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Abstract: Photon counting has been proven to possess excellent signal detection capabilities at low
power levels and has extensive potential applications in sixth-generation (6G) communications.
However, the inherent dependency between the signal and noise complicates system analysis, and
optimizing achievable rates in photon-counting visible light communication (VLC) systems remains
unresolved. This paper introduces a new method aimed at minimizing multi-user interference
(MUI) through a zero-forcing (ZF) scheme and maximizing the weighted sum rate of the proposed
downlink multi-user photon-counting multiple-input multiple-output (MU-PhC-MIMO) VLC system
by solving an optimization problem. The key point lies in our utilization of the ZF approach to derive
a reasonable asymptotic approximation expression for the weighted sum rate. Subsequently, we
use variable substitution and methods like successive convex approximation (SCA) to iteratively
convexify the non-convex optimization problem and maximize the weighted sum rate under the ZF
form. Compared to other algorithms, this approach can save 2.5 dB of transmission power to achieve
the same system-weighted sum rate and significantly outperforms the repetition coding scheme at
sufficient transmission power.

Keywords: visible light communication; multi-user; photon counting; Poisson shot noise; precoding

1. Introduction

Visible light communication (VLC) serves as a beneficial complement to radio fre-
quency (RF) communication [1], offering the potential to address the scarcity of spectrum
resources in RF communication and thereby alleviate pressure on wireless communication
networks. Recently, VLC has gained immense traction because of its low cost, low power
consumption, and license-free indoor applications in the context of sixth-generation (6G)
communication systems [2]. In VLC systems, indoor wireless data are transferred over the
optical spectrum using intensity modulation/direct detection (IM/DD) [3]. Light-emitting
diodes (LEDs) serve dual purposes for both lighting and data transmission, while photode-
tectors (PDs) are used to detect the transmitted data [4]. Currently, to enhance the perfor-
mance of indoor communication systems, numerous LEDs and PDs are deployed within
indoor environments, forming multiple-input multiple-output (MIMO) VLC systems.

Photon-counting technology exhibits excellent capabilities in detecting optical sig-
nals. When the communication system operates at low power [5], particularly in power-
constrained IoT applications, this advantage becomes even more prominent. In such
scenarios, traditional optical communication receivers struggle to operate effectively in
the presence of extremely weak light. However, the photon-counting receiver utilizes the
principle of photon counting and high-sensitivity detectors to achieve reliable optical signal
reception and decoding at extremely low optical power levels. We delve into a more micro-
scopic perspective, considering light as being composed of discrete particles called photons.
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In the traditional field of optical communications, scholars primarily focus on communi-
cation system models affected by additive white Gaussian noises (AWGNs). In contrast,
photon counting introduces quantum effects due to the discrete nature of light signals,
resulting in Poisson shot noises [5], which are signal-dependent. Typically, the photon-
counting process can be characterized by two independent parameters [6]—the background
radiation and the expected average signal value—and we refer to it as a Poisson count-
ing process (PCP) [5]. This process exhibits non-linear characteristics, posing significant
challenges to the analysis and optimization of photon-counting communication systems.

The achievable rate is a critical metric in communication systems, as it directly impacts
the efficiency and performance of communication. This metric is equally important and
worth researching in photon-counting VLC systems. In MIMO systems, alleviating multi-
user interference (MUI) and enhancing achievable rates is typically achieved by using
precoding techniques at the transmitter. However, this is not straightforward for photon-
counting MIMO VLC systems, as the inherent correlation between the signal and noise
in the PCP leads to a fundamental change in the expression of the rate, rendering the
classic Shannon formula inapplicable to photon-counting systems. Moreover, this signal-
dependent shot noise exhibits non-linear characteristics, posing significant challenges to the
analysis and optimization of photon-counting communication systems. This also implies
that the mature precoding techniques in MIMO VLC systems in AWGN channels are not
applicable in photon-counting systems.

1.1. Related Works

Most research on multi-user VLC systems currently concentrates on mitigating MUI [7].
Various precoding strategies have been devised to achieve specific goals, such as mini-
mizing the maximum mean square error (MSE) [7], maximizing the minimum signal-to-
interference-plus-noise ratio (SINR) [8], and optimizing the maximum achievable sum rate
of the systems [9].

Currently, the design of precoding schemes in VLC systems predominantly focuses
on the linear design part due to its ease of operation [10–17]. Shen et al. [10] introduced
a precoding design based on maximizing the rates of multi-user multiple-input single-
output (MISO) VLC systems. Subsequently, they expanded this non-alternating method
to optimize robust minimum mean square error (MMSE) precoding [11]. According to
the characteristics of multi-user scenarios, Máximo et al. [12] proposed the selectivity of
the receiving angle for each user. Then, they combined this with a linear zero-forcing
(ZF) precoding scheme to further enhance the system’s performance. By capitalizing on
LED characteristics and block diagonalization precoding (BDP) technology, Zhao et al. [13]
designed a weighted-adjustment block diagonalization precoding (WA-BDP) scheme for
multi-user MIMO VLC systems. They further introduced spatial dimming (SD) built
on LED selection and proposed an SD-WA-BDP scheme, maximizing LED utilization
for simultaneous illumination and communication purposes. Ma et al. [14] investigated
the development of linear coordinated precoding strategies to enable coordinated multi-
point (CoMP) communication in VLC networks. Sifaou et al. [15] studied the robust joint
design of transmission precoders and reception filters for multi-user MIMO VLC systems,
aiming to maximize the minimum SINR. Later, Zhao et al. [16] optimized these robust
transmission precoders to maximize the sum capacity under worst-case scenarios. Based on
the properties of Farey sequences, Wang et al. [17] proposed an optimal precoding scheme
designed for multi-user MISO VLC systems, accounting for dual constraints related to
illumination and communication.

There has also been extensive research on nonlinear precoding designs [18–20]. Com-
pared to linear precoding schemes, nonlinear precoding incurs higher energy consumption
and complexity but achieves higher signal-to-noise ratios (SNR). Yu et al. [18] proposed ZF
dirty-paper coding to attain the maximum channel capacity in MIMO systems, whereas
Kim et al. [19] introduced Tomlinson–Harashima precoding (THP) to reduce complexity.
Wang et al. [20] developed a successive interference cancellation (SIC)-based precoding
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scheme with sub-connected architecture (SIC-SA) to address severe MUI issues in MIMO
VLC systems.

In addition to the research on precoding design in IM/DD MISO or MIMO VLC sys-
tems, there has been extensive research on multi-carrier VLC systems to achieve improved
spectral efficiency [21,22]. Feng et al. [21] proposed a spatial modulation scheme based on
ZF and MMSE precoding for indoor MU-MIMO orthogonal frequency-division multiplex-
ing (OFDM) VLC systems using direct current bias. After incorporating their designed
transmit antenna selection algorithm, the results demonstrated significant improvements
over traditional modulation schemes. Wang et al. [22] focused on each subcarrier of OFDM
and used a complex channel matrix in the frequency domain to calculate the corresponding
precoding matrix, aiming to eliminate inter-user interference. The results demonstrated the
superiority of frequency domain-based precoding algorithms in scenarios with low light
power and close user distances.

However, current analyses of MIMO VLC systems mainly rely on AWGN channel
models, which are not appropriate for photon-counting VLC systems. This is because the
AWGN channel models fail to capture the correlation between the signal and noise. In
photon-counting VLC systems, especially in situations where the received signal intensity
is weak, this correlation becomes notably significant. Ge et al. [5] proposed an alternating
optimization algorithm based on the MMSE criterion for photon-counting MIMO ultraviolet
(UV) light systems. This algorithm achieves the joint design of precoders and equalizers.
Arya et al. [23] proposed an MMSE receiver to mitigate MUI in a Poisson channel-based
multi-user indoor communication system employing UV light. They employed a second-
order cone program to create a downlink beamformer.

To the best of our knowledge, there has not yet been a specific analysis regarding the
sum rates of multi-user, photon-counting MIMO (MU-PhC-MIMO) VLC systems affected
by Poisson shot noises. To address this gap, we examine the weighted sum rate of MU-PhC-
MIMO VLC systems in the presence of Poisson shot noises and devise a novel ZF-based
precoding algorithm to optimize the weighted sum rate.

1.2. Contributions

We present a novel method to optimize the weighted sum rate of an MU-PhC-MIMO
VLC system in the presence of Poisson shot noises. This is accomplished by utilizing a
ZF-based approach to mitigate MUI and approximate the system’s weighted sum-rate
expression and then using a sequence of convexification processes to iteratively optimize
the weighted sum rate of the system based on this approximation. This paper’s primary
contributions can be outlined as follows:

• This paper derives the expression for the weighted sum rate of an MU-PhC-MIMO
VLC system based on the definition of mutual information. Additionally, it provides
an approximate expression for the proposed system’s weighted sum rate under the
minimized MUI, which is obtained utilizing a ZF approach.

• We propose a new optimization problem targeting the precoding matrix, aiming to
maximize the weighted sum rate of the proposed MU-PhC-MIMO VLC system while
minimizing MUI using the aforementioned ZF scheme.

• A novel sub-algorithm is developed to address the updated problem by employing
variable substitution and successive convex approximation (SCA). After the analysis,
this sub-algorithm is expected to converge to a robust solution that meets the Karush–
Kuhn–Tucker (KKT) conditions. Afterward, by utilizing this sub-algorithm to traverse
through all feasible scenarios, we can eventually obtain the optimal solution for the
entire optimization problem.

• We also introduce a low-complexity alternative algorithm that achieves results close
to those of the exhaustive algorithm. However, it significantly reduces discussions
about possibilities, thereby reducing the algorithm’s complexity from exponential to
polynomial levels.
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Extensive simulations illustrate that the proposed algorithms can save the system
2.5 dB of transmit peak power compared to the classic ZF precoding scheme at low transmit
power. At high transmit power, the sum rate of our system significantly surpasses that
of the repetition coding scheme. Both of the proposed algorithms exhibit nearly identical
performance. Furthermore, we show that increased active LEDs and lower DC bias power
can further enhance system performance.

The structure of the remainder of this paper is as follows. In Section 2, we introduce
the proposed MU-PhC-MIMO VLC system and give the system’s framework. In Section 3,
we analyze the weighted sum rate of the MU-PhC-MIMO VLC system and provide an
asymptotic approximation of the weighted sum rate based on the ZF scheme. We outline
the problem under consideration and describe the proposed algorithms in Section 4. In
Section 5, we present the outcomes of our simulations. Finally, we summarize this paper in
Section 6.

Notations: R denotes the set of real numbers; R+ denotes the set of positive real
numbers; lowercase bold type indicates column vectors; uppercase bold type indicates
matrices; (·)T signifies transpose; | · | signifies absolute value; ∥ · ∥p signifies the p-norm,
where p = 1, 2, · · · , ∞; log2(·) represents a logarithm with base 2; ln(·) represents a
natural logarithm with base Euler’s number; Pr(·) stands for probability; Pr(·|·) stands for
conditional probability; and Pr(·, ·) stands for joint probability.

2. System Model and Assumptions

In this paper, we investigate a downlink MU-PhC-MIMO VLC system, the specific
block diagram of which is fully described in Figure 1. The transmitting end comprises a
device, which has N LED arrays. The entire system caters to K users, each equipped with a
single PD. We use the identifier Userk to represent the k-th user, where k = 1, · · · , K.

Figure 1. Schematic diagram of the proposed downlink MU-PhC-MIMO VLC system.

2.1. Transmitter

Due to its ease of implementation and theoretical analysis, on-off keying (OOK)
modulation has found widespread application in the domain of optical communication.
In our system, we employ OOK modulation to process the raw information and obtain
the initial signal for the system. Let Sk denote the modulated data that the transmitter
needs to send to Userk, whereas the corresponding S = [S1, · · · , SK]

T denotes the data
vector that the transmitter needs to send to all users. We assume that OOK modulation is
equiprobable, with Sk ∈ {−1, 1} and Pr(Sk = 1) = Pr(Sk = −1) = 1

2 . The analysis and
algorithms developed in this paper can be easily extended to other modulation methods,
such as M-PAM, but require more complex analysis and higher computational complexity.

The symbol S undergoes a linear transformation through a precoding matrix
W ∈ RN×K. The aim is to facilitate collaboration among multiple users, utilizing the
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same temporal resources for communication tasks and mitigating interference among users
to a certain extent. We introduce the constraint ∥W∥∞ ≤ 1 for matrix W to ensure that the
designed precoding matrix is normalized.

Subsequently, the data are modulated into a current quantity, IS = [IS,1, · · · , IS,N ] ∈
RN×1, without DC bias. IS can be calculated from S, W , and Λ, i.e., IS = ΛWS =
Λ ∑K

k=1 wkSk, where Λ ∈ R+ represents the parameter for current modulation [24], and
wk represents the k-th column of matrix W . To ensure that all data within the IM remain
non-negative, we need to add DC biases, denoted as Id = [Id,1, · · · , Id,N ]

T ∈ RN×1, after
IS. Finally, the emitted current signal ITx ∈ RN×1 can be expressed as:

ITx = IS + Id = Λ
K

∑
k=1

wkSk + Id. (1)

Ultimately, through optical modulation, we can obtain the transmitted optical signal
vector P ∈ RN×1, defined as follows:

P = UΛ
K

∑
k=1

wkSk + UId = Ps

K

∑
k=1

wkSk + UId, (2)

where U represents the voltage parameter, and we define Ps = UΛ as the peak transmit
power per symbol.

2.2. Channel Model

In the environment of indoor VLC systems, line-of-sight (LOS) links constitute a
significant portion of the signal power [25]. For simplicity’s sake, this paper primarily
focuses on discussing channel conditions within LOS links. We use gk ∈ RN×1, ∀k to denote
the channel vector between the LED arrays and Userk, denoted as gk = [g1,k, · · · , gN,k]

T , ∀k.
The channel gain gi,k from the i-th LED to the k-th user can be obtained using the Lambertian
model [26], defined as follows

gi,k =

{
(κ+1)Ar

2πl2
i,k

T(ψi,k)G(ψi,k) cosκ(φi,k) cos(ψi,k), if
∣∣ψi,k

∣∣ ≤ ψFoV;

0, if
∣∣ψi,k

∣∣ > ψFoV,
(3)

where Ar represents the receiving area of the PD; li,k is the straight-line distance from
the i-th LED to Userk; φi,k, ψi,k, and ψFoV denote the emission angle starting from the
transmitter axis, the reception angle starting from the receiver axis, and the field-of-view
(FOV) angle of the PD, respectively; T(ψi,k) refers to the gain of the optical filter; and
κ = − ln 2

ln(cos(φ1/2))
denotes the Lambertian radiation order, which is determined by the

half-irradiance semi-angle φ1/2. G(ψi,k) represents the light concentrator’s gain and is
denoted by:

G(ψi,k) =

{
o2

sin2(ψFoV)
, if

∣∣ψi,k
∣∣ ≤ ψFoV;

0, if
∣∣ψi,k

∣∣ > ψFoV,
(4)

where o is the reflective index.
In this paper, we assume that the transmitter has perfect channel state information

(CSI) for all users. This assumption is deemed reasonable in VLC systems, as users’
positions and channel parameters can be reliably obtained. Keskin et al. [27] proposed a
receiver localization algorithm to acquire receiver position information. In scenarios where
environmental factors such as temperature, atmospheric turbulence, lighting, reflections,
shadowing, and other factors impact the communication channel and the background
radiation, relying solely on user location information may introduce biases in the CSI.
However, both the intensity of background radiation and the channel parameters can
be determined through pilot-based measurements or other effective channel estimations.
These techniques can help mitigate the effects of environmental factors and provide accurate
CSI and the intensity of background radiation. Regarding channel parameter estimation,
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various algorithms, such as least squares [28], statistical Bayesian MMSE [29], and neural
networks [30], can be utilized to estimate channel interference and provide feedback to
the transmitter.

2.3. Receiver

Utilizing the photoelectric effect [31], photons detected by a PD can be converted into
electrons. We denote τ as the duration of each symbol. Within a τ slot, the electron count
received by Userk is represented as Yk, ∀k. Given the characteristics of photon counting, this
process is a probabilistic measurement process [31] following a Poisson distribution [32].
The conditional probability density function (PDF) of this process is expressed as follows:

Pr(Yk = yk | S = s) =
(λk)

yk

yk!
exp(−λk), (5)

where yk = 0, 1, · · · , ∞, ∀k refers to an integer that is non-negative, representing the possible
received count, and the vector s denotes the possible realization of S, encompassing 2K

possibilities. λk represents the average photon count received at Userk, which can be
obtained by

λk = ζ
gT

k Pτ

h̄v
+ nb = ζ

gT
k (PsWS + UId)τ

h̄v
+ nb = ζgT

k (nsWS + d) + nb. (6)

where h̄ = 6.626 × 10−34 J · s, ζ, and v represent the Planck’s constant, the quantum
efficiency of the photon-counting process, and the frequency of visible light, respectively.
Let Pb represent the incident background light power, whereas the average photon count
generated by background radiation within a single τ slot is denoted as nb = ζ Pbτ

h̄v . For ease
of expression, we denote the signal strength and bias strength as ns =

Psτ
h̄v and d = Uτ

h̄v Id,
respectively. Equation (6) is derived by substituting (2).

3. Rate Analysis of MU-PhC-MIMO VLC Systems

This section starts by analyzing the achievable rate for Userk, ∀k, deriving the corre-
sponding expression, and providing the expression for the weighted sum rate under the
scenario of K users. Additionally, we discuss an approximate expression for system rates
based on the ZF scheme.

3.1. Achievable Weighted Sum Rate

Starting from the fundamental definition of mutual information, we can obtain the
achievable rate Rk for Userk, ∀k as follows:

Rk = −
∞

∑
yk=0

Pr(Yk = yk)× log2(Pr(Yk = yk))+

∞

∑
yk=0

1

∑
sk=−1

Pr(Yk = yk, Sk = sk)× log2(Pr(Yk = yk | Sk = sk))

= −
∞

∑
yk=0

[
1

∑
sk=−1

Pr(yk | sk)× Pr(sk)

]
× log2

[
1

∑
sk=−1

Pr(yk | sk)× Pr(sk)

]
+

∞

∑
yk=0

1

∑
sk=−1

[
Pr(yk | sk)× Pr(sk)

]
× log2(Pr(yk | sk))

=
1
2

∞

∑
yk=0

1

∑
sk=−1

Pr(Yk = yk | Sk = sk)× log2
2 Pr(Yk = yk | Sk = sk)

∑1
sk=−1 Pr(Yk = yk | Sk = sk)

.

(7)

The first term in the second equality in (7) is derived from the law of total probability,
i.e., Pr(Yk = yk) = ∑1

sk=−1 Pr(Yk = yk | Sk = sk) × Pr(Sk = sk), and the second term is
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obtained using the multiplication rule in probability theory. The third equality in (7)
results from substituting Pr(Sk) = 1

2 and subsequent rearrangements. It can be found
from (7) that the achievable rate Rk of Userk is only related to the conditional probability
Pr(Yk = yk | Sk = sk), and according to (5), the conditional probabilities for Sk = −1 and
Sk = 1 can be obtained by

Pr(Yk = yk | Sk = −1)

= ∑
S1

· · · ∑
Sj,j ̸=k

· · ·∑
SK

Pr(Yk = yk | S = s)× Pr(S1)× · · · × Pr
(

Sj,j ̸=k

)
× · · · × Pr(SK)

=
1

2K−1 ∑
S1

· · · ∑
Sj,j ̸=k

· · ·∑
SK

(
−ζnsgT

k wk + ∑K
j=1,j ̸=k ζnsgT

k wkSj + ζgT
k d + nb

)yk

yk!
×

exp

(
−ζnsgT

k wk +
K

∑
j=1,j ̸=k

ζnsgT
k wkSj + ζgT

k d + nb

)
.

(8)

Similarly, we can obtain:

Pr(Yk = yk | Sk = 1)

=
1

2K−1 ∑
S1

· · · ∑
Sj,j ̸=k

· · ·∑
SK

(
ζnsgT

k wk + ∑K
j=1,j ̸=k ζnsgT

k wkSj + ζgT
k d + nb

)yk

yk!
×

exp

(
ζnsgT

k wk +
K

∑
j=1,j ̸=k

ζnsgT
k wkSj + ζnsgT

k d + nb

)
.

(9)

The first equality in (8) is derived from the chain rule of conditional probability
along with the definition of marginal probability, and the second equality in (8) results
from substituting (5) and (6) into the first equality in (8). For convenience, let us de-
note Pr(Yk = yk | Sk = −1) as ξk,1 and Pr(Yk = yk | Sk = 1) as ξk,2. Substituting (8) and (9)
into (7), we obtain

Rk =
1
2

∞

∑
yk=0

ξk,1 × log2
2ξk,1

ξk,1 + ξk,2
+

1
2

∞

∑
yk=0

ξk,2 × log2
2ξk,2

ξk,1 + ξk,2

=
1
2

∞

∑
yk=0

(ξk,1 + ξk,2) +
1

2 ln 2

∞

∑
yk=0

(ξk,1 × ln ξk,1 + ξk,2 × ln ξk,2)

− 1
2 ln 2

∞

∑
yk=0

(ξk,1 + ξk,2)× ln(ξk,1 + ξk,2)

= 1 +
1

2 ln 2

∞

∑
yk=0

(ξk,1 × ln ξk,1 + ξk,2 × ln ξk,2 − (ξk,1 + ξk,2)× ln(ξk,1 + ξk,2)).

(10)

The first equality in (10) breaks down (7) based on the potential values of Sk; the
second equality in (10) transforms the first equality in (10) using the logarithm base-change
rule and subsequent rearrangements; and the first component of the third equality in (10)
is derived from the law of total probability.
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Therefore, the system’s weighted sum rate can be represented as

Rall =
K

∑
k=1

µkRk

=
K

∑
k=1

µk

[
1 +

1
2 ln 2

∞

∑
yk=0

(ξk,1 × ln ξk,1 + ξk,2 × ln ξk,2 − (ξk,1 + ξk,2)× ln(ξk,1 + ξk,2))
]
,

(11)

where µk ≥ 0, ∀k is the weighting coefficient of Userk.

3.2. Approximate Expression Based on ZF Scheme

In this subsection, we discuss the approximate expression for system rates under
the ZF scheme, where interference between users can be eliminated as much as possible,
meaning ∑K

j=1,j ̸=k ζnsgT
k wkSj = 0. (8) and (9) can be re-expressed as

ξk,1 =

(
−ζnsgT

k wk + ζgT
k d + nb

)yk

yk!
exp

(
−ζnsgT

k wk + ζgT
k d + nb

)
;

ξk,2 =

(
ζnsgT

k wk + ζgT
k d + nb

)yk

yk!
exp

(
ζnsgT

k wk + ζgT
k d + nb

)
.

(12)

Even after substituting (12) into (11), the form remains complex and could hinder
subsequent optimization operations. Consequently, we derive a concise approximate
expression for (11), and the detailed process can be found in the proposition below.

Proposition 1. When nb ≥ 40, the asymptotic approximation expression of (7) is

R̃k = 1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,1

) +F ( nsgT
k wk√
λk,2

)

4 ln 2
, (13)

where λk,1 = −ζnsgT
k wk + ζgT

k d + nb, λk,2 = ζnsgT
k wk + ζgT

k d + nb and

F (
nsgT

k wk√
λk

) =
∫ +∞

−∞

exp

− (ϱ+
nsgT

k wk
2
√

λk
)2

2

+ exp

− (ϱ−
nsgT

k wk
2
√

λk
)2

2


√

2π
×

ln

exp

− (ϱ +
nsgT

k wk
2
√

λk
)2

2

+ exp

− (ϱ− nsgT
k wk

2
√

λk
)2

2


dϱ.

(14)

Proof of Proposition 1. See Appendix A.

According to (13), we obtain the asymptotic approximation expression for the weighted
sum rate of the MU-PhC-MIMO VLC system as follows:

K

∑
k=1

µkR̃k =
K

∑
k=1

µk

[
1− 1

2 ln 2
−
F ( nsgT

k wk√
λk,1

) +F ( nsgT
k wk√
λk,2

)

4 ln 2

]
. (15)

4. Maximization of Weighted Sum Rate Based on ZF Scheme

In this section, we investigate the maximization of the weighted sum rate of the
proposed MU-PhC-MIMO VLC system based on the analysis in Section 3.2, using the
ZF scheme. We begin by outlining the problem statement and endeavor to transform it
into an equivalent convex problem. Then, we summarize the entire algorithm’s process,
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analyze its computational complexity, and attempt to consider reasonable simplifications
for the algorithm.

4.1. Problem Statement

In this paper, we take R̃all = ∑K
k=1 µkR̃k as our optimization objective, aiming to

maximize the system’s weighted sum rate based on the ZF scheme by designing the
precoding matrix W . Specifically, the optimization problem can be described as

1 : max
W

K

∑
k=1

µk

[
1− 1

2 ln 2
−
F ( nsgT

k wk√
λk,1

) +F ( nsgT
k wk√
λk,2

)

4 ln 2

]
s.t. C1: ns

K

∑
k=1

wkSk + d ≽ 0,

C2: ns

K

∑
k=1

wkSk + d ≼
Pmaxτ

h̄v
1,

C3: ∥W∥∞ ≤ 1,

C4: gT
k wj = 0, ∀j ̸= k, ∀j, k = 1, · · · , K,

C5: λk,1 = −ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C6: λk,2 = ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

(16)

where “≽” and “≼” denote element-wise inequalities, and 0 and 1 represent N-dimensional
column vectors with elements all being 0 and 1, respectively. To sustain a linear conversion
from current to light, P in (2) must be limited to the range [0, Pmax], where Pmax represents
the maximum transmit power that the LED array can withstand. Correspondingly, C1
signifies the non-negativity requirement, and C2 represents the upper limit on the transmit
power. C3 is derived from the requirement for normalized precoding design. C4 is obtained
from the content in Section 3.2, which aims to ensure the utilization of ZF in our approach,
without excluding the utilization of a pseudo-inverse approach. C5 and C6 represent the
mean values of the Poisson distribution when SK is 1 or −1, respectively.

4.2. SCA ZF-Based Precoding Design Solution

The objective of Problem P1 is complex and non-concave, and the constraints also
exhibit uncertainty, making the entire problem a complex and challenging non-convex
optimization problem. Below we employ methods such as variable substitution and SCA
to transform Problem P1 equivalently, deriving an effective approach to solve it.

Constraints C1 and C2 are uncertain due to the inclusion of a random signal Sk, ∀k,
but considering Sk ∈ {1,−1}, ∀k, we can replace C1 as

ns

K

∑
k=1
|wk| − d ≼ 0. (17)

After this processing, C1 no longer depends on the values of Sk, ∀k, as they apply
universally across all Sk, ∀k scenarios. Moreover, this transformation ensures the convexity
of the constraint, which is advantageous for the subsequent solving steps. Similarly, we
can rewrite C2 as

ns

K

∑
k=1
|wk|+ d ≼

Pmaxτ

h̄v
1. (18)
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The objective of Problem P1 involves nested functions, making it challenging to
handle. Here, we use variable substitution and introduce two sets of auxiliary variables γk,1,
∀k and γk,2, ∀k for processing. At this point, Problem P1 can be restated as Problem P2.

P2 : max
W

K

∑
k=1

µk

[
1− 1

2 ln 2
−
F (γk,1) +F (γk,2)

4 ln 2

]
s.t. C1: ns

K

∑
k=1
|wk| − d ≼ 0,

C2: ns

K

∑
k=1
|wk|+ d ≼

Pmaxτ

h̄v
1,

C3: ∥W∥∞ ≤ 1,

C4: gT
k wj = 0, ∀j ̸= k, ∀j, k = 1, · · · , K,

C5: λk,1 = −ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C6: λk,2 = ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C7: − |
nsgT

k wk√
λk,1

| ≤ γk,1 ≤ |
nsgT

k wk√
λk,1

|, ∀k = 1, · · · , K,

C8: − |
nsgT

k wk√
λk,2

| ≤ γk,2 ≤ |
nsgT

k wk√
λk,2

|, ∀k = 1, · · · , K,

(19)

where C7 and C8 are derived from the equivalence after variable substitution, and the | · |
is considered due to the potential positivity or negativity of nsgT

k wk.

Proposition 2. The optimal solution for ’gT
k wk’ must indeed be non-negative.

Proof of Proposition 2. See Appendix B.

Without losing optimality, the ‘| · |’ on the right-hand side (RHS) of C7 and C8 can be
removed and transformed as follows:

γk,m

√
λk,m ≤ nsgT

k wk, ∀m = 1, 2, ∀k = 1, · · · , K. (20)

For convenience, we use the variable ‘m’ for a unified representation. When m = 1, it
signifies the transformed version of C7, whereas m = 2 represents the transformed version
of C8.

However, the left-hand side (LHS) of (20) is also a non-convex term. Here, we employ
the sequential parametric convex approximation (SPCA) method, utilizing its convex lower
bounds for processing, resulting in

γk,m

√
λk,m ≥

λk,m

2θk,m
+

γ2
k,mθk,m

2
, ∀m = 1, 2, ∀k = 1, · · · , K, (21)

where (21) reaches equality only when θk,m =

√
λk,m

γk,m
, ∀m, ∀k. At this point, C7 and C8 can

be merged and organized into a single convex constraint, i.e.,

λk,m

2θk,m
+

γ2
k,mθk,m

2
− nsgT

k wk ≤ 0, ∀m = 1, 2, ∀k = 1, · · · , K, (22)
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where wk, γk,m, λk,m, θk,m, ∀m, ∀k can be iteratively updated using convex approximation.
Problem P2 can be reformulated as Problem P3.

P3 : max
W

K

∑
k=1

µk

[
1− 1

2 ln 2
− ∑2

m=1 F (γk,m)

4 ln 2

]
s.t. C1: ns

K

∑
k=1
|wk| − d ≼ 0,

C2: ns

K

∑
k=1
|wk|+ d ≼

Pmaxτ

h̄v
1,

C3: ∥W∥∞ ≤ 1,

C4: gT
k wj = 0, ∀j ̸= k, ∀j, k = 1, · · · , K,

C5: λk,1 = −ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C6: λk,2 = ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C9:
λk,m

2θ
(t−1)
k,m

+
γ2

k,mθ
(t−1)
k,m

2
− nsgT

k wk ≤ 0, ∀m = 1, 2, ∀k = 1, · · · , K,

(23)

where θ
(t−1)
k,m =

√
λ
(t−1)
k,m

γ
(t−1)
k,m

, ∀m, ∀k. We use the superscript “(t−1)” to denote the result from the

previous iteration.
Although the constraints in Problem P3 are all convex, the convexity or concavity

of the objective cannot be directly determined. Hence, conventional convex optimization
methods cannot be directly applied to solving.

We conduct an analysis and numerical simulation on function F (·) in (14), observing
a monotonically increasing trend in the negative half-axis and a monotonically decreasing
trend in the positive half-axis. It exhibits symmetry as an even function about the y-
axis, being convex in the intervals (−∞,−1.6363] and [1.6363,+∞), while concave in the
interval [−1.6362, 1.6362]. To analyze the convexity or concavity of the objective, we need
to determine the intervals in which the 2K γk,ms from the objective function in (23) lie.
Therefore, the objective function in (23) can be reformulated as

K

∑
k=1

µk

(
1− 1

2 ln 2

)
− 1

4 ln 2

[
∑

γk,m∈U
µkF (γk,m) + ∑

γk,m∈V
µkF (γk,m)

]
(24)

where U = [−1.6362, 1.6362] and V = (−∞,−1.6363] ∪ [1.6363,+∞) represent the concave
and convex intervals of the function F (·), respectively.

At this point, the second term of the objective in (24) has been split into two parts:
the weighted sum of the concave intervals and the weighted sum of the convex intervals.
For γk,m ∈ U , i.e., in the concave interval, we can use SCA for processing. The entire
optimization problem can ultimately be organized as Problem P4.
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4 : max
W

K

∑
k=1

µk

(
1− 1

2 ln 2

)
− 1

4 ln 2 ∑
γk,m∈V

µkF (γk,m)

− 1
4 ln 2 ∑

γk,m∈U
µk

(
F (γ(t−1)

k,m ) +F ′(γ(t−1)
k,m )(γk,m − γ

(t−1)
k,m )

)

s.t. C1: ns

K

∑
k=1
|wk| − d ≼ 0,

C2: ns

K

∑
k=1
|wk|+ d ≼

Pmaxτ

h̄v
1,

C3: ∥W∥∞ ≤ 1,

C4: gT
k wj = 0, ∀j ̸= k, ∀j, k = 1, · · · , K,

C5: λk,1 = −ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C6: λk,2 = ζnsgT
k wk + ζgT

k d + nb, ∀k = 1, · · · , K,

C10: 1.6363− γk,m ≤ 0, ∀m = 1, 2, ∀k = 1, · · · , K, γk,m ∈ V ,

C11: nsgT
k wk − 1.6362

√
λk,m ≤ 0, ∀m = 1, 2, ∀k = 1, · · · , K, γk,m ∈ U ,

C12: − γk,m ≤ 0, ∀m = 1, 2, ∀k = 1, · · · , K, γk,m ∈ U ,

(25)

where C10–C12 are adjusted according to the area where γk,m, ∀m, ∀k is located, and C11 is

because of γk,m ≤
nsgT

k wk√
λk,m

and γk,m ≤ 1.6362.

After transformation, Problem P4 becomes a well-formed convex optimization prob-
lem. This means we can utilize the existing MATLAB CVX toolbox [33], particularly the
interior-point method, for its solution. It is worth noting that for the 2K γk,ms, their interval
combinations could total up to 22K different cases. Hence, it is necessary to discuss each
scenario to attain the optimal solution. We use {Ûι, V̂ι}, ∀ι = 1, · · · , 22K to distinguish
different potential scenarios. Here, Ûι and V̂ι are sets, where ι denotes the ι-th case. Ûι

comprises all γk,m within the interval U , and V̂ι contains all γk,m within the interval V . No
γk,m exists that does not belong to either Ûι or V̂ι.

4.3. Algorithm Summary and Analysis

Algorithm 1 summarizes the process for a given distribution of all γk,ms, i.e., {Ûι, V̂ι}.
Steps 2 to 5 iteratively update to solve convex optimization Problem P4. Upon specifying
the range of possibilities, this algorithm eventually converges to a solution satisfying the
KKT conditions of optimization Problem P4 [34]. Specifically, the application of the SCA
method requires meeting three conditions for achieving convergence. In Problem P4, these
conditions are as follows: The termF (γk,m), ∀γk,m ∈ U in the objective of (24) is non-convex,

and we replace it with its first-order Taylor-series expansion F (γ(t−1)
k,m ) +F ′(γ(t−1)

k,m )(γk,m−
γ
(t−1)
k,m ). At the local point γ

(t−1)
k,m , we ensure F (γk,m) ≤ F (γ

(t−1)
k,m ) + F ′(γ(t−1)

k,m )(γk,m −
γ
(t−1)
k,m ), which fulfills condition 1. Furthermore, the values before and after substitution

at the local point γ
(t−1)
k,m are equal, both being F (γ(t−1)

k,m ), satisfying condition 2. Finally,

their gradients at the local point γ
(t−1)
k,m are also consistent, meeting condition 3. Besides

these conditions, Problem P4 meets the requirements of convex optimization and satisfies
Slater’s condition in each iteration of the SCA process. According to ([34], Theorem 1), we
can prove that the result obtained by Algorithm 1 is a KKT stationary point. Moreover,
if this point lies within the feasible domain, it further indicates a local optimal point. By
analyzing all {Ûι, V̂ι}, we can obtain the optimal solution across the entire feasible domain.
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Algorithm 1: SCA ZF-based algorithm for Problem P4 under the given {Ûι, V̂ι}.
Input: {Ûι, V̂ι}, τ, Ps, εSCA, Tmax, d, gk, µk, ∀k
Output: W , and R̃all

1 Initialize: W (0), λ
(0)
k,1 , λ

(0)
k,2 , γ

(0)
k,1 , γ

(0)
k,2 , θ

(0)
k,1 , θ

(0)
k,2 , ∀k and the iteration index t = 0;

2 while

∑∀k

[(
w(t)

k −w(t−1)
k

)2
+ ∑∀m

(
λ
(t)
k,m − λ

(t−1)
k,m

)2
+ ∑∀m

(
γ
(t)
k,m − γ

(t−1)
k,m

)2]
> ESCA

or t < Tmax do
3 Use the toolbox to solve Problem P4;
4 t← t + 1;

5 θ
(t−1)
k,1 =

√
λ
(t−1)
k,1

γ
(t−1)
k,1

and θ
(t−1)
k,2 =

√
λ
(t−1)
k,2

γ
(t−1)
k,2

, ∀k.

Algorithm 2 provides the complete process for solving Problem P1. Before executing
Algorithm 1, in Step 4, we add a feasibility check. This is because, regardless of whether

nsgT
k wk is greater than 0, the inequality nsgT

k wk√
λk,1
≥ nsgT

k wk√
λk,2

, ∀k always exists. By preliminar-

ily assessing feasibility, we can reduce the possibilities for discussion and decrease the
likelihood of the program entering an infinite loop.

Algorithm 2: The proposed algorithm for Problem P1.
Input: τ, Ps, εSCA, Tmax, d, gk, µk, ∀k,
Output: W and R̃all

1 Initialize: List the possible scenarios {Ûι, V̂ι}, ∀ι = 1, · · · , 22K;
2 for ι = 1, · · · , 22K do

3 if nsgT
k wk√
λk,1
≥ nsgT

k wk√
λk,2

, ∀k then

4 running Algorithm 1 with {Ûι, V̂ι} to obtain R̃all(ι) and W(ι);
5 else
6 go back to step 2;

7 Discussion: Compare all possibilities and obtain the optimal solution
W∗ = arg max

W(ι),∀ι=1,··· ,22K
R̃all(ι).

In Algorithm 1, we specify the iteration precision of SCA to εSCA, which requires
O(log(1/εSCA)) iterations to be performed. In each iteration process, the MATLAB toolbox
is used to resolve Problem P4, whose time complexity is O

(√
Ωv max{Ωc, Ωv}4

)
[35].

Here, Ωv represents the number of variables, and Ωc represents the number of constraints.
For Problem P4, Ωv = NK + 4K and Ωc = 6K + 2N. Then, the overall computational
complexity of Algorithm 1 is O

(
(NK + 4K)4.5 log(1/εSCA)

)
. Algorithm 2 requires analysis

of 3K possibilities, meaning Algorithm 1 needs to be run 3K times. Therefore, the overall
computational complexity of Algorithm 2 is O

(
3K(NK)4.5 log(1/εSCA)

)
.

As the number of users increases, the computational complexity of Algorithm 2
rapidly escalates. Considering the properties of the function F (·), we can propose the
following proposition.

Proposition 3. The γk,1,γk,2 corresponding to the user with a better product of the channel state
and the weight coefficient will preferentially fall within the convex interval of the function F (·).

Proposition 3 is easily understandable: when resources are constrained, allocating the
majority of resources to users with better states can yield higher overall benefits. According
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to Proposition 2, under the optimal solution, γk,1,γk,2 must be non-negative. Moreover, as
F (·) monotonically decreases in the positive half-axis, resources will prioritize, placing
more γk,1,γk,2 values within the convex intervals. Therefore, we can use the CSI and weight
distribution to pre-sort K users. Then, we can discuss the possibilities of the number of
users in concave intervals, ranging from 0 to K users, corresponding to K + 1 potential
distributions of γk,1,γk,2. We summarize the simplified algorithmic process in Algorithm 3,
reducing the overall algorithm complexity to O

(
2K(NK)4.5 log(1/εSCA)

)
.

Algorithm 3: The proposed low-complexity algorithm for Problem P1.
Input: τ, Ps, εSCA, Tmax, d, gk, µk, ∀k,
Output: W and R̃all

1 Initialize: Sort the K users by Γ(µk|gT
k |),Γ(1) ≤ Γ(2) ≤ · · · ≤ Γ(K), where Γ(k)

represents the k-th smallest user under this rule;
2 for ι = 0, · · · , K do
3 if ι = 0 then
4 Ûι = ∅, all γk,1,γk,2 in V̂ι;

5 if 0 < ι < K then
6 γΓ(1),1, γΓ(1),2, · · · , γΓ(ι),1, γΓ(ι),2 in Ûι;
7 γΓ(ι+1),1, γΓ(ι+1),2, · · · , γΓ(K),1, γΓ(K),2 in V̂ι;

8 if ι = K then
9 all γk,1,γk,2 in Ûι,V̂ι = ∅;

10 running Algorithm 1 with {Ûι, V̂ι} to obtain R̃all(ι) and W(ι);

11 Discussion: Compare all possibilities and obtain the optimal solution
W∗ = arg max

W(ι),∀ι=1,··· ,K
R̃all(ι).

5. Numerical Results

In this section, we provide the simulation results of Algorithms 2 and 3 in the downlink
MU-PhC-MIMO VLC system. The indoor space size we consider is 5× 5× 3 m3. We assume
the center of the ceiling to be (2.5, 2.5) m and evenly place N LED arrays with a grid size of
(∆x, ∆y) = (0.1, 0.1) m on the ceiling [36]. All receiving users are located on the same flat
floor with a height of 0.85 m. For the sake of generality, we assume uniformity in the weight
parameters of all users during the weight-setting process, i.e., µk = 1, ∀k. The specific
numerical values for the other parameters involved in the simulation process are presented
in Table 1. The wavelength falls within the blue light range of the visible spectrum and is
supported by current manufacturing processes for LEDs. The symbol duration is set to
1 µs to disregard the impact of dead time effects [32]. The remaining parameter settings are
adopted from [24,37].

Table 1. Simulation parameters of the system [24,37].

Parameter Value

Visible light wavelength (v) 450 nm
Symbol duration (τ) 1 µs

The receiving area of the PD (Ar) 1 cm2

PD field of view (ψFoV) 60°
LED semi-angle (φ1/2) 60°

Optical filter gain
(
T
(
ψi,k
))

1
Refractive index (o) 1.5

Quantum efficiency (ζ) 0.54
Background radiation power per slot (Pb) −75 dBm [38]



Appl. Sci. 2024, 14, 1423 15 of 24

To the best of our knowledge, there is currently no literature exploring the achievable
rates of MIMO systems affected by signal-dependent Poison shot noises, as presented in
this paper. Hence, we borrow the classic ZF precoding design and repetition coding scheme
from AWGN systems as benchmarks for our algorithms:

• ZF precoding [5]: We adopt the commonly used ZF precoding scheme under AWGN
systems. The specific calculation method is as follows: WZF = GT(GGT)−1 and
G = [g1, · · · , gK]

T . We rigorously check that WZF complies with the constraints C1–C4
in (16). If it does not meet the requirements, we normalize WZF, i.e., WZF = WZF

||WZF||∞
.

By substituting WZF into (15), the corresponding (weighted) sum rate can be obtained.
• Repetition coding [39]: We select the user with the best channel condition and utilize all

LED arrays to transmit single-stream data to that user. This configuration establishes
a MIMO framework serving a single user.

Figure 2 compares the performance of the system’s (weighted) sum rate using different
algorithms as the peak power per symbol Ps increases, where N = 8 and K = 4. We set
the upper limit of the LED’s transmission power to Pmax = 5 dBm, the bias power to
Pd = −5 dBm, and d can be obtained based on d = Pdτ

h̄v . We can observe that the proposed
Algorithms 2 and 3 are better than the ZF precoding and repetition coding schemes because
the classic schemes are not suitable for MIMO systems limited by Poisson shot noises. In
the case of low Ps, Algorithms 2 and 3 can improve by 2.5 dB compared to the ZF precoding
method. The repetition coding scheme tends to a fixed value as Ps continues to increase.
This is because this scheme serves a single user and has an upper limit on the achievable
rate. On the other hand, we can observe that the proposed Algorithms 2 and 3 are almost
consistent, indicating that Algorithm 3 can play a certain role in simplifying Algorithm 2.
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Figure 2. Sum-rate performance of the proposed MU-PhC-MIMO VLC system with N = 4 and K = 2
using different algorithms.

Figure 3 shows the sum-rate performance of Algorithm 2 and the ZF precoding method
as Ps increases, where K = 2 and N = 16, 32, 64. We can observe that an increase in the
number of active LEDs in Algorithm 2 leads to an improvement in the system’s (weighted)
sum rate. In other words, to achieve the same (weighted) sum rate, increasing the number
of LED arrays can save transmit peak power. This is because it leverages the properties
of transmit diversity. However, in the ZF precoding scheme, as N increases, the elements
become smaller when calculating the pseudo-inverse of the channel matrix, leading to a
gradual deterioration in performance.
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Figure 3. Sum-rate performance of the proposed MU-PhC-MIMO VLC system with K = 2 under
different numbers of LED arrays.

Figure 4 depicts the system’s (weighted) sum rate based on Algorithm 2 under various
DC bias power scenarios, where N = 16, K = 4, and Pd = −5,−6.2,−8,−11 dBm. It is
evident that an increase in the DC bias results in a reduction in the system’s (weighted)
sum rate. This indicates that the DC bias causes interference at the receivers. Therefore, in
practical applications, selecting an appropriate value for the bias becomes crucial. It should
comply with the non-negativity requirement of the transmitted signal while minimizing
the impact on the receivers’ rates.
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Figure 4. Sum-rate performance of the proposed MU-PhC-MIMO VLC system with N = 16 and
K = 4 under different DC bias power scenarios.

Figure 5 demonstrates the impact of increasing user numbers, resulting in multiple
streams on the system’s (weighted) sum rate for the proposed Algorithms 2 and 3, where
N = 16 and K = 2, 3, 4, 5. It can be observed that Algorithm 3 performs slightly lower than
Algorithm 2 at low power levels. However, with the growth of the transmit peak power,
the gap between them gradually diminishes, approaching convergence. At lower transmit
peak power, γk,1,γk,2, ∀k cannot simultaneously fall within the convex intervals due to the
limited considerations in Algorithm 3, resulting in gaps. Yet, with sufficient transmit peak
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power, the likelihood of being within the convex intervals increases. Algorithm 3 accounts
for this possibility, thus converging with the performance of Algorithm 2. Additionally, we
also notice that the performance diminishes at lower transmit-power levels as the number
of users increases. However, increasing power demonstrates the advantages of multi-user
scenarios. This is also a consequence of power limitations.
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Figure 5. Sum-rate performance of the proposed MU-PhC-MIMO VLC system with N = 16 for
different numbers of users.

Figure 6 plots the convergence behavior of Algorithm 1. Figure 6a depicts the iterative
convergence of Algorithm 1 with five distinct {Ûι, V̂ι} scenarios selected in Algorithm 3 when
Ps = −16 dBm. It can be observed that under the various {Ûι, V̂ι} scenarios, the system’s
(weighted) sum rate shows a step-like growth pattern. Figure 6b displays the iterative process
of running Algorithm 1 corresponding to the optimal solutions obtained by Algorithm 3 under
various transmit peak power levels, where Ps = −24,−20,−18,−16 dBm. The comparison
reveals that at lower power conditions, fewer occurrences of γk,1,γk,2,∀k fall within the convex
intervals. However, as the power increases, the occurrences of γk,1,γk,2,∀k within these
intervals gradually rise, confirming our hypothesis in Proposition 3. Figure 6a,b collectively
demonstrate that after a few iterations, Algorithm 1 converges to a solution, substantiating
the effectiveness of the algorithm to a certain extent.

Figure 7 shows the numerical results under scenarios where the transmitter possesses
imperfect CSI because of the CSI estimation errors or delayed feedback from the receiver.
We assume that these errors follow an independent Gaussian distribution, represented as
εCSI ∼ N (0, σ2

ε ). The variances of these errors are represented by the error parameters
δ and ϑ, i.e., σε = (δg)ϑ [32]. We present the simulation results for four different error
levels, where N = 4, K = 2, and Pd = −13 dBm. The legend ’perfect CSI’ represents the
case where the variance is 0. It is observed that both Algorithms 2 and 3 exhibit good
robustness. Furthermore, the imperfections in the channel can be mitigated by increasing
the transmit power.
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Figure 6. Convergence of Algorithm 1. (a) Running Algorithm 1 with five different {Ûι, V̂ι} scenarios
determined by Algorithm 3 under Ps = −16 dBm. (b) Running Algorithm 3 for different transmit-
power scenarios and illustrating the convergence process of Algorithm 1 corresponding to the optimal
solution cases.
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Figure 7. Sum-rate performance of the proposed MU-PhC-MIMO VLC system under imperfect CSI.

6. Conclusions

We have utilized the zero-forcing concept to maximize the weighted sum rate of
an interference-free downlink MU-PhC-MIMO VLC system. First, we derive the precise
expression for the system’s weighted sum rate and propose the rate expression based
on the ZF scheme. Furthermore, we employ mathematical tools to accomplish Gaussian
approximations. Then, by employing variable substitutions and SCA, we recursively
convexify and maximize the new objective. By comparing various possibilities, we arrive
at the optimal solution for the complete optimization problem. After extensive simulation
validation, our algorithms exhibit performance that allows saving 2.5 dB of transmit peak
power compared to the classical ZF precoding scheme in low-transmit-power scenarios.
Moreover, at higher power levels, the system’s weighted sum rate significantly outperforms
the repetition coding scheme. Additionally, the two proposed algorithms exhibit almost
identical performance and showcase improved weighted sum rates with more active LED
arrays and lower DC bias power.
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The following abbreviations are used in this manuscript:

6G Sixth generation
AWGN Additive white Gaussian noise
CSI Channel state information
DC Direct current
FOV Field of view
GA Gaussian approximation
IM/DD Intensity modulation/direct detection
KKT Karush–Kuhn–Tucker
LED Light-emitting diode
LHS Left-hand side
LOS Line of sight
MIMO Multiple-input multiple-output
MUI Multi-user interference
OOK On-off keying
PCP Poisson counting process
PD Photodetector
PDF Probability density function
PhC Photon counting
RF Radio frequency
RHS Right-hand side
SCA Successive convex approximation
SPCA Sequential parametric convex approximation
VLC Visible light communication
ZF Zero forcing

Appendix A

According to [40], when the mean of a Poisson distribution approaches infinity, its
PDF tends to approximate the PDF of a Gaussian distribution. At this point, the Gaussian
distribution’s mean and variance are consistent, as follows:

λy

y!
exp(−λ)

λ→∞−→
exp

(
− (y−λ)2

2λ

)
√

2πλ
, ∀y ∈ [0,+∞). (A1)

As the system’s transmit peak power continuously increases, the value of λk in (6)
gradually tends toward infinity. Referring to the experimental data in [32], when the
background light noise nb ≥ 40, this approximation can be considered tight. In this paper,
we can make a similar reasonable assumption. Considering that our background light
radiation power and the wavelength of visible light are chosen as Pb = −75 dBm and
v = 450 nm, respectively, we can obtain nb = ζ Pbτ

h̄v ≈ 40. In fact, background light noise
typically exceeds −60 dBm [41]. In summary, (A1) is equally applicable to the system
studied in this paper.

By substituting (12) into (A1), the approximate conditional probabilities ξ
(GA)
k,1 and

ξ
(GA)
k,2 are obtained as

ξ
(GA)
k,1 =

exp
(
− (yk−λk,1)

2

2λk,1

)
√

2πλk,1
; ξ

(GA)
k,2 =

exp
(
− (yk−λk,1)

2

2λk,2

)
√

2πλk,2
. (A2)



Appl. Sci. 2024, 14, 1423 21 of 24

We use the superscript “(GA)” to indicate “Gaussian approximation”. Substituting (A2)
into (10), we obtain

R(GA)
k =1 +

1
2 ln 2

∫ ∞

0

[
ξ
(GA)
k,1 × ln ξ

(GA)
k,1 + ξ

(GA)
k,2 × ln ξ

(GA)
k,2 −(

ξ
(GA)
k,1 + ξ

(GA)
k,2

)
× ln

(
ξ
(GA)
k,1 + ξ

(GA)
k,2

)]
dyk.

(A3)

According to [32], Equation (24), the second and third terms on the RHS of (A3) can

be approximated as − ln(2πλk,1)+1
2 and − ln(2πλk,2)+1

2 , respectively. The last item on the RHS
of (A3) is processed as follows∫ ∞

0

(
ξ
(GA)
k,1 + ξ

(GA)
k,2

)
× ln

(
ξ
(GA)
k,1 + ξ

(GA)
k,2

)
dyk

=
∫ ∞

0

√
λk,2 exp

(
− (yk−λk,1)

2

2λk,1

)
+
√

λk,1 exp
(
− (yk−λk,2)

2

2λk,2

)
√

2πλk,1λk,2
×

ln

√
λk,2 exp

(
− (yk−λk,1)

2

2λk,1

)
+
√

λk,1 exp
(
− (yk−λk,2)

2

2λk,2

)
√

2πλk,1λk,2
dyk,

(A4)

(A4) =
∫ ∞

−∞

exp

−
(

φ+
nsgT

k wk√
λk,1

)2

2

+
√

1
β exp

−
(

φ−
nsgT

k wk√
λk,1

)2

2β
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2π
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2
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1
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k wk√
λk,1
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2β
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(A5)

(A4) =
∫ ∞

−∞

√
β exp

−β

(
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nsgT
k wk√
λk,2
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+ exp

−
(
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(
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nsgT
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+ exp
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(

ϕ− nsgT
k wk√
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)2

2
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dϕ− ln(2πλk,2).

(A6)

where β =
λk,2
λk,1

, φ =
yk−λk,1−nsgT

k wk√
λk,1

and ϕ =
yk−λk,1−nsgT

k wk√
λk,2

. Equation (A4) is obtained

by substituting (A2). Equations (A5) and (A6) are derived through variable substitu-
tions, and their second terms are obtained using the Euler–Poisson integral formula, i.e.,∫ ∞

0 e−x2
dx =

√
π

2 .
Although both λk,1 and λk,2 contain nsgT

k wk, in the derivation of the rate, we cannot
directly ascertain whether nsgT

k wk is greater than 0. Consequently, we cannot directly
determine the relationship between β, as discussed above, and 1. We proceed with a
categorized discussion, as follows:

• β ≥ 1 (nsgT
k wk ≥ 0):

According to [32], (A5) and (A6) exhibit the following set of inequality relationships:
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(A5) ≤
∫ ∞

−∞
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−∞

exp
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2

+ exp

−
(

ϕ− nsgT
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)2

2


dϕ− ln(2πλk,2)

≜ F (
nsgT

k wk√
λk,2

).

(A8)

where the form of function F (·) is provided by (14). With all three parts of (A3)

calculated separately, by substituting − ln(2πλk,1)+1
2 , − ln(2πλk,2)+1

2 , and (A7) into (A3),

as well as substituting − ln(2πλk,1)+1
2 , − ln(2πλk,2)+1

2 , and (A8) into (A3), we can derive a
set of inequality relationships as follows:

1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,1

) + ln
√

λk,2
λk,1

2 ln 2
≤ R(GA)

k ≤ 1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,2

) + ln
√

λk,1
λk,2

2 ln 2
. (A9)

Observing the inequalities above, when λk,1, λk,2 → ∞, the LHS and the RHS
of (A9) tend toward the same value 1 − 1

2 ln 2 −
F (0)
2 ln 2 . Therefore, we can make a

reasonable approximation:

R̃k =
1
2

[
1− 1

2 ln 2
−
F ( nsgT

k wk√
λk,1

) + ln
√

λk,2
λk,1

2 ln 2
+ 1− 1

2 ln 2
−
F ( nsgT

k wk√
λk,2

) + ln
√

λk,1
λk,2

2 ln 2

]
,

= 1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,1

) +F ( nsgT
k wk√
λk,2

)

4 ln 2
.

(A10)

• β < 1 (nsgT
k wk < 0):

Similarly, we can also obtain the following set of inequalities through analysis in this
case and make a reasonable approximation:

1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,2

) + ln
√

λk,1
λk,2

2 ln 2
≤ R(GA)

k ≤ 1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,1

) + ln
√

λk,2
λk,1

2 ln 2
. (A11)



Appl. Sci. 2024, 14, 1423 23 of 24

R̃k = 1− 1
2 ln 2

−
F ( nsgT

k wk√
λk,2

) +F ( nsgT
k wk√
λk,1

)

4 ln 2
. (A12)

When combining the discussions of the two scenarios, it is apparent that the forms
of (A10) and (A12) are identical, indicating that these two cases can be merged. The validity
of this approximation was also confirmed in [32].

Appendix B

Using proof by contradiction, it can be shown that the gT
k wk obtained at the optimal

solution must be non-negative.
Assuming w∗k is the optimal solution, and both inequality constraints C7 and C8 in (19)

contain absolute values, implying that the positivity or negativity of the solution does not
affect the final result, we can create an alternative viable solution:

w̃∗k = sign(gT
k w∗k )w

∗
k . (A13)

If gT
k wk ≥ 0, we obtain w̃∗k = w∗k . The result is the same as the original, which is

gT
k w̃∗k = gT

k w∗k ≥ 0. Otherwise, if gT
k wk < 0, then w̃∗k = −w∗k is obtained, and the result

at this time is gT
k w̃∗k = −gT

k w∗k ≥ 0. In both scenarios, the final outcome yields gT
k w̃∗k ≥ 0,

and since the discussion process includes w∗k , it ultimately proves that gT
k wk must be

non-negative at the optimal solution.
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