PubMed]

10. Yin, Y.; Yakar, D.; Dierckx, R.A.J.O.; Mouridsen, K.B.; Kwee, T.C.; de Haas, R.J. Liver fibrosis staging by deep learning: A visual-
based explanation of diagnostic decisions of the model. Eur. Radiol. 2021, 31, 9620–9627. [CrossRef] [PubMed]

11. Koam, A.N.; Ahmad, A.; Azeem, M.; Hakami, K.H.; Elahi, K. Some stable and closed-shell structures of anticancer drugs by
graph theoretical parameters. Heliyon 2023, 9, e17122. [CrossRef]

12. Manjunath, R.V.; Kwadiki, K. Automatic liver and tumour segmentation from CT images using Deep learning algorithm. Results
Control Optim. 2021, 6, 100087. [CrossRef]

https://www.kaggle.com/datasets?search=liver
https://doi.org/10.1016/j.jhep.2018.09.014
https://doi.org/10.1016/j.lfs.2022.121195
https://doi.org/10.1016/j.artmed.2022.102331
https://doi.org/10.1016/j.neucom.2021.08.138
https://doi.org/10.1016/j.engappai.2022.105532
https://doi.org/10.1002/hep.31603
https://doi.org/10.1080/00268976.2023.2259508
https://doi.org/10.1016/j.jhep.2023.01.006
https://doi.org/10.3934/mbe.2023180
https://www.ncbi.nlm.nih.gov/pubmed/36899607
https://doi.org/10.1007/s00330-021-08046-x
https://www.ncbi.nlm.nih.gov/pubmed/34014382
https://doi.org/10.1016/j.heliyon.2023.e17122
https://doi.org/10.1016/j.rico.2021.100087


Appl. Sci. 2024, 14, 1488 19 of 19

13. Yang, Y.; Liu, J.; Sun, C.; Shi, Y.; Hsing, J.C.; Kamya, A.; Keller, C.A.; Antil, N.; Rubin, D.; Wang, H.; et al. Nonalcoholic fatty
liver disease (NAFLD) detection and deep learning in a Chinese community-based population. Eur. Radiol. 2023, 33, 5894–5906.
[CrossRef]

14. Hamid, K.; Asif, A.; Abbasi, W.; Sabih, D.; Minhas, F.U.A.A. Machine Learning with Abstention for Automated Liver Disease
Diagnosis. In Proceedings of the 2017 International Conference on Frontiers of Information Technology, FIT 2017, Islamabad,
Pakistan, 18–20 December 2017; Volume 2017, pp. 356–361. [CrossRef]

15. Naeem, S.; Ali, A.; Qadri, S.; Mashwani, W.K.; Tairan, N.; Shah, H.; Fayaz, M.; Jamal, F.; Chesneau, C.; Anam, S. Machine-learning
based hybrid-feature analysis for liver cancer classification using fused (MR and CT) images. Appl. Sci. 2020, 10, 3134. [CrossRef]

16. Assiri, B. A Modified and Effective Blockchain Model for E-Healthcare Systems. Appl. Sci. 2023, 13, 12630. [CrossRef]
17. Wu, C.-C.; Yeh, W.-C.; Hsu, W.-D.; Islam, M.; Nguyen, P.A.; Poly, T.N.; Wang, Y.-C.; Yang, H.-C.; Li, Y.-C. Prediction of fatty liver

disease using machine learning algorithms. Comput. Methods Programs Biomed. 2019, 170, 23–29. [CrossRef] [PubMed]
18. Yao, Z.; Li, J.; Guan, Z.; Ye, Y.; Chen, Y. Liver disease screening based on densely connected deep neural networks. Neural Netw.

2020, 123, 299–304. [CrossRef] [PubMed]
19. Wu, B.; Moeckel, G. Application of digital pathology and machine learning in the liver, kidney and lung diseases. J. Pathol.

Informatics 2023, 14, 100184. [CrossRef] [PubMed]
20. Tian, Y.; Liu, M.; Sun, Y.; Fu, S. When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospects.

iLIVER 2023, 2, 73–87. [CrossRef]
21. Han, Y.; Akhtar, J.; Liu, G.; Li, C.; Wang, G. Early warning and diagnosis of liver cancer based on dynamic network biomarker

and deep learning. Comput. Struct. Biotechnol. J. 2023, 21, 3478–3489. [CrossRef] [PubMed]
22. Bakrania, A.; Joshi, N.; Zhao, X.; Zheng, G.; Bhat, M. Artificial intelligence in liver cancers: Decoding the impact of machine

learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacol. Res. 2023, 189, 106706.
[CrossRef]

23. Takahashi, Y.; Dungubat, E.; Kusano, H.; Fukusato, T. Artificial intelligence and deep learning: New tools for histopathological
diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Comput. Struct. Biotechnol. J. 2023, 21, 2495–2501.
[CrossRef]

24. Md, A.Q.; Kulkarni, S.; Joshua, C.J.; Vaichole, T.; Mohan, S.; Iwendi, C. Enhanced Preprocessing Approach Using Ensemble
Machine Learning Algorithms for Detecting Liver Disease. Biomedicines 2023, 11, 581. [CrossRef]

25. Refaee, E.A.; Hossain, M.A.; Soundrapandiyan, R.; Karuppiah, M. Biomedical image retrieval using adaptive neuro-fuzzy
optimized classifier system. Math. Biosc. Eng. 2022, 19, 8132–8151. [CrossRef]

26. Ahmad, G.N.; Ullah, S.; Algethami, A.; Fatima, H.; Akhter, S.M.H. Comparative Study of Optimum Medical Diagnosis of
Human Heart Disease Using Machine Learning Technique with and Without Sequential Feature Selection. IEEE Access 2022, 10,
23808–23828. [CrossRef]

27. Vyas, S.; Seal, A. A comparative study of different feature extraction techniques for identifying COVID-19 patients using chest
X-rays images. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer,
Bahrain, 8–9 November 2020; pp. 209–213. [CrossRef]

28. Ghazal, T.M.; Rehman, A.U.; Saleem, M.; Ahmad, M.; Ahmad, S.; Mehmood, F. Intelligent Model to Predict Early Liver Disease
using Machine Learning Technique. In Proceedings of the 2022 International Conference on Business Analytics for Technology
and Security (ICBATS), Dubai, United Arab Emirates, 16–17 February 2022. [CrossRef]

29. Shrivastava, A. Liver Disease Patient Dataset 30 K Train Data_Kaggle. Available online: https://www.kaggle.com/datasets/
abhi8923shriv/liver-disease-patient-dataset (accessed on 6 February 2024).

30. Özcan, F.; Uçan, O.N.; Karaçam, S.; Tunçman, D. Fully Automatic Liver and Tumor Segmentation from CT Image Using an
AIM-Unet. Bioengineering 2023, 10, 215. [CrossRef]

31. Khoshkhabar, M.; Meshgini, S.; Afrouzian, R.; Danishvar, S. Automatic Liver Tumor Segmentation from CT Images Using Graph
Convolutional Network. Sensors 2023, 23, 7561. [CrossRef]

32. Cervantes-Sanchez, F.; Maktabi, M.; Köhler, H.; Sucher, R.; Rayes, N.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Chalopin, C.
Automatic tissue segmentation of hyperspectral images in liver and head neck surgeries using machine learning. Art Int. Surg.
2021, 1, 22–37. [CrossRef]

33. Wei, X.; Chen, X.; Lai, C.; Zhu, Y.; Yang, H.; Du, Y. Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask
Region-Based CNN Architectures. BioMed Res. Int. 2021, 2021, 9956983. [CrossRef] [PubMed]

34. Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation
in CT Images Using ResUNet. Bioengineering 2022, 9, 368. [CrossRef] [PubMed]

35. Saha, R.S.; Roy, S.; Mukherjee, P.; Halder, R.A. An automated liver tumour segmentation and classification model by deep
learning based approaches. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022, 11, 638–650. [CrossRef]

36. Khan, R.A.; Luo, Y.; Wu, F.-X. Multi-level GAN based enhanced CT scans for liver cancer diagnosis. Biomed. Signal Process. Control
2023, 81, 104450. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00330-023-09515-1
https://doi.org/10.1109/FIT.2017.00070
https://doi.org/10.3390/app10093134
https://doi.org/10.3390/app132312630
https://doi.org/10.1016/j.cmpb.2018.12.032
https://www.ncbi.nlm.nih.gov/pubmed/30712601
https://doi.org/10.1016/j.neunet.2019.11.005
https://www.ncbi.nlm.nih.gov/pubmed/31891840
https://doi.org/10.1016/j.jpi.2022.100184
https://www.ncbi.nlm.nih.gov/pubmed/36714454
https://doi.org/10.1016/j.iliver.2023.02.002
https://doi.org/10.1016/j.csbj.2023.07.002
https://www.ncbi.nlm.nih.gov/pubmed/38213892
https://doi.org/10.1016/j.phrs.2023.106706
https://doi.org/10.1016/j.csbj.2023.03.048
https://doi.org/10.3390/biomedicines11020581
https://doi.org/10.3934/mbe.2022380
https://doi.org/10.1109/ACCESS.2022.3153047
https://doi.org/10.1109/DASA51403.2020.9317299
https://doi.org/10.1109/ICBATS54253.2022.9758929
https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset
https://www.kaggle.com/datasets/abhi8923shriv/liver-disease-patient-dataset
https://doi.org/10.3390/bioengineering10020215
https://doi.org/10.3390/s23177561
https://doi.org/10.20517/ais.2021.05
https://doi.org/10.1155/2021/9956983
https://www.ncbi.nlm.nih.gov/pubmed/34957310
https://doi.org/10.3390/bioengineering9080368
https://www.ncbi.nlm.nih.gov/pubmed/36004893
https://doi.org/10.1080/21681163.2022.2099300
https://doi.org/10.1016/j.bspc.2022.104450

	Introduction 
	Related Work 
	Proposed Method 
	Applied Dataset 
	Data Pre-Processing 
	Applied Algorithm 

	Experimental Outcomes and Evaluations 
	Graphical Representation of Accurateness of Epochs and Loss 
	Heatmap 
	Model Summary 
	Evaluation Parameters 

	Conclusions 
	References

