
Citation: Palomino-Fernández, D.;

Milara, E.; Galiana, Á.; Sánchez-Ortiz,

M.; Seiffert, A.P.; Jiménez-Almonacid,

J.; Gómez-Grande, A.; Ruiz-Solís, S.;

Ruiz-Alonso, A.; Gómez, E.J.; et al.

Textural and Conventional

Pretherapeutic [18F]FDG PET/CT

Parameters for Survival Outcome

Prediction in Stage III and IV

Oropharyngeal Cancer Patients. Appl.

Sci. 2024, 14, 1454. https://doi.org/

10.3390/app14041454

Academic Editor: Roger Narayan

Received: 12 September 2022

Revised: 24 October 2022

Accepted: 9 February 2024

Published: 10 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Textural and Conventional Pretherapeutic [18F]FDG PET/CT
Parameters for Survival Outcome Prediction in Stage III and IV
Oropharyngeal Cancer Patients
David Palomino-Fernández 1,† , Eva Milara 1,*,† , Álvaro Galiana 2, Miguel Sánchez-Ortiz 3,
Alexander P. Seiffert 1 , Justino Jiménez-Almonacid 4, Adolfo Gómez-Grande 2,5, Sebastián Ruiz-Solís 2,
Ana Ruiz-Alonso 3, Enrique J. Gómez 1,6, María José Tabuenca 2 and Patricia Sánchez-González 1,6,*

1 Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology,
Universidad Politécnica de Madrid, 28040 Madrid, Spain

2 Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
3 Department of Radiation Oncology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
4 Department of Pathology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
5 Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
6 Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de

Salud Carlos III, 28029 Madrid, Spain
* Correspondence: eva.milara.hernando@upm.es (E.M.); p.sanchez@upm.es (P.S.-G.)
† These authors contributed equally to this work.

Abstract: Evidence is emerging about the value of textural features as powerful outcome predictors
in cancer lesions. The aim of this study is to evaluate the potential of [18F]FDG PET/CT conventional
and textural parameters as survival predictors in patients with stage III and IV oropharyngeal cancer.
The database includes 39 patients. Segmentation of the primary lesions was performed. A total
of 48 features were extracted, comprising conventional parameters and textural features. A 2-year
follow-up period to analyze the Overall Survival (OS) and Relapse-Free Survival (RFS) rates was
defined. Kaplan–Meier and Cox proportional hazards regression analyses were computed. Higher
TLG (p = 0.001) and Surface (p = 0.001) are significantly related to better OS in Cox regression analysis
after multiple-testing correction. Higher GLZLM_ZLNU (p = 0.001) is significantly related to greater
relapse rates in RFS Kaplan–Meier analysis after multiple-testing correction. Quantitative [18F]FDG
PET/CT image features, especially the TLG, have been confirmed as predictors of OS and RFS.
Textural features, such as GLZLM_ZLNU, demonstrated a potential predictive value for the OS and
RFS of the patients. RFS analysis suggest stabilization of patients adhering to the treatment, showing
no relapse events after 20 months of follow-up. [18F]FDG PET/CT is a useful tool for predicting
prognosis after chemoradiation therapy of oropharyngeal cancer patients.

Keywords: head and neck; oropharyngeal cancer; [18F]FDG PET/CT; survival; texture features

1. Introduction

Head and neck cancer is the sixth most common neoplasm in the world [1], with
some known risk factors such as smoking, oral health, genetics, and the presence or not
of human papilloma virus infection (HPV) [2,3]. Nevertheless, the presence of HPV has
been identified as a good prognostic factor, since HPV-positive cases show a reduction
in mortality by 58% and a better response to treatment than HPV-negative patients [2].
This is especially relevant in patients with oropharyngeal cancer, where the latest AJCC
classification discriminates according to HPV status, due to its prognostic nature [4]. Diet,
ultraviolet radiation, oral health, or genetic predisposition are other risk factors with lower
incidence [3].

Despite its high incidence, the survival rate has been increasing in recent years due to
early diagnosis and the improvement in therapeutic strategies [1]. Functional images using
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Positron Emission Tomography (PET) with 18F-2-fluorine-2-deoxy-D-glucose ([18F]FDG)
in combination with computed tomography (CT) are a useful tool to assess the recur-
rence before the treatment or in the case of relapse thanks to the high negative predictive
value [1], especially during the first two years post-treatment due to the high risk of relapse
(50–60%) [5,6] in locoregional advanced oropharyngeal cancer (stage III or IV). [18F]FDG
PET/CT images help to evaluate efficiently the changes produced in tissues after therapies
and treatments, discriminating between active residual disease, recurrent disease, and
post-treatment fibrosis. As a result of such high levels of sensibility and specificity, PET-CT
findings lead to a change in management for up to 25% of patients [7–9].

[18F]FDG PET images are usually analyzed quantitatively through the Standardized
Uptake Value (SUV), which represents the relative radiotracer uptake in the lesion [1].
The [18F]FDG uptake in head and neck cancer was evaluated by Torizuka et al. [2], where
lower SUVs were related to greater survival rates and disease control. In addition, the
evaluation of volumetric parameters, such as the Metabolic Tumor Volume (MTV) and Total
Lesion Glycolysis (TLG), has shown promising results. Pak et al. [3] have demonstrated that
higher MTV and TLG are related to tumor recurrence. Creff et al. [10] proved the prognostic
effectiveness of [18F]FDG PET parameters among patients with head and neck squamous
cell cancer. Additionally, Bonomo et al. [7] demonstrated the prognostic relevance of
[18F]FDG PET parameters in the context of locally advanced head and neck squamous
cell carcinoma.

Radiomics is an evolving field that uses a non-invasive methodology to characterize
tissues and organs based on a large number of features extracted from the medical images.
The underlying hypothesis of radiomics is that genomic cancer subtypes are reflected
in image-based features. Subsequently, recent techniques such as textural analysis have
demonstrated to be optimal to quantify these cancer phenotype properties [11–13]. These
sub-visual features can be grouped into intensity, shape, and textural relationships between
pixels. The textural features, or second order, represent the spatial distribution relationship
between voxel intensities, such as the gray level co-occurrence matrix (GLCM), which
calculates the correlation between two gray levels at a certain distance and a certain
direction in an image.

In the last years, the use of radiomics for the analysis of [18F]FDG PET/CT images in
oncology has increased [8,11,14,15]. In head and neck cancer, intratumoral heterogeneity is
considered one of the main factors that influences treatment progression and chemotherapy
resistance [16]. Molecular heterogeneity is reflected macroscopically through these textural
image features [14]. Consequently, the relationship between genetic and metabolic het-
erogeneities and its ability of prognosis in [18F]FDG PET images was evidenced in recent
studies [8,13,17–20]. These studies demonstrated that the greater the homogeneity is within
an FDG-avid region, the better the disease prognosis.

Several studies have revealed that textural parameters in [18F]FDG PET images, as
tumor heterogeneity indicators, have shown to provide additional prognostic value for
treatment outcomes [12,19,21–26]. Furthermore, the combination of clinical and textural
parameters has shown complementary predictive value for locoregional recurrence and
Overall Survival (OS) [12] in head and neck cancer. The ability of radiomics to stratify
patients into potential risk cancer phenotypes may be of great use in clinical decision
support systems. Radiomics can be used as a tool to enhance personalized medicine,
evaluating patient-specific treatment efficacy and optimal treatment strategies during
follow-up.

In this study, the aim was to evaluate the potential of radiomics analysis using
[18F]FDG PET/CT images. The purpose was to identify predictive [18F]FDG PET radiomic
features to predict recurrence and OS in patients with stage III and IV oropharyngeal
cancer. The prognostic value of the combination of conventional and textural features was
evaluated. We studied the relationship of these features, as well as clinical and pathological
characteristics, especially HPV status, to treatment response and patient survival.
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2. Materials and Methods
2.1. Study Cohort

Eligibility criteria included histologically confirmed HPV status oropharyngeal squa-
mous cell carcinoma; American Joint Committee on Cancer (AJCC) 7th edition clinical
categories T1–T2, N2a–N3 M0 or T3–T4, N0–N3 M0 (stage III or IV); Eastern Cooperative
Oncology Group (ECOG) performance status 0–2; age of at least 18 years; and chemoradio-
therapy concurrent treatment. Exclusion criteria included concomitant tumor present in
another location or incomplete treatment. Lastly, due to software limitations, patients with
tumor sizes smaller than 64 voxels were excluded.

Importantly, HPV-related oropharyngeal cancer patients’ staging should be done
following the AJCC TNM 8th edition, whereas clinical decision making should follow the
AJCC TNM 7th edition. This is the reason why we decided to unify our sample following
the AJCC TNM 7th edition.

After applying the exclusion criteria, 39 patients (median age, 66; range, 53–82) were
included in the study population. It must be noted that the vast majority of patients of this
database are smokers (36 of 39 patients), being a risk factor for head and neck cancer [22],
making it impossible to establish differences between smokers and non-smokers. Patient
demographics are summarized in Figure 1, and the followed workflow is described in
Table 1.
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Figure 1. Methodology workflow diagram.

Table 1. Demographic and clinical features of patients.

Number (%)

Total patients 39
Male patients 36 (92.31)
Age, years (median, range) 66 (53–82)
Dose, Gy (median, range) 7000 (6572–7200)
Chemotherapy

Cisplatin 23 (58.97)
Cetuximab 13 (33.33)

Tumor stage
III 6 (15.38)
IV 33 (84.62)

HPV status
HPV-positive 13 (33.33)
HPV-negative 26 (66.67)

Tumor site
Palate 1 (2.56)
Soft palate 3 (7.69)
Tongue base 9 (23.08)
Tonsils 20 (51.28)
Side wall 4 (10.26)
Rear wall 2 (5.13)

Smoker status
Smoker 36 (92.31)
Non-smoker 3 (7.69)

Surgery 16 (41.03)
Follow-up time (median, range) 38 (6–125)
Relapse 4 (10.26)
Death 19 (48.72)
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2.2. [18F]FDG PET/CT Acquisition

Patients were subject to a 4 to 6 h fasting before the images were taken. Glucose
levels were all below 200 mg/dL. Images were analyzed by experienced nuclear medicine
physicians, and all primary lesions were defined through their evaluation. Selective head
and neck images were acquired using a Siemens Biograph TruePoint PET/CT Model
1093 (Siemens Healthineers). Patients were weighted before the study, and a dose of
5 Mbq per kg was administered, which resulted in a mean dose of 341.14 ± 67.43 MBq
of [18F]FDG intravenously administered. Images were acquired 73.02 ± 21.80 min post
injection. Imaging protocol included a dedicated head and neck image from the top of
the skull to the sternum manubrium with arms down, and a whole-body image from
the base of the skull to the mid-thighs with arms up. Images were reconstructed using a
Point Spread Function (PFS), with 3 iterations and 21 subsets. Attenuation correction was
performed using simultaneously acquired low-dose CT scans. Additionally, scatter and
random corrections were performed. The reconstructed PET images had a matrix size of
168 × 168 and voxel size of 4.07 × 4.07 mm.

2.3. Image Analysis

Segmentation of the primary tumors was performed using the LIFEx v6.30 software
(https://www.lifexsoft.org (accessed on 9 February 2024) [27]. An initial volume encom-
passing the whole tumor was manually drawn on the [18F]FDG PET images according to
clinical data. Images were read by an experienced nuclear medicine physician (example
in Figure 2). Specifically, the SUVmax from the corresponding initial clinical records was
used to distinguish the primary lesion from secondary lymph nodes. The segmentation
of the tumor, i.e., the primary lesion, was computed applying a threshold of 41% of the
SUVmax inside the previously drawn volume [28], obtaining the volume of interest (VOI).
LIFEx was set up using the following input parameters for calculation of textural features:
64 gray levels for intensity discretization; and absolute resampling between a minimum of
0 and a maximum of 39 (the maximum SUV of the segmented VOIs for the whole study
cohort) for intensity rescaling [29]. A total of 48 features were extracted. These included 13
conventional parameters, 4 shape and size features, 6 second-order textural features (from
the gray-level co-occurrence matrix, GLCM), and 25 third and higher order textural features
(3 from the neighborhood gray-level different matrix, NGLDM; 11 from the gray-level run-
length matrix, GLRLM; and 11 from the gray-level zone-length matrix, GLZLM) [30–33].
Shape and size features include the MTV, Sphericity, Compacity, and Surface. Texture
indices were computed for each of the gray-level matrixes mentioned above.

2.4. Statistical Analysis

OS and Relapse-Free Survival (RFS) of oropharyngeal stage III and IV cancer patients
were analyzed for a follow-up period of 24 months. OS was defined as the time from the
date of diagnosis to date of death (all causes) or date of last contact. RFS was defined as the
time between the end of treatment (radiotherapy or surgery) date to the date of relapse,
date of cancer-specific death, or date of last contact. Patients in the database with disease
persistence were also included in RFS analysis, considering persistence as a relapse event
at the start of the survival analysis.

The optimal cut-off values of continuous variables to define high- and low-value sub-
groups in Kaplan–Meier analysis were obtained using the receiver operating characteristic
(ROC) and the closest-to-(0,1) criterion. Univariate survival rates (SRs) were calculated
using Kaplan–Meier analysis, using a log-rank test to compare between high and low
value subgroups, reporting the p-value. Association between features and survival (OS
and RFS) was also evaluated using univariate Cox proportional hazards regression analy-
sis. Statistically significant features in univariate analysis were included in a multivariate
Cox proportional hazards regression analysis, using the stepwise backwards conditional
regression model. The associated p-values and hazard ratio (HR) coefficients, with a 95%
confidence interval (CI), were computed. A p-value less than 0.05 was considered statisti-

https://www.lifexsoft.org
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cally significant. p-values were corrected for multiple testing with the false discovery rate
method by Benjamini–Hochberg. In addition, the univariate Cox proportional hazards
regression analysis, with the same criterion, was performed, adjusting each variable by
the HPV status to evaluate its importance in survival outcomes. Statistical analysis was
performed using SPSS software version 26.0 (IBM Corp.).
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Figure 2. Fifty-eight-year-old male with squamous cell carcinoma of the right tonsil, which is shown
to invade adjacent spaces of the oropharynx; especially significant is the invasion of muscular and
adipose tissue nearby. Moreover, the tumor causes a reduction of the airway diameter. Intense and
homogeneous [18F]FDG uptake is seen in all the malignant tissue as usually identified in these tumors.
PET-CT in this case was also used for radiotherapy planning and as a basal study for therapeutic
response in subsequent studies.

3. Results
3.1. Overall Survival Analysis

The 2-year OS was 69% for the entire study cohort. Results of OS univariate Kaplan–
Meier analyses of clinical characteristics and image features are summarized in Table 2 and
Figure 3. For Kaplan–Meier analysis, HPV-positive (SR: 92.3%) showed a better prognosis
of OS than HPV-negative (SR: 57%; p = 0.037). In the same way, cases with TLG (p = 0.029)
lower than the optimal cut-off resulted in a higher survival rate (SR: 82.4%) compared to
the high-value subgroup (SR: 50%). However, results were not statistically significant after
multiple-testing correction. OS curves are shown for clinical characteristics and SUVmax in
Figure 3.

Several textural and conventional features proved to be significant in predicting clinical
outcomes in OS (See Table 3). Firstly, TLG (HR = 1.006 (1.003–1.009), p = 0.001) was the most
significant parameter. Shape and size parameters such as MTV (HR = 1.075 (1.025–1.126),
p = 0.003), with the highest HR, and Surface (HR = 1.000 (1.000–1.001), p = 0.001) were also
significant features. Three textural parameters corresponding to the GLRLM and GLZLM
matrices were statistically significant. Nevertheless, none of the clinical features were
statistically significant. Additionally, a multivariate Cox analysis was computed, including



Appl. Sci. 2024, 14, 1454 6 of 13

only significant features in univariate analysis after multiple-testing correction. Only the
TLG was retained in the multivariate model (HR = 1.006 (1.002–1.009), p = 0.001).

Table 2. Univariate overall survival rates and log-rank tests for 2-year follow-up of relevant clinical
characteristics, SUVmax, and significant image features before multiple-testing correction by means of
the Benjamini–Hochberg procedure. No p-value was significant after multiple-testing correction.

Optimal Cut-off Value Survival Rate (%) p-Value (Log-Rank Test)

HPV
Negative (−) 57.0

0.037Positive (+) 92.3

Tumor stage III -
0.100IV 63.2

Location
Non-Tonsils 73.0

0.553Tonsils 65.0

Smoker
Smoker 66.3

0.270Non-Smoker -

SUVmax
<21.82 74.8

0.325≥21.82 60.0

TLG
<122.29 82.4

0.029≥122.29 50.0
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Table 3. Cox regression analyses for overall survival for 2-year follow-up of relevant clinical char-
acteristics and significant image features. * Statistically significant p-value after multiple-testing
correction by means of Benjamini–Hochberg procedure. RLNU: run-length non-uniformity; GLNU:
gray-level non-uniformity; ZLNU: zone-length non-uniformity.

Univariate Multivariate

HR (95% CI) p-Value HR (95% CI) p-Value

HPV 0.152 (0.020–1.182) 0.072
Tumor stage 27.519 (0.049–1.559 × 105) 0.305

Location 1.410 (0.447–4.442) 0.558
Smoker 23.267 (0.004–1.348 × 105) 0.477
SUVmax 1.037 (0.981–1.096) 0.199

TLG 1.006 (1.003–1.009) 0.001 * 1.006
(1.002–1.009) 0.001

MTV 1.075 (1.025–1.126) 0.003
Surface 1.000 (1.000–1.001) 0.001 *

GLRLM RLNU 1.002 (1.000–1.003) 0.043
GLZLM GLNU 1.069 (1.005–1.137) 0.033
GLZLM ZLNU 1.017 (1.005–1.030) 0.007

For HPV status adjustment, two more variables were significant in predicting clinical outcome in OS (Skewness
(HR = 0.141 (0.022–0.906), p = 0.039) and Entropy (28.669 (1.726–476.315), p = 0.019)), resulting in six variables
with better results than those non-adjusted by HPV Cox regression (see Table 4). However, TLG (HR = 1.005
(1.002–1.009), p = 0.002), with worse results than those obtained in the previous analysis, was still the most
significant variable. In addition, these results showed no significant variables after multiple-testing correction by
means of the Benjamini–Hochberg procedure.

Table 4. Cox regression analyses for overall survival for 2-year follow-up of relevant clinical charac-
teristics and significant image features adjusted for the HPV status variable before multiple-testing
correction by means of the Benjamini–Hochberg procedure. No p-value was significant after multiple-
testing correction. Tumor stage is not included due to non-convergence.

Univariate

HR (95% CI) p-Value

Location 1.446 (0.459–4.556) 0.529
Smoker 157,042.285 (0.000–) 0.986
SUVmax 1.038 (0.989–1.088) 0.129

Skewness 0.141 (0.022–0.906) 0.039
TLG 1.005 (1.002–1.009) 0.002
MTV 1.068 (1.019–1.119) 0.006

Surface 1.000 (1.000–1.001) 0.005
GLCM_Entropy 28.669 (1.726–476.315) 0.019
GLRLM_RLNU 1.002 (1.000–1.003) 0.038
GLZLM_GLNU 1.065 (1.003–1.130) 0.039
GLZLM_ZLNU 1.018 (1.006–1.030) 0.004

3.2. Relapse-Free Survival Analysis

The 2-year RFS was 41.0% for the study cohort, including those with tumor persistence
as relapse cases. In the same way as in OS analysis (see Table 2), HPV and TLG turned out
to be significant features in RFS Kaplan–Meier analysis (see Table 5). The most important
clinical feature is the HPV status (p = 0.023), being a prognostic indicator of higher RFS
in HPV-positive patients (SR: 45.5% in positive subgroup versus SR: 84.6% in negative
subgroup). Additionally, four texture and two shape features were found to be statistically
significant predictors of RFS, with ZLNU being the best indicator. For ZLNU (p = 0.001)
the longer relapse-free survival is related to lower values (SR: 78.4%) rather than higher
values (SR: 26.7%). For Surface (p = 0.004), the best prognosis is related to lower values (SR:
82.1%) rather than high values (SR: 38.1%), and for MTV (p = 0.006) a better prognosis is
related to lower values (SR: 78.9%) rather than higher values (SR: 36.8%). While the results
were statistically significant before multiple-testing correction, only ZLNU was significant
afterwards. The RFS curves of relevant clinical features are shown in Figure 4.
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Table 5. Univariate relapse-free survival rates and log-rank tests for 2-year follow-up of relevant
clinical characteristics and significant image features. * Statistically significant p-value after multiple-
testing correction by means of the Benjamini–Hochberg procedure.

Optimal Cut-off Value Survival Rate (%) p-Value (Log-Rank Test)

HPV
Negative (−) 45.5

0.023Positive (+) 84.6

Tumor stage III 83.3
0.220IV 54.2

Location
Non-Tonsils 56.8

0.869Tonsils 60.0

Smoker
Smoker 55.1

0.165Non-Smoker -

SUVmax
<25.75 69.5

0.177≥25.75 50.0

TLG
<176.36 80.9

0.010≥176.36 40.9

MTV
<11.22 78.9

0.006≥11.22 36.8

Surface
<4286.06 82.1

0.004≥4286.06 38.1
GLCM

Entropy
<2.11 73.0

0.023≥2.11 37.5
NGLDM
Busyness

<0.26 80.0
0.040≥0.26 45.0

GLZLM
GLNU

<14.11 71.8
0.047≥14.11 41.2

GLZLM
ZLNU

<75.13 78.4
0.001 *≥75.13 26.7
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Figure 4. Kaplan-Meier curves of RFS for 2-year follow-up. Relevant clinical features are shown.
(a): HPV; (b): tumor stage; (c): tumor location; (d): SUVmax. The Kaplan-Meier curve for smokers is
not included due to the lack of representativeness of the non-smoker group.
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In the case of RFS Cox regression analysis (See Table 6), three shape features and one
texture feature were statistically significant predictors of RFS, with the most significant
being TLG (HR = 1.003 (1.000–1.006), p = 0.026) and Surface (HR = 1.000 (1.000–1.000),
p = 0.028). The multivariate analysis was not performed, considering that no feature re-
mained statistically significant after multiple-testing correction in univariate Cox regression
analysis.

Table 6. Cox regression analysis for relapse-free survival for 2-year follow-up of relevant clinical
characteristics and statistically significant image features. No p-value was significant after multiple-
testing correction.

Univariate

HR (95% CI) p-Value

HPV 0.243 (0.055–1.077) 0.063
Tumor stage 2.934 (0.387–22.200) 0.298

Location 0.930 (0.349–2.480) 0.884
Smoker 23.320 (0.011–4.73 × 104) 0.418
SUVmax 1.017 (0.962–1.074) 0.560

TLG 1.003 (1.000–1.006) 0.026
Sphericity 0.002 (0.000–0.605) 0.033

Surface 1.000 (1.000–1.000) 0.028
GLZLM ZLNU 1.011 (1.001–1.022) 0.031

After the adjustment for the HPV status variable, none of the characteristic proved to be significant in predicting
clinical outcome in RFS (see Table 7). However, both tumor stage (HR = 3.624 (0.484–27.127), p = 0.210) and
SUVmax (HR = 1.019 (0.974–1.067), p = 0.407) resulted in better p-values.

Table 7. Cox regression analyses for relapse-free survival for 2-year follow-up of relevant clinical
characteristics and significant image features adjusted for the HPV status variable before multiple-
testing correction by means of the Benjamini–Hochberg procedure. No p-value was significant after
multiple-testing correction.

Univariate

HR (95% CI) p-Value

Tumor stage 3.624 (0.484–27.127) 0.210
Location 0.973 (0.412–2.295) 0.949
Smoker 6.883 × 105 (0.000–) 0.987
SUVmax 1.019 (0.974–1.067) 0.407

4. Discussion

New cancer treatment techniques are currently being studied to improve patient
survival [34–36]. However, the same technique may have different results in patients
diagnosed with the same cancer. For this reason, studying the possible therapeutic strategies
based on the clinical and image characteristics of the patient at the time of diagnosis is a
matter of great importance. In this study, cancer lesions from [18F]FDG PET/CT images of
patients with oropharyngeal cancer are analyzed to assess the predictive value of clinical,
quantitative, and textural features, assessing OS and RFS over a 2-year follow-up period.
Concretely, 48 parameters are extracted, including 13 conventional parameters, 4 shape and
size features, and 31 textural features. Kaplan–Meier curves and Cox proportional hazards
regression analyses are computed.

This study evidences the importance of HPV status for the prognosis of oropharyngeal
cancer for OS and RFS. In this study, Kaplan–Meier curves for OS and RFS showed that
HPV-negative diagnosis is related to poorer outcomes. However, future clinical trials
should include a greater variety of patients in order to further study the implications of
HPV status. This fact suggests that within the group of patients who respond satisfactorily,
the vast majority achieve a sustained response, with low rates of relapse. As shown
in Kaplan–Meier curves, several retrospective studies have demonstrated that patients
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with HPV-positive status have a better prognosis than patients with HPV-negative status,
especially those patients with oropharyngeal carcinoma. This is due to the fact that HPV-
positive cases are identified as a tumor entities with different biological, pathological, and
clinical features [37,38]. Consequently, a better OS and RFS is expected in these patients.

The fact that most of our cohort are stage IV (84.64%) may explain the low rates of
OS and RFS, along with the inclusion of tumor persistence as relapse cases. Nevertheless,
the Kaplan–Meier curve for the entire study cohort shows that no relapse occurs after
20 months from the end of treatment (radiotherapy or radiotherapy plus surgery), which
suggests that within the group of patients who respond satisfactorily, the vast majority
achieve a sustained response, with low rates of relapse.

Most patients in our database are smokers (92.31%), which hinders finding differences
between smokers and non-smokers in terms of survival, as well as differences between
HPV-positive and HPV-negative smokers. Nevertheless, various studies have evidenced
that HPV-positive patients with a smoking history have worse treatment outcomes and an
increased risk of death. The specific impact of tobacco remains unknown, but it could have
an effect by inducing additional genetic alterations or, indeed, provoking other disorders
such as cardiac or respiratory diseases [38,39].

As well as HPV, other clinical features are evaluated for survival analysis. Tumor stage
and localization are important features to characterize the tumor obtaining high HR for
every analysis, but no statistically significant relationship to survival rates was observed.
On the other hand, greater values of some quantitative features, such as SUVmax, TLG, and
MTV, are in all cases related to a poorer prognosis [2,3]. Nonetheless, volumetric features
(MTV and TLG) turn out to be better predictors than SUV measures. The prognostic value
of TLG can be highlighted, with higher values being related to lower survival rates in
Kaplan–Meier (p = 0.029) and Cox regression analyses (p = 0.001) for OS. TLG demonstrated
a prognostic value in RFS analysis as well, being related to higher relapse rates in Kaplan–
Meier (p = 0.010) and Cox regression analyses (p = 0.026). It is worth mentioning that
Surface resulted in a great prognostic feature in the OS Cox regression analysis (p = 0.001),
being, along with TLG, the unique feature that remained statistically significant after
multiple-testing correction. This shape feature also was a statistically significant predictor
for RFS Kaplan–Meier (p = 0.004) and Cox regression (p = 0.028) analyses, with higher
values related to poorer prognosis.

Although several studies have demonstrated the utility of SUV metrics as well as
metabolic features such as TLG and MTV to predict clinical outcomes in head and neck
cancer [3,7,10], they do not reflect information of intratumoral heterogeneity. Spatial distri-
bution of metabolic activity in the tumor can be evaluated through textural image features
describing spatial relationships between pixel intensities [8,14,15]. Recent studies have
shown the potential of texture analysis to reveal intratumoral heterogeneity, which can lead
to poor prognosis in head and neck cancer [8,17,18]. Our analyses suggest heterogeneity
patterns with respect to gray-level non-uniformity matrixes (GLRLM and GLZLM).

Cox regression analyses for 2-year OS showed that gray-level texture indices
(GLRLM_RLNU, GLZLM_GLNU and GLZLM_ZLNU) result in poorer prognosis for
higher values of these indices. This fact is reflected by means of the HR for these image
features (GLRLM_RLNU, HR = 1.002 (1.000–1.003), p = 0.043; GLZLM_GLNU, HR = 1.069
(1.005–1.137), p = 0.033; GLZLM_ZLNU, HR = 1.017 (1.005–1.030), p = 0.007). Addition-
ally, RFS Cox regression analysis revealed higher relapse rates for higher values of GL-
ZLM_ZLNU (HR = 1.011 (1.001–1.022), p = 0.031). As mentioned, recent studies have
supported the assumption of higher intratumoral heterogeneity being related to poorer
outcomes [8,17,18]. Specifically, these three textural features have also been found to be
prognostic factors in head and neck cancer by previous studies [13,19,20]. This premise
is reinforced in univariate RFS analysis. Log-rank tests for 2-year follow-up reflect differ-
ences in RFS rates for zone-length non-uniformity (GLZLM_ZLNU) (p = 0.001), with the
better prognosis related to lower values (SR: 78.4% vs. SR: 26.7%, low- and high-value
subgroups, respectively), i.e., higher intratumoral heterogeneity means poorer progno-
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sis. RFS Kaplan–Meier results remained statistically significant after multiple-testing
correction. Additional textural features were statistically significant in RFS Kaplan–Meier
(GLCM_Entropy, p = 0.023; NGLDM_Busyness, p = 0.040; GLZLM_GLNU, p = 0.047) anal-
ysis. However, this may be due to the small size of the cohort; these results were not
statistically significant after multiple-testing correction. Cox regression analyses adjusted
by HPV status did not demonstrate the influence of HPV in the outcomes of OS or RFS,
since the results showed that some variables are influenced by this factor, obtaining lower
p-values, while others are not, making it no longer significant. Further studies involving
greater cohorts are needed to prove these findings. Limitations of this study include a small
cohort of patients, considering that 7 patients out of the 46 total subjects were excluded
due to tumor stage or size. In addition, the database is unbalanced (36 male and 3 female,
36 smokers and 3 non-smokers, and 26 HPV-negative and 13 HPV-positive). Therefore, no
differences between smokers and non-smokers, nor differences between HPV-positive and
HPV-negative smokers, could be evaluated. Another limitation is the number of radiomic
features analyzed, as other studies evaluate hundreds of characteristics, such as in [12,25],
while this study is limited to the LIFEx feature extraction. In addition, only survival and
univariate analyses are performed, while machine learning models were developed pre-
viously by other authors [40,41]. For future works, it is proposed to analyze a larger and
more balanced (sex, smoker, and HPV status) database and a larger group of radiomic
characteristics, also by using machine learning models.

5. Conclusions

[18F]FDG PET/CT is a non-invasive imaging modality that can provide valuable infor-
mation about tumor metabolic activity. [18F]FDG PET image quantification has been widely
used for head and neck cancer assessment. TLG turns out to be a strong predictor for
prognosis in our patient population. Textural indices seem to be a promising tool in onco-
logical management. Several gray-level matrix textural features have shown to be possible
predictors of poorer clinical outcomes in our analyses (GLRLM_RLNU, GLZLM_ZLNU
and GLZM_GLNU).
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