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Abstract: This study presents a comprehensive analysis of a simplified design methodology for
timber–concrete composite roof and floor structures employing metal web beams, also known as
posi-joisted beams, easi-joist, or open web joists, validated through both laboratory experiments
and finite element (FE) method analyses. The proposed method integrates the transformed section
method and the γ-method, as outlined in Annex B of EN1995-1-1 for mechanically jointed beams. The
investigation focuses on roof and floor structures featuring posi-joisted beams, oriented strand board
(OSB) sheets connected by screws, and a layer of concrete bonded to the OSB sheets using epoxy glue
and granite chips. Two groups, each consisting of four specimens, were prepared for the laboratory
experiments. Each specimen comprised two posi-joisted beams, 1390 mm long, connected by OSB/3
boards measuring 400 mm in width and 18 mm in thickness. The beams had a cross-sectional depth of
253 mm, corresponding to beams of grade PS10, with top and bottom chords made from solid timber
(95 mm × 65 mm). Bracing members with cross-sections of 100 mm × 45 mm were used to join the
bottom chords of the beams. A layer of self-levelling mass SakretBAM, 50 mm thick, was bonded
to the OSB/3 boards using SicaDur 31 epoxy glue and granite chips (16–32 mm). The specimens
underwent three-point bending tests under static loads, and FE modelling, conducted using Ansys
R2 2022 software, was employed for both experimental groups. A comparative analysis of results
obtained from the simplified design method, FE simulations, and experimental data revealed that
the simplified method accurately predicted maximum vertical displacements of the roof fragment,
including posi-joisted beams, with precision up to 11.6% and 23.10% in the presence and absence
of a concrete layer, respectively. The deviation between normal stresses in the chords of the beams
obtained through the simplified method and FE modelling was found to be 7.69%. These findings
demonstrate the effectiveness and reliability of the proposed design methodology for timber–concrete
composite roofs with posi-joisted beams.

Keywords: simplified design method; transformed section method; γ–method; laboratory experiment;
three-point bending; finite element analysis; load-carrying capacity; maximum vertical displacements;
timber–concrete composite; stone chip method; posi-joisted beam; roof structures; floor structures; metal
web joists

1. Introduction

The construction industry ranks among the primary contributors to the significant
global carbon footprint, heavily relying on non-renewable energy and emitting greenhouse
gases. Accounting for approximately 40% of global energy consumption and contributing
to 33% of greenhouse gas emissions, the construction industry, demands comprehensive
measures to mitigate carbon emissions [1–4]. Addressing this challenge requires tailored
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government policies, robust carbon emission analysis, and adopting sustainable materials.
Carbon emissions analysis across the building life cycle revealed that the construction
phase alone contributes to 20–50% of total carbon emissions [5]. Using timber-based struc-
tural products is currently regarded as an environmentally friendly choice, aligning with
government sustainable development and climate change mitigation strategies. Timber is a
practical alternative to traditional building materials, offering a high strength-to-weight
ratio, low carbon footprint, renewable resource availability, and aesthetic appeal [6–9].
Ongoing efforts to optimise timber’s structural efficacy are under way, expanding the
application domains of timber-based structural products [10].

Each material possesses distinct advantages and disadvantages, and the practice of
combining different materials in construction has a long history. The primary objective
of blending materials and ensuring their composite action in structures is to enhance the
final structure’s characteristics [11–13]. This typically involves reducing overall weight,
increasing stiffness and load-bearing capacity, and improving the aesthetic appeal of
buildings. Steel–concrete pairs stand out as one of the most widely used combinations of
materials [14]. In the realm of composite structures for roofs and floors, one study focused
on a combination of cold-formed steel beams and timber panels [15]. Special adhesive
compositions have proven effective in enhancing shear connection and stiffness, surpassing
traditional steel options [16]. Notably, I-joists have gained popularity as engineered timber
products for floor and roof assemblies in both residential and commercial settings [17].

The advancement of innovative solutions in the application of timber structures and
elements in constructing multi-storey timber buildings has necessitated the development
of novel composite structural materials for the walls and floor components of these struc-
tures [18].

In recent decades, timber–concrete composite (TCC) structures have gained promi-
nence, especially in the construction of multi-storey timber buildings [19,20]. TCC struc-
tures contribute to creating rigid or semi-rigid joints, with connectors playing a crucial role
in transferring shear between concrete slabs and timber beams [21,22]. Timber–concrete
composites are instrumental in constructing structures that are challenging or impossible
with timber alone [23,24]. A recent paper presents an analysis of the use of timber–concrete
composite materials and monolithic slabs in residential buildings [25]. Cross-linking vari-
ous types of timber-based materials has found widespread use in critical structural elements
and structures [26].

Ongoing research on steel mesh structures in timber buildings is in an active stage of
development and implementation [27]. Posi-joist elements, exemplified in this publication,
are a noteworthy instance. Stability under vibration loads for floor structures created using
metal web joists is extensively detailed in another study [28].

Metal-web beams represent shallow parallel-chord trusses where timber flanges are
interconnected through a system of triangulation facilitated by steel webs [29]. Posi-joisted
beams offer several advantages over alternative timber structures. They seamlessly blend
the weight advantage of timber with the strength of the posi-strut steel web, enabling
flooring and roofing solutions that cover substantially greater distances than other timber
materials. This exceptional feature provides unmatched design versatility, making posi-
joists suitable for various residential, industrial, and commercial applications. The ability
to span large distances facilitates various internal room configurations within an external
structure, presenting clear design advantages. Increased load-carrying capacity is achieved
by adjusting the depth of the cross-section using the posi-strut steel web [30].

The lattice posi-strut steel web creates a service void for easy access during the installa-
tion and maintenance of services in the floor zone. It also allows for mechanical ventilation
and heat recovery systems. Additional advantages of posi-joisted beams include a de-
creased assembling mass; improved quality due to fabrication in industrial conditions;
a wide fixing surface, simplifying the installation of floor decks and ceilings; minimized
shrinkage; exceptional sound performance; and significant fire resistance.
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Combining timber–concrete composite structures with posi-joisted beams further
enhances the benefits, leading to increased stiffness in floor and roof structures [31,32]. The
available information on the design of roofs and floors with posi-joisted beams is currently
limited and incomplete. Although timber–concrete composite roof and floor structures
with posi-joisted beams can be designed using the finite element (FE) method, a simplified
approach is necessary for determining the major dimensions of the considered structure.
Thus, the objective of this study was to develop and validate a simplified method for
designing timber–concrete composite roof and floor structures with posi-joisted beams.

2. Materials and Methods
2.1. Design Method for Timber–Concrete Composite Structure with Metal Web Timber Joists

A simplified method for designing timber–concrete composite roof and floor structures
with posi-joists was derived based on the transformed section method and the γ-method
outlined in Annex B of EN1995-1-1 for mechanically jointed beams [33–35], which showed
promising results in the case of timber–concrete composite structures with cross-laminated
timber panel [20]. To validate the developed design method, timber–concrete composite
specimens (see Figure 1a) were prepared for laboratory testing. These specimens featured
two posi-joisted beams joined by OSBs as top chords. A group of specimens without a
concrete layer have been prepared to assess the increase in load-carrying capacity achieved
by the addition of a concrete layer (see Figure 1b).
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in accordance with SIA “MiTek Baltic” technology, OSB sheets attached to the beams with 
screws, and a layer of concrete bonded to the OSB sheets using epoxy glue and granite 
chips. This structure served as the object of study for describing the proposed method. 
The dimensions of the two groups of the investigated specimens are summarized in Fig-
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an additional concrete layer; metal web is drawn in blue colour, top OSB sheet – in red colour. 

Figure 1. Considered specimens with posi-joisted beams: (a) with a concrete layer; (b) without a
concrete layer.

The investigation focused on a structure featuring posi-joisted beams manufactured in
accordance with SIA “MiTek Baltic” technology, OSB sheets attached to the beams with
screws, and a layer of concrete bonded to the OSB sheets using epoxy glue and granite
chips. This structure served as the object of study for describing the proposed method. The
dimensions of the two groups of the investigated specimens are summarized in Figure 2.
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The thickness of the concrete layer was chosen to ensure its operation primarily under
compression, eliminating the need for principal reinforcement in the concrete layer. The
analysis considered a segment of the structure consisting of two posi-joisted beams and
corresponding layers of OSB and concrete.

The simplified method for designing a timber–concrete composite structure with
posi-joisted beams comprises the following stages:

1. Choice of structural solution:
Selection of major geometric parameters, including the bay of the posi-joisted beams,

depth of the beam cross-sections, thickness of the OSB decking, and thickness of the concrete
layer. Recommendations from the existing literature [20,30] can guide this stage.

2. Determination of loads and actions and the formation of the design scheme:
Utilization of results from the first stage, considering climatic conditions, and applying

recommendations [36] to establish a design scheme.
3. Global analysis and determination of internal forces:
Conducting global analysis to determine internal forces in all sub-members of the

structure. For each posi-joisted beam, the uniformly distributed load on the beam can be
replaced by an equivalent system of concentrated forces applied to the nodes of the top
chord of the beam. Axial forces in the chords and lattice can be determined using structural
mechanics methods.

4. Dimensioning of sub-members cross-sections:
Sizing the cross-sections of sub-members based on the internal forces identified in the

global analysis, considering the requirements of Eurocode 2 for concrete layer, Eurocode 3
for steel web, and Eurocode 5 for timber elements.

5. Check of sub-members by ultimate limit state (ULS):
Verification of sub-members against the ultimate limit state (ULS).
6. Check of a fragment of the structure by serviceability limit state (SLS):
Examination of a fragment of the investigated structure to ensure compliance with the

serviceability limit state (SLS).
Each stage builds upon the results of the previous one, providing a systematic approach

to the design process for timber–concrete composite structures with posi-joisted beams.
The sizing of timber chords should adhere to strength conditions for the axially

tensioned bottom chord and stability conditions for the axially compressed top chord [35].
It is crucial to consider existing recommendations [30] during this process.

The examination of the selected cross-sections of chords, determined in the previous
stage, should be conducted using the transformed section method and the γ-method [33,35].
The cross-section of the analysed fragment of the structure was transformed into the timber
of chords for this purpose (Figure 3).
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The effective bending stiffness of the transformed section can be determined using
Equation (1), outlined in Annex B of EN1995-1-1:

(EI)e f =
n

∑
i=1

(
Ei × Ii + γi × Ei × Ai × a2

i

)
(1)

where Ei is the mean value of modulus of elasticity of separate material layer, MPa; Ii is
the moment of inertia of the separate layer relative to its own main axis, mm4; γi is the
reduction factor, which takes into account compliance of the bonds; Ai is the cross-sectional
area of the separate layer, mm2; and ai is the distance from the neutral axis of the whole
cross-section to the neutral axis of separate layer, mm.

Maximum normal stresses, acting at the chords of the posi-joisted beam, should be
determined using Equation (2):

(σ)max = σglobal + σlocal =
Md × Ei
(EI)e f

× (γi × ai + 0.5 × hi) (2)

where Md is the design value of bending moment, kNm; hi is the height of the separate
layer, mm.

Maximum shear stresses should be obtained using Equation (3):

τmax =
Vd × (ES)e f

(EI)e f × b
(3)

where Vd is the design value of shear force, kN; b is the width of the separate layer,
where shear stresses are calculated, mm; and (ES)e f is the effective statical moment of the
transformed section, which can be determined using Equation (4):

(ES)e f = ∑
i=1

γi × Ei × Ai × ai (4)

The final stage of the method involves a check of the maximum vertical displacement,
based on the effective bending stiffness determined using Equation (1). Maximum vertical
displacements are calculated as the sum of the maximum vertical displacements due to the
bending moment and the shear force.

2.2. Laboratory Experiment

A simplified method for designing timber–concrete composite roof and floor structures
with posi-joisted beams underwent validation through a laboratory experiment [34]. To
conduct this experiment, two groups of specimens were prepared, each comprising four
specimens. The specimens in the first group consisted of two posi-joisted beams, each with
a length of 1390 mm, joined by an oriented strand board (OSB/3) measuring 400 mm in
width and 18 mm in thickness. The depth of the beams’ cross-sections was set at 253 mm,
aligning with beams of grade PS10 [30]. The top and bottom chords of the beams had equal
cross-sections made from solid timber, measuring 95 mm × 65 mm. Additionally, three
bracing members with cross-sections of 100 mm × 45 mm connected to the bottom chords
of the beams.

The second group of specimens differed in terms of the addition of a 50 mm concrete
layer, comprising self-levelling mass SakretBAM produced by SAKRET (Riga, Latvia). This
layer was bonded with OSB/3 sheets using epoxy glue SicaDur 31 produced by Sika (Baar,
Switzerland) and granite chips with a fraction size of 16–32 mm were incorporated. The
dimensions of both types of the laboratory specimens are summarized in Figure 2. The
production process of the specimens in the second group is illustrated in Figure 4.
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Figure 4. The process of the second groups specimens’ development: (a) joining of the posi-joisted
beams with the bracing members; (b) joining of the posi-joisted beams with the OSB/3 sheet and
steel screws; (c) placement of the self-levelling mass, Sakret-BAM, on the OSB/3 surface, covered by
the epoxy glue Sicadur 31 and granite chips.

The concrete underwent hardening over the course of one month from the placement
moment. To prevent the development of shrinkage cracks, the surface of the concrete was
covered with polyethylene foil. Subsequently, the moulds were removed, and both groups
of specimens were subjected to testing until collapse under laboratory conditions.

Before the laboratory experiment, the load-carrying capacities and expected maximum
vertical displacements for both groups of specimens were determined using the previ-
ously described simplified method for designing timber–concrete composite roof and floor
structures with posi-joisted beams, specifically for the case of three-point bending. The
load-carrying capacities were found to be 24 kN for the first group and 46 kN for the second
group. The experimental setup is illustrated in Figure 5 [34].
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Figure 5. Scheme of laboratory experiment: (a) scheme of the specimen loading; (b) general view of
the laboratory equipment during the testing of the specimen from the second group (with concrete).

Each specimen underwent three loading cycles until the load-carrying capacity of
specimens without a concrete layer was reached, followed by loading until collapse. At
each stage, the load increment was set at 3 kN, and the loading velocity did not exceed
2 kN/min. The results obtained for the first group of specimens are depicted in Figure 6.
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Figure 6. Maximum vertical displacement as a function of the applied load for specimens of the first
group without a concrete layer (S1_1, S1_2, S1_3, and S1_4—four specimens of the first specimens’
group; S1_mean—curve of the mean maximum vertical displacement with one standard deviation as
a function of the applied load).

The experimentally obtained load-carrying capacities of the first group of specimens
were 32.95 kN for the S1-1 specimen, 34.17 kN for specimen S1-2, 35.92 kN for specimen
S1-3, and 35.47 kN for specimen S1-4. The mean value of the experimentally obtained
load-carrying capacity was 34.63 kN. The maximum vertical displacements, when subjected
to a design load of 24 kN, varied between 5.54 mm and 6.07 mm. When the load reached
critical values, the maximum vertical displacements ranged from 8.45 mm to 10.63 mm.

The results for the second group of specimens are presented in Figure 7. Notably, the
fourth specimen in the second group had a defect, and consequently, only three specimens
from the second group were subjected to testing [34].
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Figure 7. Maximum vertical displacement as a function of the applied load for the specimens of the
second group with a concrete layer (S2_1, S2_2, and S2_3—three specimens of the second specimens’
group; S2_mean—curve of the mean maximum vertical displacement with one standard deviation as
a function of the applied load).
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The experimentally obtained load-carrying capacities of the second group of specimens
were 46.69 kN for the S2-1 specimen, 45.35 kN for specimen S2-2, and 45.39 kN for specimen
S2-3. The mean value of the experimentally obtained load-carrying capacity was 45.81 kN.
The maximum vertical displacements, when subjected to a design load of 24 kN for the
specimen with a concrete layer, varied between 3.89 mm and 5.29 mm. When the load
reached critical values, the maximum vertical displacements ranged from 8.49 mm to
8.82 mm. The failure modes for specimens in both groups are illustrated in Figure 8.
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Local buckling of the steel webs was observed in all specimens of both the first and
second groups (Figure 8a,b). Additionally, in the second group of specimens, extraction of
the teeth in the steel-to-timber connection in the support zone on the top chord was noted
(Figure 8c) [34].

2.3. FE Modelling

The finite element method, implemented using Ansys R2 2022 software, was employed
for the FE modelling of both groups of the considered laboratory specimens to verify the
efficacy of the proposed simplified method. The BEAM 188 element type was used to
model timber chords, while the SHELL element type was utilized for modelling the OSB,
concrete layer, and steel webs. Timber chords were represented as C24 class solid members
with dimensions of 47 mm × 95 mm, and the steel braces, with punched steel plates having
a cross-section of 47 mm × 1 mm, were made of S275 grade steel. All nodes were specified
as rigid. The thicknesses of the OSB/3 and concrete layers were set at 18 mm and 50 mm,
respectively, and the strength class of the concrete layer was designated as C25/30.

The FE models for the first and second groups of laboratory specimens, both without
and with a concrete layer, are illustrated in Figure 9a,b, respectively.
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Figure 9. FE models of the first (a) and second (b) groups of laboratory specimens with and without
concrete layer.

The developed FE models of the first and second groups of the laboratory specimens
were analysed under the action of the concentrated 24 kN force through the scheme of
three-point bending, as shown in Figure 5a. The value of the applied force was a design
load for the specimen of the first group, determined by the simplified method, described in
Section 2.1.
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The results obtained for the second group of laboratory specimens using the developed
FE model are presented in Figure 10. The potential for describing crack development was
examined by utilizing the SOLID-FE-type to model the concrete layer for specimens of the
second group.
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Figure 10. Stresses (a) and vertical displacements (b) obtained for the FE model of the second group
of laboratory specimens with a concrete layer.

The scheme illustrating the development of cracks in the concrete layer and the vertical
displacements obtained by the FE model, where the concrete layer was modelled using
the SOLID-type finite element, is presented in Figure 11. Noteworthy is the absence
of significant differences in the values of vertical displacements and stresses obtained
by the models with SHELL and SOLID finite elements employed for modelling of the
concrete layers.
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Figure 11. Vertical displacement (a) and the scheme of crack development (b), obtained for the FE
model of the second group of laboratory specimens with a concrete layer.

3. Results and Discussions

The results obtained for both groups of specimens using the simplified design method,
FE analysis, and laboratory experiments were consolidated and compared to validate
the proposed simplified method. The focus was on evaluating the maximum vertical
displacements and stresses acting in the chords of the posi-joisted beam. A graphical
representation of the maximum vertical displacement as a function of the applied load for
the first group of specimens is depicted in Figure 12. Notably, the OSB and steel lattice
were modelled using the SHELL-type FE, as indicated in the description below Figure 12.
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Figure 12. Maximum vertical displacement as a function of the applied load for specimens of the first
group without concrete layer, by the simplified design method (SDM), FE analyses (FE_shell), and
laboratory experiments (LAB_avr).

The obtained dependencies reveal that the average deflections from the experimental
results initially surpassed those from theoretical calculations, attributed to residual de-
formations and creep effects. Beyond a load of 9 kN, the experimental displacement fell
below the theoretical design curve. Throughout loading, the vertical displacement curve of
the FE model remained consistently below the theoretical curve. The average difference
between the results obtained by the simplified method and the experiment exceeded 23.10%.
However, the difference between the results obtained by FE analysis and the experiment
was more modest, at 6.25%.

For the first group of specimens, the maximum value of normal stresses obtained by
the simplified method was 13 MPa, while the same value obtained by FE analysis was
12 MPa, resulting in a difference of 7.69%.

Similar results were obtained for the second group of specimens with the concrete
layer (Figure 13). The chart with a line FE_shell_mod was derived from the FE model,
where the OSB, concrete layer, and steel lattice were modelled by the SHELL-type finite
element, taking into account the compliance of mechanical bonds (screws) between the top
chord of the beam and the OSB layer.
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Figure 13. Maximum vertical displacement as a function of the applied load for the specimens of
the second group (with concrete layer), by the simplified design method (SDM), FE analyses with
three models (FE_shell, FE_shell_mod, and FE_solid), and laboratory experiments (LAB_avr).
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Bond compliance was assessed based on the experimental results and recommenda-
tions from the literature [35]. Comparison of the maximum vertical displacements obtained
by the simplified design method and the aforementioned FE model indicated a mean
difference of 6.40%. The differences for the FE models using the SOLID and SHELL types,
without considering bond compliance, were significantly higher, reaching 63%. Comparing
the maximum vertical displacements obtained by the simplified method and the experiment
indicated a mean difference of 11.6% for the first loading cycle.

The chart shown in Figure 13, depicting the FE_solid line, was generated by modelling
the concrete layer using the finite element type SOLID. The chart is interrupted at a load
level of 18 kN, where the development of the first cracks was noted. However, in practice,
the failure of specimens was observed at an average load level of 45.81 kN for the three
considered specimens. Therefore, it can be concluded that the use of the finite element
type SOLID for modelling the concrete layer in timber–concrete composite structures with
posi-joisted beams does not enable the accurate prediction of the structure’s behaviour at
all loading stages. The SHELL type of FE is recommended for modelling the concrete layer,
and compliance of the bonds should be considered in cases where mechanical fasteners are
present between the layers of the considered structure.

Comparison of the results obtained by the simplified design method, FE model analy-
ses, and experiments indicated that the simplified method accurately predicted the maxi-
mum vertical displacement for the investigated structure fragment, including posi-joisted
beams, with precision values of 11.6% and 23.10% with and without a concrete layer, re-
spectively. The difference in normal stresses in the chords of the beams obtained by the
simplified method and the FEM model was 7.69%. This suggests that the generalized
simplified method can be considered for the preliminary design and determination of
structural parameters for developing FE models.

It can be concluded that the addition of a concrete layer with a thickness of 50 mm,
possessing mechanical properties close to C25/30 strength class concrete, increases the
load-carrying capacity of a structure with posi-joisted beams and OSB sheets joined with
screws by 32.28%.

4. Conclusions

In summary, a simplified method for designing timber–concrete composite roof and
floor structures with posi-joisted beams was generalized and validated through laboratory
experiments and FE model analysis. The method relies on the transformed section method
and γ–method, and its applicability was tested on a structure comprising posi-joisted
beams, OSB sheets joined with screws, and a layer of concrete bonded to the OSB sheets
using epoxy glue and granite chips.

The findings indicate that the simplified method is suitable for preliminary design
purposes of timber–concrete composite structures with posi-joisted beams and for deter-
mining structural parameters essential for developing FE models. A similar approach
has previously been tested in the case of timber–concrete composite structures with cross-
laminated timber panels, which highlights the potential versatility of suggested method
across various configurations.

The mean difference in maximum vertical displacement between the simplified
method and laboratory experiments did not exceed 11.6%. An FE model of the timber–
concrete composite structure with posi-joisted beams, developed using Ansys R2 2022
software, was validated through laboratory experiments, with BEAM 188 and SHELL
FE types recommended for modelling timber chords and OSBs, concrete layer, and steel
webs, respectively.

Moreover, the addition of a concrete layer with a thickness of 50 mm and mechanical
properties close to C25/30 strength class concrete resulted in a significant enhancement,
increasing the load-carrying capacity of the investigated structure with posi-joisted beams,
OSB sheets, and screws by 32.28%.
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While the method exhibits promise as a preliminary design and parameter estimation
tool, design practitioners should be aware of its limitations, particularly regarding loading
conditions, material properties, and the absence of considerations for concrete creep and
shrinkage effects. Further research is imperative to validate the method across a broader
spectrum of conditions, enhancing its accuracy for practical design applications. The
ongoing pursuit of validation with field data is crucial for bridging the gap between
theoretical advancements and real-world structural behaviour. As long-term behaviour
is essential, future research should incorporate extended experimental periods with the
monitoring of structures over an extended period to gain insights into the effects of creep,
shrinkage, and other time-dependent phenomena.
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