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Abstract: This paper compares three methods for evaluating computer-generated motion behaviour
for animated characters: two commonly used direct rating methods and a newly designed question-
naire. The questionnaire is specifically designed to measure the human-likeness, appropriateness,
and intelligibility of the generated motion. Furthermore, this study investigates the suitability of these
evaluation tools for assessing subtle forms of human behaviour, such as the subdued motion cues
shown when listening to someone. This paper reports six user studies, namely studies that directly
rate the appropriateness and human-likeness of a computer character’s motion, along with studies
that instead rely on a questionnaire to measure the quality of the motion. As test data, we used the
motion generated by two generative models and recorded human gestures, which served as a gold
standard. Our findings indicate that when evaluating gesturing motion, the direct rating of human-
likeness and appropriateness is to be preferred over a questionnaire. However, when assessing the
subtle motion of a computer character, even the direct rating method yields less conclusive results.
Despite demonstrating high internal consistency, our questionnaire proves to be less sensitive than
directly rating the quality of the motion. The results provide insights into the evaluation of human
motion behaviour and highlight the complexities involved in capturing subtle nuances in nonverbal
communication. These findings have implications for the development and improvement of motion
generation models and can guide researchers in selecting appropriate evaluation methodologies for
specific aspects of human behaviour.

Keywords: human–computer interaction; embodied conversational agents; subjective evaluations

1. Introduction

In this paper, we address the subjective evaluation of generated nonverbal behaviour
for embodied conversational agents. We specifically focus on two common methods for
assessing speech gesture behaviour and listening behaviour. Additionally, we introduce a
newly designed questionnaire for the evaluation of speech gesture behaviour as well as
listening behaviour based on recommendations provided in a recent review [1].

Nonverbal behaviour, encompassing elements such as eye gaze, blinking, and co-
speech gestures, plays a vital role in facilitating effective human communication [2]. Among
the various forms of nonverbal behaviour, co-speech gestures take up a major role [3].
Research has shown that incorporating co-speech gestures can improve human-human
communication. For example, Holler et al. [4] discovered that when questions were accom-
panied by gestures, the time between questions and answers was reduced. Similar effects
can be observed when humans interact with embodied conversational agents (ECAs), as
the inclusion of nonverbal behaviours such as co-speech gestures and full-body motion has
been found to improve the interaction between humans and ECAs [5,6]. Furthermore, re-
searchers found that including nonverbal behaviours increased the willingness to cooperate
with an ECA [7].
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Due to the potential of nonverbal behaviour to enhance the human-likeness and
communicative efficacy of ECAs, the automatic generation of nonverbal behaviour has
become a major research focus. For the field of human motion generation, data-driven
methods have gained popularity over recent years [8–11].

Since the aim of nonverbal behaviour generation for ECAs is to enhance ECAs’ inter-
actions with people, proper assessment of these technologies must involve people as well
(i.e., use subjective evaluation methods). This is often accomplished through Likert scales [1],
in interactive scenarios through listening comprehension [12], through direct questions [13],
or using behavioural metrics [14]. In related fields such as human–robot interaction (HRI),
aspects such as anthropomorphism, animacy, and likeability are evaluated through the use of
questionnaires, of which the Godspeed questionnaire is the most common one [15]. Providing
these scales with indirect items instead of asking users to evaluate stimuli directly has the
benefit that more nuanced information becomes available, and it becomes easier to compare
the outcomes of different studies due to the questionnaire being used across different studies.

This paper is an extension of a recently accepted late-breaking report [16] where
we focused on generated listening behaviour, while the focus in this paper is more on
evaluation methodologies. In comparison with the conference publication, we introduce
four new user studies.

In this study, we explore three different approaches to evaluating generated co-speech
gestures and listening behaviour, aiming to assess their effectiveness and understand their
qualities. Previous research commonly relied on questionnaires and Likert scales to evaluate
motion and behaviour quality [1]. Following the recommendations and insights from that
review, we introduce a new questionnaire that enables us to compare methodological results
to previously used methodologies for assessing human-likeness (introduced in [17,18])
and appropriateness (through mismatching, as introduced in [19,20]). Our objective is to
determine the potential benefits of using a standardised questionnaire in this field and
examine how well it correlates with the commonly used direct subjective measurements.

A particular goal of this article is to study the effect of different evaluation meth-
ods in scenarios where the behaviours evaluated and the differences between them are
quite subtle. To this end, we trained two existing motion generation models using dyadic
conversational data to generate head, arm, and body motion corresponding to listening,
which typically is less vivid than gesture motions performed during active speaking. By
evaluating these same models using a number of different user study methodologies,
different evaluation methods can be compared. Additionally, we can compare the out-
puts of these two models for both full-body speech and full-body listening motion and
gain insight into how well current and new evaluation methods are able to distinguish
differences for subtle forms of generated behaviour. Specifically, we conducted six user
studies, namely two appropriateness studies, two human-likeness studies, and two studies
that incorporated our newly designed questionnaire. In the human-likeness studies, the
participants provided direct ratings on a scale from 0 to 100 to assess the human-likeness of
the stimuli, following the HEMVIP paradigm [18]. The appropriateness studies employed
the matching/mismatching paradigm previously utilised in [13,19–21].

The proposed questionnaire, used in the last two studies, includes questions covering
the constructs of appropriateness, human-likeness, and intelligibility. The selection of these
constructs is based on their recurrence in previous studies identified in [1].

In conclusion, we recommend using direct rating or side-by-side comparisons of
computer-generated nonverbal behaviour. These are to be preferred over questionnaires,
as questionnaires tend to not pick up subtle qualitative differences in behaviour and are
not calibrated between raters.

This paper is organised as follows. Section 2 covers the related work on nonverbal
behaviour generation and evaluation. In Section 3, we delve into the rationale behind
the selection of constructs for our questionnaire, highlighting the considerations and
motivations that guided our choices. Section 4 presents our methodology and details about
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the data set, stimuli, and models. We present our results in Section 5 and discuss our
findings in Section 6, where we also draw conclusions with previous research on this topic.

2. Related Work

This section provides an overview of gesture generation, including a discussion of
existing research and the current state of the art in generating gestures, followed by a
review of the literature on listening behaviour, and concluding with an exploration of
evaluation strategies for generated human behaviour.

2.1. Generating and Evaluating Gesture Behaviour

Numerous studies have focused on generating speech-driven motion for embodied
conversational agents. For instance, Kucherenko et al. [22] leveraged representation learn-
ing to map audio to motion, while Yoon et al. [23] used input text with word-level times-
tamps to generate motion without using speech audio. Subsequently, other researchers
have combined both audio and text representations of speech along with speaker identity
in their gesture generation models, such as those in [24–26]. Since the goal of gesture
generation for ECAs is to facilitate effective human–agent interaction, some research has
furthermore explored generating nonverbal behaviour while considering the interlocutor
in the interaction [27,28]. Others have applied more generative approaches to gesture gen-
eration, with the aim of learning a probabilistic distribution [24]. More recently, researchers
started picking up diffusion models for gesture synthesis [10,29,30]. However, comparing
different gesture generation models is challenging, as highlighted by Wolfert et al. [1]. The
GENEA Challenge [13,17] was set up to address this issue by allowing multiple teams to
build models on a shared data set and submit motions from their models to a shared evalu-
ation. A more in-depth review on the field of gesture generation, especially considering
deep learning, can be found in [31].

In contrast to the work discussed here, we train an unsupervised probabilistic model
on a datas et containing dyadic interactions. These interactions are not cut to only include
speech and gesticulation; instead, the interactions contain the full range of nonverbal
motion one would expect to see during a one-on-one interaction.

2.2. Listening Behaviour

Listening is an essential aspect of human–agent interaction, and studies have shown
that virtual agents who pretend to listen can enhance engagement during an interaction [32].
For instance, Buschmeier et al. [33] showed that when humans interacted with an attentive
agent, they were more likely to provide listener feedback and rated the agent as more helpful.
Maatman, Gratch, and Marsella [34] proposed a model that generates listening behaviour
based on available features during a conversation. Their system extracts audio and body
posture features to drive listening behaviour. Another approach by Gillies et al. [35] utilised
input audio from the speaker to generate listening behaviour through motion graphs, where
existing motion clips were combined to match new audio input. Mlakar [36] introduced a
framework and scripting method to synthesise both verbal and nonverbal motion which
entails both gestures and listening. Poppe et al. [37] developed rule-based strategies for
generating listening behaviour based on the speaker’s speech and gaze, including vocal
back channelling. A similar approach in terms of selecting new listening behaviours and
sequences can be found in [38]. They used a multi-modal corpus of interviews to generate
listening behaviour in a virtual agent conducting interviews. The participants perceived
the interviewer as affiliative when the interviewer would mirror their posture. An example
of generating listening head behaviour is the work by Jonell et al. [19]. They generated
interlocutor-aware facial gestures using nonverbal and verbal input from both the interlocutor
and agent using a generative approach. In our work, we include full conversational data from
dyadic interactions to generate listening behaviour based on the audio of both participants.
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2.3. Evaluation Strategies for Generated Human Behaviour

The previous two sections described the state of the art in the fields of both gesture
generation and listening behaviour generation. But how is the generated behaviour in
these works compared, and how is quality assessed? A recent review by Wolfert et al. [1]
discusses subjective evaluation methodologies used in the field of gesture generation for
embodied conversational agents. Their work identified that a majority of studies make use
of questionnaires to assess the quality of generated motion. Questionnaires, employing
Likert scales, are a widely used tool to assess one’s attitude towards a concept [39]. One
such example is the Godspeed questionnaire [15], which originates from and is used in
the field of human–robot interaction and measures the concepts of anthropomorphism,
animacy, likeability, perceived intelligence, and perceived safety. Wolfert et al. [1] called
for standardisation given the large variety in reported constructs for the field of gesture
generation (which consist of multiple items). In support of this, a 2019 review by Fitrianie
et al. [40] that looked into questionnaire usage at intelligent virtual agent conferences
(IVAs) found that for 76% of the studies, questionnaires were unique for those studies
and were not reused in other studies. Having matching constructs and questionnaire items
would make it easier to compare between studies. Efforts for standardisation are underway
for the evaluation of virtual agents, but these efforts do not specifically include the evaluation
of nonverbal generated behaviour for ECAs [41]. Among the constructs that they reported
are human-likeness, appropriateness, naturalness or effectiveness, and understanding. Even
though there is a degree of overlap in the constructs between studies, this does not mean
that they are measured in the same way or that they contain the same items (statements) and
response scales.

There have been other, more direct methods proposed for measuring these constructs
that do not involve questionnaires or answering multiple statements. For appropriateness,
recent studies introduced a new evaluation paradigm that makes use of matched and
mismatched gesture motion [13,19,20]. In appropriateness for speech, the concept involves
combining two motion fragments and one audio segment. Both motion fragments should
come from the same condition or system. One of the motion fragments is directly associated
with the audio and represents the intended match, while the other fragment is randomly
selected and does not have a direct connection to the corresponding audio, resulting
in a mismatch. The measured subjective preference for matched motion stimuli over
mismatched ones then quantifies how specifically appropriate the motion in question is
for the speech. For naturalness or human-likeness, recent studies have relied on directly
asking participants to indicate human-likeness using a fine-grained slider [13,17,42]. These
studies accomplished this using the HEMVIP framework [18], which labels the scale with
five anchors (bad, poor, fair, good, and excellent) and associates each position of the slider
with a score between 0 and 100 [18]. This framework makes it possible to evaluate multiple
different gesture videos for the same speech in parallel. Wolfert et al. compared the HEMVIP
framework with pairwise comparisons and found that under certain circumstances, pairwise
comparisons could be a faster way of assessing quality, but it has the downside of scaling
badly with multiple conditions [42]. As an example of studies to evaluate aspects of gesture
understanding, He et al. conducted a study to evaluate the effectiveness and comprehension of
generated gestures in an interactive scenario using a virtual avatar [14]. Due to the challenges
of online assessments, the researchers employed various methods, including dimensions from
the Godspeed questionnaire and direct participant evaluations of human-likeness, along with
gaze data. Interestingly, only the behavioural data provided support for their findings, as the
results from the questionnaire did not show significant differences.

In conclusion, we can observe that in certain cases, questionnaire constructs are used to
measure the attitudes of participants towards a specific construct (such as human-likeness
or appropriateness). However, due to the lack of a standardised questionnaire, it is near
impossible to compare the results of different studies. Other methodologies of direct
measurements have a downside in that they only quantify one thing at a time.
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3. Designing a Questionnaire for ECAs

We put forward a questionnaire that instead covers the concepts of appropriateness,
human-likeness, and intelligibility, which are key foci of nonverbal behaviour generation
for the ECA community. The proposed questionnaire consists of three Likert scales with
five Likert items each, which can be found in Figure 1. Wolfert et al. [1] identified multiple
studies that included questions on appropriateness or speech–gesture correlation. We based
the statements that are part of the constructs on previous included statements as identified
in [1]. The GENEA Challenge 2020 used a direct question related to appropriateness. We
decided to include the construct of ‘appropriateness’, with five Likert items (statements)
related to the appropriateness of the motion behaviour for the conversation. Since the
concept of human-likeness often comes up in subjective evaluations and has also been used
for direct questioning by the GENEA Challenge, we came up with five Likert items related
to human-likeness of a gesture motion. Lastly, we want to evaluate the intelligibility of
the agent or speaker motion, as this also regularly appears in subjective evaluations of
synthesised gesture motion (such as ‘content’ or ‘utilisation of gesture’ per Table 3 in the
work by Wolfert et al. [1]).

Appropriateness of the motion

• The motion seemed appropriate for the context of the conversation.
• The motion felt out of place or irrelevant to the interaction.
• The motion did not distract from the conversation.
• The motion was in sync with the pace of the interaction.
• The motion was in synchronisation with the agent’s tone of voice and emotion or his or her

active listening.

Human-likeness of the motion

• The motion did not look like it was produced by a human.
• The motion appeared smooth and effortless.
• The motion had the same characteristics as human motion.
• The motion seemed forced or robotic.
• The speed of the motion looked human-like.

Intelligibility of the agent

• The motion enhanced the understanding of the interaction.
• The motion captured what the character was trying to express well.
• The meaning of the motion was easy to interpret.
• The motion helped me understand what the person was saying or showed that he or she

was actively listening.
• The motion added to the perception of the agent’s strong communication skills.

Figure 1. Participants were asked to rate each statement in the questionnaire on a scale from 1
to 5 using the following anchors: (1) disagree, (2) slightly disagree, (3) neither agree nor disagree,
(4) slightly agree, and (5) agree.

4. Materials and Methods

In this section, we first discuss the data, processing, and models used in our studies.
We finish with a description of the six user studies.

4.1. Data and Preprocessing

To ensure that the SG model was applicable to a wider range of conversational interac-
tions, we opted to train it on a data set that included human dyadic interactions rather than
just a single speaker. Our data set of choice was ‘Talking with Hands 16.2’, which provides
a rich source of dyadic conversational data. This data set includes both motion capture and
audio, totalling 50 h of recorded interactions. As the baseline model relies on text input
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for generating co-speech gestures, we made use of annotations provided by the GENEA
Challenge 2022 [13]. For our experiments, we utilised a subset of 10 h of conversation data
from the combined data set. We opted to only include conversational takes that included
the speaker labelled ‘deep5’ in the original data as a participant, since this was the single
speaker with the most data in the data set. Furthermore, we conducted a thorough manual
inspection of the data set to exclude takes that exhibited significant motion errors.

By adhering to these selection and inspection processes, we aimed to create a reliable
and high-quality data set for training and evaluation purposes. The audio channel was
transformed into a 27 channel mel-frequency representation following the original paper
on SG [8]. The resulting features were downsampled to 30 frames per second (FPS) to
match up with the frame rate of the motion. Poses (joint rotations) were represented using
exponential maps, which prevented discontinuities [43], and full-body motion was used,
excluding finger and facial information. The input data for the model consisted of the
concatenated audio and speaker identity as well as the motion of the interlocutor.

4.2. Models

To evaluate the three evaluation methods introduced earlier, we generated stimuli from
two motion models and the ground truth motion and rendered this motion on an avatar.
The StyleGestures model was taken as one of the models for its generative capabilities, and
we adapted it to work with dyadic conversational data. As we aimed for a fair comparison
in relation to the ground truth motion data, we also trained another model named ‘baseline’.

4.2.1. StyleGestures

The StyleGestures (SG) model [8] is a probabilistic generative sequence model based on
MoGlow which uses normalizing flows [44,45]. The model was modified to accept dyadic
input (speaker 1 and speaker 2), with the input being a concatenation of two audio streams,
a one-hot encoding of the speaker identity, and the motion stream of the interlocutor
(speaker 2). The output of the model was joint angles using the exponential map for
speaker 1. The modified SG model was trained using the standard parameters from the SG
paper, with a batch size of 120, noam_learning_rate_decay with 3000 warm up steps, and
a minimum learning rate of 0.00015. The optimiser used was Adam, with a learning rate
of 0.0015. Since the input data for this version of SG deals with dyadic information, they
are much larger than the original dimensions of the input data in [8], which only featured
processed audio. Therefore, the model was trained for 160,000 steps before test motion
was generated. We applied postprocessing to the motion data to improve the quality of
our generated listening behaviour. Specifically, we used a Butterworth low-pass filter to
smooth the rotation data and filter out minor motion glitches. The cutoff frequency was set
to 3.0 Hz, and the filter order was set to 4, as this was found to provide good motion results.
We conducted user studies to compare the output of this model to the ground truth.

4.2.2. Baseline

We wanted to compare our results to a model that had already been applied to the
data set we used. For this, we selected ‘The IVI Lab entry to the GENEA Challenge
2022’, since the code for this entry was openly available and tested by others, winning the
reproducibility award at the challenge [46]. The baseline model is based on the Tacotron2
architecture from speech synthesis with a locality constraint attention mechanism, and it
takes text and speech audio as input to generate motion data [47]. It was trained on only
the text and speech input data from the speaker whose motion we were predicting, namely
speaker 1 (in contrast to our SG model, which was trained on full dyadic data). For the
training parameters, we relied on the values used in [46].

4.3. Visualisation

We rendered the generated (or recorded for the ground truth condition) motion on a
faceless avatar, which was provided by the GENEA Challenge 2022. The hands used a fixed
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pose since we did not attempt to learn the finger motion (which would increase complexity,
and the finger motion data in the data set are of poor quality). A screenshot including the
avatar we used can be seen in Figure 2. This screenshot displays the three rating bars (one
for each video), following the standardised evaluation strategy introduced in [18]. To play
one of the other videos, the user has to press play for the other video, which will then be
loaded. For the video stimuli for the six studies, see ‘Ground truth motion (for both listening
and speaking)’ (https://drive.google.com/file/d/1sRdbgNrxAB6WMnciMjXJJvi-sxiSOkO
A/view?usp=sharing), (‘Baseline speech motion on the left’) (https://drive.google.com/fil
e/d/1ODB1x6SMBzsVWGrrbmG2Vj23aT4vRiIF/view?usp=sharing), ‘Baseline listening
motion on the left’ (https://drive.google.com/file/d/1mwZblDMB6eOGKPBDrtZMD_N
1n04GAmIz/view?usp=sharing), ‘StyleGestures speech motion on the left’ (https://drive.
google.com/file/d/17IpQQZEM8btcbOqH5Xe1cFluqaguj7ZU/view?usp=sharing), and
‘StyleGestures listening motion on the left’ (https://drive.google.com/file/d/19M8Ekufoz
XGEAfI0wDos0BmdHfDmag7q/view?usp=sharing).

Figure 2. A screenshot that displays the avatar in the HEMVIP interface [18]. This interface was used
for studies 1 and 3. Each play button is linked to one video, and only one video was shown at the
same time. The user had to rate each video before being able to continue to the next page.

https://drive.google.com/file/d/1sRdbgNrxAB6WMnciMjXJJvi-sxiSOkOA/view?usp=sharing
https://drive.google.com/file/d/1sRdbgNrxAB6WMnciMjXJJvi-sxiSOkOA/view?usp=sharing
https://drive.google.com/file/d/1ODB1x6SMBzsVWGrrbmG2Vj23aT4vRiIF/view?usp=sharing
https://drive.google.com/file/d/1ODB1x6SMBzsVWGrrbmG2Vj23aT4vRiIF/view?usp=sharing
https://drive.google.com/file/d/1mwZblDMB6eOGKPBDrtZMD_N1n04GAmIz/view?usp=sharing
https://drive.google.com/file/d/1mwZblDMB6eOGKPBDrtZMD_N1n04GAmIz/view?usp=sharing
https://drive.google.com/file/d/17IpQQZEM8btcbOqH5Xe1cFluqaguj7ZU/view?usp=sharing
https://drive.google.com/file/d/17IpQQZEM8btcbOqH5Xe1cFluqaguj7ZU/view?usp=sharing
https://drive.google.com/file/d/19M8EkufozXGEAfI0wDos0BmdHfDmag7q/view?usp=sharing
https://drive.google.com/file/d/19M8EkufozXGEAfI0wDos0BmdHfDmag7q/view?usp=sharing
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4.4. User Studies
4.4.1. General Set-Up

For each study, we recruited participants through Prolific. We restricted the pool of
subjects using the built-in features of the platform. The participants were required to be
located in either the USA, UK, Ireland, Australia, Canada, or New Zealand. In addition,
we required the participants to be native English speakers. We paid between GBP 1.80
and 2.25 per experiment, resulting in an average hourly wage between GBP 7.50 and 9.50.
The median time to complete a study was between 11 and 20 min (this differed per study).
Each participant could only complete a study once and was required to perform the study
on a PC and not on a small mobile device such as a phone or tablet. The rendered videos
were hosted on Vimeo, and the file names were randomised so that the participants could
not infer conditions from the file names by looking at the source code of the interface.
Right before being sent back to Prolific, the participants were asked to fill out a short
questionnaire that asked for their demographics and their experience with the experiment.
We piloted the studies locally by sending the studies to peers, and based on their feedback,
we launched the final studies on Prolific. These studies were approved by the ethical
committee of the Faculty of Psychology and Pedagogical Sciences at Ghent University in
Belgium. Table 1 shows an overview of the studies we will discuss in this section.

Table 1. Overview of the studies, the study goal per study, and the question that the participants
were asked.

Study Study Goal Question Posed

1 Human-likeness of the generated gesture
motion

How human-like does the gesture motion
appear?

2 Appropriateness of the generated gesture
motion for the conversation

Indicate which character’s motion best
matches speech in terms of rhythm, into-
nation, and meaning.

3 Human-likeness of the generated listening
motion

How human-like does the listening motion
appear?

4 Appropriateness of the generated listening
motion for the conversation

Indicate which character’s motion shows
the most appropriate listening behaviour,
considering the speaker’s motion.

5
Agreement on three constructs for the gen-
erated gesture motion: appropriateness,
human-likeness, and intelligibility

See Figure 4.

6
Agreement on three constructs for the gen-
erated listening motion: appropriateness,
human-likeness, and intelligibility

See Figure 4.

4.4.2. Study 1: Human-Likeness for Gesticulation

The purpose of this study was to investigate how human-like a gesture motion was
when generated by SG in comparison with the baseline and ground truth motion. We
recruited 22 participants. From the test set, 30 segments were randomly selected in which
the speaker was talking, and for each stimulus, gesture motion was synthesised from SG
and the baseline or taken from the ground truth. Each segment had a length of between
6 and 12 s. The participants were asked the following question: ‘How human-like does
the gesture motion appear?’ We did not include audio when rendering the videos, as the
inclusion of audio would affect the ability of the participants to rate the stimuli for human-
likeness. Three videos were placed on one evaluation screen using the HEMVIP framework
for evaluating the stimuli, which has been validated and used by others before [13,17,18,42]
based on webMUSHRA [48]. The participants could press play to start one of the videos,
and at all times, only one video was visible (see also Figure 2 for the interface). The order
of the videos on the screen was randomised, as well as the order in which the screens were
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presented to the participant. Each participant was presented with two attention check
videos inserted randomly during the experiment. Both attention checks would ask the
participant to rate the video with a specific score. The text for the attention check would
only appear halfway through the video (so that it would take out participants that did
not watch the complete video or that were not paying attention to the video at all). The
participants were asked to rate the human-likeness on a scale from 0 to 100, where a score of
100 would mean the gesture motion was completely human-like and excellent. The rating
scale was accompanied by five anchors that were equally spaced, namely bad, poor, fair,
good, and excellent. Each participant rated 14 screens with 3 stimuli per screen, totalling
42 ratings per participant and 308 ratings per condition.

4.4.3. Study 2: Appropriateness for Gesticulation

For this study, we examined the appropriateness of the gesture motion for the speech
generated by the model. We followed the appropriateness paradigm introduced by
Rebol et al. [20], in which matching and mismatching stimuli are put on one screen side-
by-side. We recruited 27 participants. To form our stimuli, we took the same 30 segments
used in study 1 and chose 30 additional segments as mismatching stimuli. These segments
were then paired with the interlocutor, resulting in two avatars being visible in each video.
The speaker was placed on the left side, whereas the interlocutor was placed on the right
side. For each of the 30 videos, we provided a mismatching video with motion unrelated
to that part of the conversation. These videos were paired with the matching interlocutor.
To establish an appropriateness baseline, we included matched and mismatched videos
from the ground truth. We hypothesised that the participants would be able to identify
the correct segments for direct motion-captured gesticulation. Both videos were placed on
the same page, and the participants were asked to indicate in which of the two clips the
character on the left moved appropriately for the speech. The interface for the user study
followed the one that was designed in [42] for their study involving pairwise comparisons.
See Figure 3 for a screenshot of the interface. The participants had a choice between three
options: the left video, the right video, or both being equal. Throughout the experiment,
each participant encountered two attention checks inserted into random places during
the experiment. One attention check was text-based, and the other one was audio-based.
Halfway through the video, it would ask the participant to select the button belonging to
that specific video. We used Barnard’s test for identifying statistically significant differences
between conditions at the level of α = 0.05. Additionally, we applied the Holm–Bonferroni
method to correct for multiple comparisons.

Figure 3. A screenshot of the pairwise interface (as introduced in [42]) used in studies 2 and 4.
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4.4.4. Study 3: Human-Likeness for Listening

For this study, we examined the human-likeness of the generated listening behaviour
and compared this to the baseline model and the ground truth motion. We recruited
22 participants. Thirty listening segments from our test set were selected, and the listening
behaviour was synthesised with both models. The listening behaviour was then rendered
on the avatar in a video. The audio was not included in the videos, as we wanted the
participants to solely focus on the motion itself. The participants were asked the following
question: ‘How human-like does the listening motion appear?’ Three videos were placed
on one screen using the HEMVIP framework for evaluating the stimuli, similar to study
1 [18] (see Figure 2 for a screenshot of the interface). The order of the videos on the
screen was randomised, as well as the order in which the screens were presented to the
participant. Each participant encountered two attention checks inserted randomly during
the experiment. Both attention checks would ask the participant to rate the video with
a certain score. The text for the attention check would only appear halfway through the
video (so that it would take out both participants that did not watch the complete video
or that were not paying attention to the video at all). The participants were then asked to
rate the human-likeness on a scale from 0 to 100. Each participant rated 14 screens with
3 stimuli per screen, totalling 42 ratings per participant and 308 ratings per condition.

4.4.5. Study 4: Appropriateness for Listening

For this study, we aimed to investigate the appropriateness of the listening motion
for the conversation generated by the model. We recruited 27 participants. The set-up
of this study followed the setup for study 2, but instead of selecting speaking segments,
we selected segments where the main speaker was listening to the interlocutor. We took
30 segments and 30 additional segments as mismatching stimuli. These segments were
then paired with the other speaker, resulting in two avatars being visible side-by-side in
each video. See Figure 3 for a screenshot of the interface. Then, the listener, for which
the motion was synthesised, was placed on the left. Both videos were placed on the same
page, and the participants were asked to indicate in which of the two clips the character on
the left moved appropriately for the speech. To establish an appropriateness baseline, we
included matched and mismatched videos from the ground truth. We hypothesised that the
participants would be able to identify the correct segments for full-body listening behaviour.
Throughout the experiment, each participant was presented two attention checks inserted
into random places during the experiment. One attention check was text-based, and the
other one was audio-based. Halfway through the video, text would appear or an audio
message could be heard, asking the participant to select a specific option in the interface. We
used Barnard’s test for identifying statistically significant differences between conditions at
the level of α = 0.05. Additionally, we applied the Holm–Bonferroni method to correct for
multiple comparisons.

4.4.6. Studies 5 and 6: Questionnaire

We made use of the questionnaire as described in the section on questionnaire design
for rating stimuli displaying both gesticulation and listening behaviour. Study 5 covered
stimuli displaying generated gesture motion. Study 6 evaluated generated listening motion.
We recruited 46 participants for study 5 and 48 participants for study 6. The participants
were asked to rate their level of agreement with each statement on a scale with five answer
options: disagree, slightly disagree, neutral, slightly agree, and agree. Each participant was
presented 8 videos, with 1 per screen, and 1 attention check. The attention check consisted
of one statement of the 15 on a page that asked the participant to select one answer option.
Each video was accompanied by 15 statements on the page, for which the participant had
to indicate his or her level of agreement. For this, we adapted the HEMVIP interface to
display one video with 15 statements. Only upon answering all statements would the ‘next’
button be activated, and the interface is shown in Figure 4.
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Figure 4. A screenshot of the interface used for the questionnaire. Participants were instructed that
they were evaluating the motion for the left video. Each video was accompanied by 15 questions (not
all visible in the image).

5. Results
5.1. User Studies
5.1.1. Study 1: ‘Human-Likeness for Gesticulation’

In the study on the human-likeness of gesturing, the participants were asked to rate
the stimuli for human-likeness on a scale from 1 to 100. The scores are visualized in
Figure 5. Details on the demographics can be found in Table 2. All participants passed the
attention checks.

We conducted Wilcoxon signed-rank tests to compare the similarity ratings between
the SG, baseline, and ground truth conditions. The test results revealed that there was a
significant difference in the similarity ratings between the SG and ground truth conditions
(W = 6116.0, p < 0.001) as well as between the baseline and ground truth conditions
(W = 6865.5, p < 0.001). However, there was no significant difference in the similarity
ratings between the SG and baseline conditions (W = 20631.0, p = 0.097). These findings
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suggest that the SG system was able to produce gestures that were comparable to those
produced in the baseline condition but not as similar as those produced in the ground
truth condition.

StyleGestures Baseline Ground Truth
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40

60

80

100
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Figure 5. Boxplots of human-likeness scores on gesturing for StyleGestures (SG), baseline (BL), and
ground truth (GT) conditions.

Table 2. Participant demographics for each study.

Study N Mean Age (SD) Male Female Nationality Education

1 22 35.2 (12.4) 16 6 UK (20), USA (1),
IE (1)

P: 0, HS: 0,
BS: 12, M: 1,

D: 1, O: 8

2 27 40 (12.54) 14 13 UK (21), CA (2),
IE (3), AU (1)

P: 0, HS: 0,
BS: 14, M: 3,
D: 0, O: 10

3 22 41.8 (13.94) 13 9
UK (16), USA (1),

IE (2), NZ (2),
CAN (1)

P: 0, HS: 0,
BS: 10, M: 1,

D: 0, O: 8

4 26 39 (11.55) 10 16 UK (15), CA (5),
IE (3), AU (3)

P: 0, HS: 0,
BS: 9, M: 7,
D: 0, O: 10

5 46 42 (14.6) 22 24 UK (40), USA (1),
AUS (1), CA (4)

P: 0, HS: 0,
BS: 19, M: 7,
D: 0, O: 22

6 48 37 (13) 27 21 UK (39), IE (3),
CA (3), AU (3)

P: 0, HS: 0,
BS: 20, M: 11,

D: 0, O: 15
Abbreviations: P = primary school, HS = high school, BS = bachelors, M = masters, D = doctorate, and O = other.

5.1.2. Study 2: Appropriateness for Gesticulation

The purpose of this study was to investigate the ability of the participants to se-
lect the correct matching segment belonging to a conversation. For this, we used the
match/mismatch paradigm initially proposed in [20] and later also used in [13]. The
participants were presented with pairs of matching and mismatching videos and asked to
choose which one featured the correct gesturing motion. They also had the option to choose
whether the videos were equal. Details on the demographics can be found in Table 2.

Figure 6 shows the percentage of votes for matched, equal, and mismatched per
condition. For SG, 62 videos were reported as matching, 56 were mismatched, and 65 were
equal. For the baseline condition, 74 were reported as matching, 69 were mismatching, and
40 were equal. For the ground truth, 120 were matched, 30 were mismatched, and 24 were
reported as equal.
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Figure 6. Stacked bar charts showing the percentage of votes on gesturing for StyleGestures (SG),
baseline (BL), and ground truth conditions (GT) in study 2.

To analyse these results, chi-squared tests were conducted with Holm–Bonferroni
correction applied for multiple comparisons. For SG, matching differed significantly from
mismatching (χ2 = 179, p < 0.0001). For baseline, matching differed significantly from
mismatching χ2 = 179, p < 0.0001, as well as the ground truth (χ2 = 155, p < 0.0001).

Lastly, we tested for differences between the conditions, in which ties were split equally
over matching and mismatching. For SG versus the ground truth, there was a significant
difference (χ2 = 21.99, p < 0.0001. For baseline versus the ground truth, there was a
significant difference χ2 = 21.99, p < 0.0001. SG and baseline did not differ significantly.

5.1.3. Study 3: ‘Human-Likeness for Listening’

The user study examined the human-likeness for listening behaviour of SG compared
with a baseline and the ground truth (GT). The scores for each condition are visualised in
Figure 7. Details on the demographics are provided in Table 2. All participants passed the
attention checks.
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Figure 7. Boxplots of human-likeness scores for listening behaviour.

To analyse the data, Wilcoxon signed-rank tests were conducted between the SG and
baseline, SG and GT, and baseline and GT conditions. The results showed that there was a
statistically significant difference in the human-likeness perception between the SG and
baseline conditions (Z = 16,265.5, p < 0.0001). This suggests that the SG system was
perceived to be more human-like than the baseline system in relation to listening behaviour.
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The results also showed a significant difference between the SG and GT conditions
(Z = 16,506.0, p < 0.0001). This indicates that the participants perceived the SG system to be
less human-like compared with the GT system, although the effect size was relatively small.

Lastly, there was a significant difference between the baseline and GT conditions
(Z = 11,646.5, p < 0.0001). The participants perceived the baseline system to be less human-
like than the GT one.

Overall, these results suggest that the SG system was perceived to be more human-like
than the baseline system although less human-like compared with the ground truth.

5.1.4. Study 4: Appropriateness for Listening

The purpose of this study was to investigate the ability of the participants to select
the correct, matching listening segment belonging to a conversation. For this, we used
the match/mismatch paradigm initially proposed in [20] and later also used in [13]. The
participants were presented with pairs of matching and mismatching videos and asked to
choose which one featured the correct listening motion. They also had the option to choose
whether the videos were equal. Details on the demographics can be found in Table 2. One
participant was excluded as they did not pass the attention checks.

Figure 8 shows the percentage of votes for matched, equal, and mismatched per
condition. For SG, 60 videos were reported as matching, 66 were mismatched, and 49 were
equal. For the baseline condition, 73 were reported as matching, 44 were mismatching, and
58 were equal. For the ground truth, 86 were matched, 71 were mismatched, and 22 were
reported as equal.
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Figure 8. Stacked bar charts showing the percentage of votes on listening for baseline (BL), StyleGes-
tures (SG), and ground truth (GT) in study 4.

For SG, matching differed significantly from mismatching (χ2 = 149, p < 0.0001). For
the baseline, matching differed significantly from mismatching χ2 = 170, p < 0.0001, and
the same held for the ground truth (χ2 = 174, p < 0.0001).

Lastly, we tested for differences between the conditions, where ties were split equally
between matching and mismatching. There were no significant differences between the
three conditions.

5.1.5. Study 5: Questionnaire for Gesturing

We examined the perceived quality of the synthesised gestures across three dimensions:
appropriateness, human-likeness, and intelligibility. To assess the internal consistency of
the rating scales used for these dimensions, we calculated the Cronbach’s alpha coefficients.
Details on the demographics can be found in Table 2. Two participants were excluded from
the analysis as they did not pass the attention check.

For the appropriateness dimension, the Cronbach’s alpha coefficient was 0.90 (95% CI
[0.89, 0.92]), suggesting good internal consistency among the items assessing appropriate-
ness. The human-likeness dimension had a Cronbach’s alpha coefficient of 0.92 (95% CI
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[0.91, 0.94]), indicating high internal consistency among the items measuring human-
likeness. Furthermore, the intelligibility dimension exhibited excellent internal consistency,
as indicated by a Cronbach’s alpha coefficient of 0.97 (95% CI [0.97, 0.98]). This suggests a
high degree of reliability among the items measuring intelligibility.

We performed a Mann–Whitney U test for each construct between each condition
(StyleGestures vs. baseline, StyleGestures vs. ground truth, and baseline vs. ground truth).
There were no significant differences between the scores for each construct. The mean
scores are visualised in Figure 9.
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Figure 9. Mean and error bars for baseline (BL), StyleGestures (SG), and ground truth (GT) in study 5.

5.1.6. Study 6: Questionnaire for Listening

We examined the perceived quality of synthesised listening motion across three di-
mensions: appropriateness, human-likeness, and intelligibility. To assess the internal
consistency of the rating scales used for these dimensions, we calculated the Cronbach’s
alpha coefficients. Details on the demographics can be found in Table 2. One participant
was excluded as they did not pass the attention checks.

For the appropriateness dimension, the Cronbach’s alpha coefficient was found to
be 0.90 (95% CI [0.88, 0.91]), indicating good internal consistency and agreement among
the items assessing appropriateness. For the human-likeness, the Cronbach’s alpha coeffi-
cient was 0.93 (95% CI [0.92, 0.94]). For the intelligibility construct, the Cronbach’s alpha
coefficient was found to be 0.98 (95% CI [0.98, 0.98]).

We performed a Mann–Whitney U test for each construct between each condition
(StyleGestures vs. baseline, StyleGestures vs. ground truth, and baseline vs. ground truth).
There were no significant differences between the scores for each construct. The mean
scores are visualised in Figure 10.
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Figure 10. Mean and error bars for baseline (BL), StyleGestures (SG), and ground truth (GT) in study 6.
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5.1.7. Completion Times

To assess the efficiency of test takers using different evaluation methodologies, we
conducted an analysis of the test completion times and report on the mean completion time
per page per study for the participants. Study 1 on human-likeness took 60 s (SD = 80),
with 20 s per stimulus. Study 2 on appropriateness took 44 s (SD = 107), with 22 s per
stimulus. Study 3 took 60 s (SD = 29), with 20 s per stimulus. Study 4 took 30 s (SD = 45),
with 15 s per stimulus. The last two studies featured one stimulus per page. Study 5 with
the questionnaire took 52 s to complete on average (SD = 34). For study 6, the average was
55 s (SD = 40).

6. Discussion

For this paper, we trained two models on a data set containing dyadic conversations.
We used the synthesised stimuli in six subjective studies. Two of the three evaluation
paradigms are existing evaluation strategies from the field of co-speech gesture generation.
We compared these two to a newly made questionnaire based on the usage of Likert scales
and constructs in a previous work on gesture generation [1].

In study one, the human-likeness for gesturing was evaluated. No significant differ-
ence was found between StyleGestures (SG) and the baseline. However, the ground truth
scored significantly higher on average, and both SG and the baseline differed significantly
from the ground truth. The finding that SG and the baseline did not differ significantly is
interesting since the baseline model incorporates semantic information. Human-likeness
evaluations focus on motion quality rather than appropriateness of gestures with speech
audio. Previous works on gesture generation evaluation yielded more robust differences
using this methodology [13]. Interestingly, the ground truth condition scored 70 on average,
even though the stimuli in this condition were based on human recorded motion. This
has been found previously in other works as well [13,17] and is most likely because of the
different embodiment of the avatar in relation to that of humans, as well as the lack of other
human-like features (such as a face).

Another angle of evaluating the appropriateness of gesticulation can be conducted
through the use of matching and mismatching videos [20]. In study 2, we took the same
30 segments and combined them into one video with the interlocutor. In one of the two
videos presented to the participant, the gesture sequence of the avatar on the left was
not related to that part of the conversation. We found significant differences for both the
baseline and SG with the ground truth condition but not for the baseline versus SG. When
we look at Figure 6, we see that more videos were identified as ‘equal’ for the SG condition.
As expected, the ground truth videos were identified as matching more than 70% of the
time. Since the baseline model also had access to the text beside the speech audio, one
would expect this model to generate more appropriate (and even semantic-related) gestures,
but the results from the appropriateness study do not seem to confirm this.

We wanted to know whether these two paradigms of human-likeness and appropriate-
ness testing could be used with more subtle forms of human nonverbal behaviour, such as
listening behaviour. In the third study, we evaluated the human-likeness of the generated
listening behaviour and compared it to the ground truth. It is important to mention that
for the human-likeness evaluation, we excluded the audio to only assess the quality of the
motion. We found significant differences between all conditions, with SG scoring past the
ground truth. However, the overall rating for each condition was not particularly high.
We think that human-likeness testing for motion for listening behaviour is difficult since
appropriate listening behaviour is really dependent on the conversation. Omitting the
audio could also have led to the participants not being able to see that this motion was
supposed to be part of a conversation. Another reason could be that in terms of motion
quality, it was all similar and therefore scored the same because of the lack of context.

Appropriateness testing of listening behaviour could help figure out whether it actually
matters what listening behaviour is tied to a conversation and whether participants can
spot differences in generated listening behaviour. Here, we cannot report any significant
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difference between the three conditions. It appears that the participants had difficulty
identifying the right listening behaviour. One reason for that could be that listening
behaviour takes place more with facial expressions than with body language, and that the
body pose alone is not enough to say that someone is attending a conversation. Another
reason could be that the avatar visualisation was too far from human-likeness, and therefore
the participants had a harder time believing that it was a human that was moving. Listening
behaviour is not only dependent on full-body motion, but it is also often combined with
verbal feedback [38].

For our last two studies, we designed a questionnaire with appropriateness, human-
likeness, and intelligibility as constructs. We based our choice of statements and constructs
on earlier work, reported in [1]. The internal consistency, measured through the Cronbach’s
alpha coefficient, was high. For each construct for both studies, the Cronbach’s alpha
coefficient was equal to or greater than 0.9. This provides an indication that together,
the statements measured the intended construct. However, there were no significant
differences in scores between the systems for either the gesticulation or listening behaviour
evaluations. We can see small differences when we look at the figures, but these differences
are not statistically significant. The evaluation of nonverbal behaviour poses a challenging
task, as evidenced by the multitude of diverse evaluation paradigms employed over the
years [1]. Unfortunately, there is a lack of a standardised and unified approach to measuring
nonverbal behaviour, further complicating the evaluation process. In a recent paper by
He et al. [14], multiple measuring methods were applied to test the gesticulation of an
avatar in an interaction, and only the behavioural method (through gaze tracking) yielded
significant differences. Here, a construct from the Godspeed questionnaire [15] was also
included. Because of the high internal consistency, one could argue that multiple statements
were measuring the same thing, reducing the resolution of the questionnaire, or that the
Godspeed questionnaire is not a good questionnaire for evaluating human-like motion. On
top of that, we only provided five answer options, which is a common way of applying
Likert rating scales [49]. A possible explanation for the non-significant results is that the
five answer options were not enough, and it is not sufficient for picking up these small
differences in generated nonverbal behaviour. The number of statements the participants
had to answer per video could also have led to fatigue in the participants, even with the
low number of videos presented to the participants.

We ran a small analysis to look at the completion times for evaluating stimuli per
evaluation method. The time per stimulus in the test appeared to be the lowest for appropri-
ateness testing. However, in earlier research, it has been shown that pairwise comparisons
might be faster but scale worse when comparing multiple conditions [42]. The ques-
tionnaire method, with 15 statements per video, took the longest to complete. Here, the
participants needed almost one minute per video. In comparison with the human-likeness
methodology, this took three times longer. We therefore can conclude that when looking
at time efficiency, the HEMVIP methodology is the most efficient method for gathering
ratings per stimulus.

The current uptick in the application of human-likeness testing using direct question
and appropriateness testing, with matching and mismatching stimuli for generated non-
verbal behaviour, seems to yield interesting results and makes comparisons easy when
researchers include at least one condition with motion from previous work. Thanks to
researchers working on the GENEA Challenge [13,17], more and more code has become
available for running objective and subjective evaluations and comparative studies. How-
ever, a standardised method of measuring intelligibility, which was the only construct not
compared to previous evaluation methodologies, is missing in the field at the moment.
This could be asked through a direct question or by presenting the statements we came up
with. As previous research mentioned before, subjective evaluations through an interaction
could be performed to study intelligibility [1,12,31], but this has to be carried out carefully
and does not always lead to statistically significant differences [14].
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7. Conclusions

In this work, we compared three different methods for subjectively evaluating computer-
generated gestures, all of which are ideal for studies run through crowd-sourcing platforms.
Two methods rely on direct rating of the motion quality, and these were compared to a new
questionnaire. We found that for gesticulation behaviour, both human-likeness and appro-
priateness testing yielded results that made it possible to compare and rank the quality of
generative models. However, when it came to listening behaviour, the differences were less
clear between different systems and the ground truth motion. It is our advice to stick to
direct evaluations of human-likeness, preferably using the HEMVIP framework. Regarding
the appropriateness, we think that the current methodology of matching stimuli yields good
results, but we are wary of its scaling when assessing multiple conditions. Our work offers
valuable insights for researchers in gesture generation and the evaluation of generated
behaviour. We encourage researchers to leverage existing methodologies and incorporate
previously evaluated systems or generated motion. This will facilitate meaningful compar-
isons among works from various researchers. For future work, we suggest evaluating the
appropriateness testing methodology against a direct approach to measure appropriateness
rather than relying solely on matching and mismatching stimuli. Additionally, it could be
interesting to explore different ways of incorporating questionnaire constructs.
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