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Abstract: Expansive soils pose significant challenges to structural integrity, primarily due to volumet-
ric changes that can lead to detrimental consequences and substantial economic losses. This study
delves into the intricate dynamics of expansive soils through loaded swelling pressure experiments
conducted under diverse conditions, encompassing variations in the sand content, initial dry unit
weight, and initial degree of saturation. The findings underscore the pronounced influence of these
factors on soil swelling. To address these challenges, a novel method leveraging machine learning
prediction models is introduced, offering an efficient and cost-effective framework to mitigate po-
tential hazards associated with expansive soils. Employing advanced algorithms such as decision
tree regression (DTR), random forest regression (RFR), gradient boosting regression (GBR), extreme
gradient boosting (XGBoost), support vector regression (SVR), and artificial neural networks (ANN)
in the Python software 3.11 environment, this study aims to predict the optimal applied stress and
dry unit weight required for soil swelling mitigation. Results reveal that XGBoost and ANN stand out
for their precision and superior metrics. While both performed well, ANN demonstrated exceptional
consistency across training and testing phases, making it the preferred choice. In the tested dataset,
ANN achieved the highest R-squared values (0.9917 and 0.9954), lowest RMSE (7.92 and 0.086), and
lowest MAE (5.872 and 0.0488) for predicting optimal applied stress and dry unit weight, respectively.

Keywords: clay; sand (additives); swelling pressure; loaded swelling pressure; partial saturation;
machine learning

1. Introduction

Expansive soils present a significant challenge for geotechnical engineering, as they
are widespread in nature and their significant deformations are associated with changes
in suction and the degree of saturation [1–6]. In the unsaturated zone above the phreatic
groundwater level, the soil moisture content varies significantly over seasons, necessitating
a comprehensive understanding of expansive soil behavior and precise specifications for
optimal characterization to mitigate risks [7,8]. When facilities and roads are constructed
on expansive soils, they can cause significant damage and high costs. For example, in the
USA, losses resulting from cracks in buildings and roads built on expansive soils were
estimated at about USD 10 billion in 1985 AD, with half of that amount spent on repairing
roads [9]. Similar losses have been reported in [10–12]. According to Nelson and Miller [13],
the financial loss resulting from the devastating effects of expansive soils would be greater
than the loss caused by earthquakes or floods. This highlights the importance of the
continued deepening of research conducted on these types of soils to limit their damage.
The objective of this study is to comprehensively examine the influence of the initial degree
of saturation, initial dry unit weight, and the percentage of added sand on the swelling
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characteristics of expansive soils. This investigation entails experimental analysis through
loaded swelling pressure tests and employs diverse machine learning algorithmic models
implemented within the Python programming environment for predictive purposes. This
paper introduces a new method that relies on ensuring that the weight of the structure
is aligned with the properties of the expansive soil, such as dry unit weight, degree of
saturation, and liquid limit. This approach aims to reduce the negative effects of expansive
soils on structures and offers an alternative to traditional soil improvement methods.

Sand is widely known as a granular material with a high bearing capacity that can alter
the properties of cohesive soil, including plasticity, compactness, and resistance [14–18].
When mixed with cohesive soil in various ratios, sand replaces fine soil particles with
coarser ones, creating a better gradient of soil grain that increases cohesion and friction
and improves swelling properties. This research seeks to explore the swelling behavior of
partially saturated expansive soils in response to variations in their sand content. Addition-
ally, it endeavors to predict the optimal dry unit weight and applied stress parameters that
result in minimizing swell amplitude, thereby contributing to the mitigation of associated
risks. Despite previous studies that have explored the use of inert materials in expansive
soils [17,19–22] and their contributions to improving expansive soils and reducing haz-
ards, many questions and issues on the behavior of expansive soils remain unresolved.
Within this framework, our objective is to assess the influence of varying proportions of
sand under differing saturation levels and dry unit weights on the physical and swelling
attributes of expansive soils. This study endeavors to optimize the applied stress to attain
minimal swelling, thus contributing to a more comprehensive understanding of expansive
soil behavior.

The detrimental effects of expansive soils have been widely documented, and the poor
evaluation of these soils can result in significant damage and financial losses [1–4,9–13,23].
Correctly classifying the degree of shrinkage and swelling of these soils is crucial for
successful foundation treatment and ensuring the stability of structures built on them.
However, expansive soils in different regions exhibit varying physical and engineering
characteristics due to differences in their composition and environment [23]. Assessing the
degree of shrinkage and expansion in expansive soils is a complex problem, as influencing
factors behave with characteristics of fuzziness and uncertainty that are difficult to interpret
using traditional methods. Consequently, it is necessary to develop suitable methods for
analysing the classification of swell and shrinkage in expansive soils. To address this
challenge, we propose a novel approach that uses machine learning to predict the optimal
dry unit weight and applied stress required to mitigate swelling in expansive soils.

To assess the degree of risk associated with expansive soils, it is important to identify
the main cause of hazards, which is volumetric changes [24]. Therefore, an effective solution
must be developed to reduce these changes and limit the associated risks. This can be
achieved by following these steps [24]:

(1) Collecting information on the damage that has occurred in the study area, the risk
reduction methods employed, and their effectiveness.

(2) Conducting a comprehensive analysis of the soil and its properties (in situ and labora-
tory testing) by a geotechnical engineering expert.

(3) Classifying the degree of severity of the expansive soil based on the findings from
steps 1 and 2.

(4) Proposing an appropriate risk mitigation strategy.

In the present study, the primary focus is on steps 3 and 4, which are considered crucial
as they involve the selection of an appropriate method to mitigate the risks associated with
expansive soils. The first two steps (i.e., collection of information related to damages and a
thorough study of soil properties) are also essential, particularly step 2, which requires the
expertise of a geotechnical specialist. Therefore, it is imperative to choose an experienced
specialist with in-depth knowledge of expansive soils.

The classification process in this study relies on predicting the optimal dry unit weight,
a value that corresponds to achieving the minimal swell amplitude. Subsequent to this
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predictive determination, a comparative assessment in relation to the site dry unit weight
is executed. In cases where the predicted dry unit weight manifests as inferior to the site’s
empirically observed dry unit weight, the classification of the expansive soil is assigned a
precarious characterization. In contrast, when the predicted value of the dry unit weight
exceeds the site’s dry unit weight, the expansive soil is classified as stable, implying the
absence of swelling-induced structural damage. It is worth noting that the magnitude
of perceived risk is determined by the quantitative difference between the predicted and
actual dry unit weight. It is important to note, however, that the precise quantification of
this risk gradient is not the major focus of the current investigation.

Based on the literature, various methods have been used to address the issues related
to expansive soils, such as controlling the level of compactness, chemical improvement
using lime or cement, and pre-moistening of expansive soil. However, these methods
are often expensive and time-consuming to implement, thus emphasizing the need for an
alternative approach.

Henceforth, this study aims to propose a method that would effectively address the
issue of expansive soil by reducing its volumetric changes and limiting its risks. Specifically,
the focus of this paper is on step 4, which involves recommending a suitable approach
to mitigate the identified risks. It is worth noting that step 2 plays a critical role in this
process, and hence, a geotechnical specialist with extensive experience in expansive soils
must be selected for this task. This study proposes a stress-based method that leverages
the characteristics of the expansive soil. The proposed approach is primarily based on
the machine learning model, which is developed through experimental work, as will be
discussed later. The steps are outlined as follows:

• Place a high permeability soil layer beneath the entire building with sufficient thickness
to ensure uniform moisture conditions under the structure [25].

• Use a machine learning model to determine the optimal dry unit weight for expansive
soil as a fill material, or the optimal stress to achieve the lowest volumetric change.

• Design a suitable foundation that can deliver the required stress based on the building’s
specifications.

• Isolate any external factors that could influence soil moisture content, such as nearby
trees, to prevent tree roots from absorbing moisture from beneath the structure [24].

The scientific literature has documented various experimental methods for character-
izing the phenomenon of soil swelling, with some of the most commonly used methods
including those outlined in references [26–29]. In order to gain a deeper understanding of
the behavior of expansive soils, other researchers have sought to develop new models, as
seen in references [30–32]. These models can be used to estimate the behavior of expan-
sive soils based on simple and easily performed experiments, such as those that utilize
Atterberg’s limits and grain-size analysis. However, the development or modification of
such models requires prior knowledge of the relationships between data that depend on a
multitude of external factors related to soil composition, which are difficult to define using
only traditional statistical methods due to their interdependence.

Given the complexity of expansive soils, numerous researchers have strived to inte-
grate machine learning (ML) with geotechnical reliability analysis, with the objective of
enhancing computational accuracy and efficiency. This pursuit has yielded a variety of
successful applications [33–37]. In the realm of geotechnical reliability analysis, the fun-
damental objective of machine learning (ML) is to reconstruct intricate high-dimensional
implicit performance functions by leveraging insights from meticulously curated datasets.
These datasets predominantly encompass diverse input stochastic variables such as liquid
limit, plastic index, unit weight, and degree of saturation. Correspondingly, the datasets
include relevant quantities of interest, such as swell amplitude or swell pressure. Utiliz-
ing this methodology, the application of the ML analysis model offers an efficient means
of accurately predicting outcomes in the geotechnical field. This accuracy is confirmed
through rigorous training and thorough validation, demonstrating the model’s ability to
meet intended performance benchmarks with precision and computational efficiency.
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Geotechnical analysis has effectively utilized a wide range of machine learning (ML)
algorithms. These algorithms include artificial neural networks (ANN) [38–40], support vec-
tor machines (SVM) [41], relevant vector machines (RVM) [42], gradient boosting regression
(GBR) [43], decision tree regression (DTR) [43], K nearest neighbor regression (KNR) [43],
random forest regression (RFR) [43], particle swarm optimization (PSO) [44], extreme learn-
ing machines (ELM) [45], multivariate adaptive regression splines (MARS) [45,46], and
extreme gradient boosting (XGBoost) [37,47].

Machine learning (ML) has been extensively used by researchers to model the behavior
of and solve problems associated with expansive soil. For instance, Najjar et al. [48] and
Najjar and Basheer [49] used ANNs to model swelling, and they concluded that the ANN
technique was superior to multivariate regression analysis. ANNs were also employed
by Doris et al. [50] to predict the vertical surface movement of soil due to shrinkage and
swelling. In addition, ANNs were utilized by Ashayeri et al. [51] and Aissa Mamoune [52]
to estimate the amplitude and swelling pressure of unsaturated clay. Similarly, Banu
Ikizler et al. [53], Erzin and Güneş [54], and Merouane and Aissa Mamoune [38] estimated
the swelling pressure of expansive soils using ANNs. Furthermore, ANNs were used by
Dutta et al. [39] to predict the free swell index of the expansive soil. These studies have
demonstrated the effectiveness of the artificial neural network technique. Ikeagwuani [55]
employed three distinct machine learning models, namely multivariate adaptive regression
splines (MARS), random forest, and gradient boosting machine models, for the purpose
of predicting the California bearing ratio (CBR) of expansive soil subgrade amended
with constituents such as sawdust ash, ordinary Portland cement, and quarry dust. The
outcomes of the study demonstrated that the random forest model exhibited enhanced
predictive efficacy as compared to the MARS and gradient boosting machine models.
Eyo et al. [56] employed a diverse set of machine learning algorithms to assess and forecast
the behavior of soils characterized by varied plastic properties when subjected to expansive
behavior under inundation conditions. The results highlighted that the support vector
machine (SVM) achieved higher accuracy compared to other methods such as the artificial
neural network (ANN), logistic regressor (LR), and random decision forest (RDF).

Geotechnical engineers have shown a growing interest in machine learning due to its
remarkable ability to model nonlinear problems with multiple variables. Machine learning
algorithms can establish non-linear relationships between variables and provide reasonably
accurate predictions [57]. In fact, several geotechnical studies have shown that the models
developed by machine learning are much more effective than those developed by multiple
linear regression (MLR) [53,57,58].

In contrast to many previous studies and models that often overlooked the interactive
effects of parameters, our research uniquely addresses the combined influence of the sand
content, initial degree of saturation, and dry unit weight on soil swelling. While existing
studies have made valuable contributions by focusing on individual factors such as the
initial degree of saturation and dry unit weight, they have not adequately considered
two critical aspects: the impact of sand content on soil swelling characteristics and the
determination of optimal applied stress and dry unit weight to reduce volume changes in
expansive soil. This study stands out for its significant importance in predicting the optimal
applied stress and dry unit weight for mitigating soil volumetric changes, leveraging
machine learning as a highly effective tool for this purpose. The study introduces a novel
approach in the application of established machine learning algorithms. Although the
algorithms themselves are not novel, their application to predict optimal applied stress and
dry unit weight for expansive soils, while considering the combined influence of multiple
parameters, represents a unique and valuable contribution to the field, marking a notable
advancement in the understanding and application of these predictive models. To achieve
the objectives of this study, the definitions of ‘optimal unit weight’ and ‘optimal applied
stress’ are paramount, precisely delineated through thorough laboratory investigations
employing loaded swelling pressure tests. The primary goal is to identify the specific dry
unit weight and applied stress levels, referred to as the ‘optimal unit weight’ and ‘optimal
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applied stress,’ at which swelling amplitudes in expansive soils become negligible. This is
explicitly defined in the experimental work of the study, specifying that the condition for
negligible swelling amplitudes is when they reach zero.

2. Materials and Methods
2.1. Materials and Classification Tests

To achieve the research objective, expansive clay soil was excavated from Demsarkho-
Lattakia at a depth of 3 m from the ground level, surpassing the backfill soils to access the
targeted soil layer. Fine-grained marine sand was used for mixing with the expansive clay,
which was washed to eliminate fine particles and obtain clean sand suitable for experiments.
Mixtures were prepared by adding different percentages of sand (10%, 20%, 30%, 40%,
and 50%) to the expansive soils based on the dry weight. To determine the grain size
distribution, experiments were conducted using the dry sieving method for fine sand and
hydrometer sedimentation for clay soil according to ASTM standards [59,60]. Figure 1
illustrates the granular gradient curves of the mixed soil, based on the percentage of sand
added to it. Specific weight tests were carried out in accordance with ASTM D854-98 [61],
revealing a specific gravity of 2.7 for the expansive clay and 2.65 for the sand. The chemical
composition of clay has been listed in Table 1.
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Figure 1. The granular gradient curves of the tested mixtures.

Table 1. Chemical properties of clay.

Chemical Composition %

Alumina (Al2O3) 11.5
Ferric (Fe2O3) 5.5
Calcium (CaO) 12

Magnesium (MgO) 2.4
Silica (SiO2) 48.8

Sodium (Na2O) 1.2
Potassium (K2O) 0.36

Loss of ignition (LoI) 17.24

The Atterberg Limits experiments were performed in accordance with ASTM interna-
tional standard D854-14 [62] on mixtures with varying percentages of sand, ranging from
0 to 50%. The results of the experiments, depicted in Figure 2, reveal the variation in the
Liquid Limit (LL), Plastic Limit (PL), and Plastic Index (PI) with respect to the quantity
of sand added. These findings are in line with previous studies investigating the effect of
adding sand to the expansive soil for the purpose of soil improvement [14,22,63].
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percentage of added sand.

The clear clayey soil used in this study, without sand, was classified as A-7-5 according
to the AASHTO classification system [64] and as CH according to the Unified Soil Classifi-
cation System [65]. The degree of volume change was determined to be high to very high
according to [66–68]. The swelling pressure of the utilized expansive soil, prepared under
standard proctor parameters of γd = 13.95 kN/m3 and SR = 91.2%, revealed a substantial
swelling pressure of almost 200 kPa while the swelling pressure of the utilized expansive
soil, prepared at γd = 15.3 kN/m3 and SR = 75%, was observed to be almost 520 kPa. The
percentage of clay particles (with a diameter smaller than 0.02 mm) was found to be 73.9%.
The free swell [69] for clear clayey soil was determined to be 127%.

Standard proctor experiments were carried out to determine the maximum dry unit
weight and optimal moisture for each mixing percentage, as illustrated in Figures 3 and 4.
The results indicate a continuous increase in the maximum dry unit weight, which is
consistent with the findings of previous studies [63,70]. This can be attributed to the
reduction in soil pore volume and suction stress resulting from the replacement of a soft
component, which can hold a large amount of water, with a coarse component that has a
low water-holding capacity. This is further supported by the optimal moisture values of the
mixtures, which decrease as the percentage of added sand increases, as shown in Figure 4.
For more details on the Proctor, Atterberg, and consolidation tests, see Alnmr and Ray [71].
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2.2. Samples Preparation

The sample preparation involved dry mixing with the required sand percentage to
achieve homogeneity, followed by the addition of the appropriate amount of water to reach
the desired degree of saturation and thorough mixing, as shown in Figure 5a. The samples
were then placed in plastic bags to retain moisture, as depicted in Figure 5b, and left in an
insulated container for a day to allow for uniform moisture distribution and suction. Finally,
the samples were formed to the desired unit weight using a hydraulic piston, as illustrated
in Figure 5c–e. As visually demonstrated in Figure 5c, the soil sample was positioned
within the confines of the ring. Subsequently, static pressure was meticulously applied
through the utilization of a hydraulic piston. This pressure application was executed with
precision to attain the targeted dry unit weight while concurrently ensuring a level and
uniform surface, as depicted in Figure 5d,e.
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Figure 5. Images of the sample formation process step-by-step: (a) mixing sand with expansive
soil, (b) placing the sample in plastic bags for moisture retention, (c) positioning it within the ring,
(d) applying meticulous static pressure through a hydraulic piston, and (e) presenting the final
prepared specimen.

2.3. Loaded Swelling Pressure Tests

The loaded swelling pressure tests were performed on samples with different densities
and degrees of saturation for each sand mixing percentage. In this method, a procedure
was employed involving the loading of three or more specimens at various pressures. This
process enabled the specimens to absorb water, leading to either swelling or compression
until equilibrium positions were achieved. These positions aligned linearly on the swell
versus logarithmic pressure plot as shown in Figure 6. While this methodology mandates
the use of a minimum of three identical specimens, it provides the advantage of comparably
reduced time demands. In the context of the loaded swelling pressure tests, the soil
specimens were meticulously placed within a cylindrical metal ring, characterized by
dimensions measuring 71.4 mm in diameter and a height of 20 mm. To mitigate any
potential effects of friction between the soil and the inner surface of the ring, a lubricant
was applied to the lateral sides of the ring.
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Figure 6. Relationship between swelling amplitude and applied stress in loaded swelling pressure
test for initial condition (Fs = 10%, γd = 14.66 kN/m3, SR = 75%).

After meticulous sample preparation, as illustrated in Figure 5, filter papers were
inserted both above and below the soil sample to prevent the ingress of fine soil particles
into the porous discs’ interstices. Subsequently, a loading cap was installed atop the upper
porous disc, and the entirety of this composite assembly was carefully positioned within
the oedometer cell. Finally, the load transfer frame was installed onto the loading cap, as
exemplified in Figure 7. The specimens were subjected to varying stress levels (25, 75, 150,
300 kPa). Afterwards, the specimens underwent immersion in distilled water, inducing
swelling or settlement contingent upon the initial conditions and applied stress. Following
the attainment of equilibrium in deformation, the swelling amplitude was meticulously
recorded for each applied stress.
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Figure 7. Consolidation test device (oedometer).

The findings presented in Figure 6, specific to initial conditions (Fs = 10%,
γd = 14.66 kN/m3, SR = 75%), revealed a distinctive swelling pressure of 232 kPa. This
observation signifies that, under these specified initial conditions, the optimal dry unit
weight of 14.66 kPa should align with an applied stress of 232 kPa to achieve a swelling
amplitude of 0. Correspondingly, for γd = 14.66 kN/m3, the optimal applied stress for
these specific initial conditions was determined to be 232 kPa. These outcomes contribute
significantly to our understanding of the complex interplay between initial conditions,
optimal applied stress, and optimal dry unit weight in expansive soils.

Based on the results of the experiments, a dataset of 657 unconfined compression tests
was created for use in developed machine learning models. The input data include: liquid
limit (LL), clay content (Fc), silt content (Fsi), sand content (Fs), specific degree of saturation
(SR), maximum dry unit weight (γdmax) of proctor test, applied stress (σ), and dry unit
weight (γd), This dataset is used to predict the optimal applied stress (σmin) and optimal
dry unit weight (γmax). The key steps of the applied methodology are depicted in Figure 8.
Figure 9 displays the distribution histograms and density plots for the dataset.
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2.4. Selection of Variables

Correlation analysis is a useful tool for analyzing correlations between different inputs
inside datasets. However, because datasets vary in nature, the assumptions underpinning
each correlation approach typically differ, limiting their application and robustness.

The final selection criteria are removing variables that are difficult to collect and
choosing data that are easily accessible. The Pearson, Kendall, and Spearman correlation
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coefficients are computed among various parameters in this study to investigate the cor-
relation between input and output parameters, as shown in Figure 10. The correlation
between factors is represented by values of 0, 1, and −1, with 1 representing a strong
positive connection and −1 representing a significant negative correlation. When the three
approaches (Pearson, Kendall, and Spearman) were compared across different datasets
and inputs, the variable, γd consistently had the highest correlation with applied stress ( σ).
Whatever the makeup of the dataset or the underlying assumptions of each correlation
approach, this consistent pattern indicates a solid and robust link between γd and σ. As
a result, these two parameters, as well as LL, γdmax, and SR, were chosen as inputs due
to their importance in soil categorization and ease of assessment via simple experiments.
Table 2 displays the statistical properties of the variables chosen. Table 3 shows the inputs
and output boundaries for the developed models.
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Table 2. Summary of the statistical characteristics of the variables.

LL (%) SR (%) γd (kN/m3)
γdmax

(kN/m3)
Applied Stress

[σ] (kN/m2)

mean 59.82 78.9 15.14 15.69 164.59
std 13.02 17.1 1.22 1.20 83.43
min 41.00 44.5 12.05 13.95 25.00
25% 48.60 65.0 14.26 14.66 87.50
50% 55.80 75.0 15.11 15.95 170.00
75% 72.10 88.0 16.05 16.73 240.00
max 78.80 100.0 17.80 18.20 300.00

Table 3. Boundaries, inputs, and outputs used for the developed models.

Models to Predict Dry Unit Weight (γmax) Models to Predict Applied Stress (σmin)

Parameters Minimum Maximum Minimum Maximum

Input parameters Input parameters

LL (%) 41 79 41 79

SR (%) 45 100 45 100

σ (kN/m2) 25 300

γdry (kN/m3) 12 17.8

γdmax 13.95 18.2 13.95 18.2

Output parameter Output parameter

γmax (kN/m3) 12 17.8

σmin (kN/m2) 25 300

2.5. Machine Learning Algorithms Used in the Study

In this section, a comprehensive comparison is conducted among the algorithms
employed in this study, including decision tree regression (DTR), random forest regression
(RFR), gradient boosting regression (GBR), support vector regression (SVR), and artificial
neural networks (ANN). These algorithms have been chosen for their common use in
previous studies.

2.5.1. Decision Tree Regression

Decision tree regression, or DTR, represents a hierarchical data structure characterized
by a dynamic arrangement of branches and nodes. Within this structure, nodes exhibit
lines going outwards, and some nodes, termed ‘leaves’, lack such extensions. The mech-
anism involves the division of data points intended for regression or categorization into
two or more distinct categories using specific internal nodes. In the training phase, in-
put variable values undergo comparisons against designated functions. The algorithm
systematically endeavors to construct optimal decision trees by iteratively minimizing
the fitness function. At various junctures within each context of independent variables,
the dataset undergoes division. During this process, the algorithm computes prediction
errors, representing disparities between projected and actual values, guided by the fitness
function. The determination of the optimal split point hinges on identifying the variable
that yields the smallest fitness function value, a process that entails evaluating split point
errors across each variable. In the context of decision tree regression, several key hyperpa-
rameters play pivotal roles in shaping the model’s performance. One such parameter is
the ‘max_depth,’ which dictates the maximum depth of the decision tree. A deeper tree
can capture intricate relationships in the training data but risks overfitting. On the other
hand, ‘min_samples_split’ determines the minimum number of samples required to split an
internal node. It influences the threshold for further division, thereby affecting the model’s
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generalization capability. Additionally, the ‘min_samples_leaf’ parameter establishes the
minimum number of samples necessary to constitute a leaf node [72].

2.5.2. Random Forest Regression

Random forest regression (RFR) stands out as a powerful ensemble learning algorithm
widely recognized for its efficacy in both academic and practical settings, particularly in
tasks involving classification and regression. The strength of RFR lies in its innovative use
of bootstrap aggregation, which facilitates the creation of an ensemble comprising diverse,
randomly constructed, and unpruned decision trees. The ensemble is meticulously crafted
by systematically altering a group of decision trees, and a pivotal element in this process is
the introduction of random feature selection. This strategic approach ensures a rich diversity
of decision trees, making the judicious selection of different attributes imperative. Key
hyperparameters govern the behavior of the RFR model. The max_depth parameter controls
the maximum depth of individual decision trees, influencing the model’s capacity to
capture intricate relationships. The parameter min_samples_leaf determines the minimum
number of samples required in a leaf node, guarding against nodes with too few samples.
Simultaneously, min_samples_split sets the minimum number of samples needed to split
an internal node, contributing to model generalization. The critical n_estimators parameter
specifies the number of trees in the ensemble, influencing overall model performance. The
careful tuning of these hyperparameters is essential to strike a balance, avoiding overfitting
and ensuring the generalization capability of the random forest model. The RFR’s ability to
aggregate votes from diverse decision trees makes it a robust tool for diverse applications,
with detailed explanations available in prior studies [55,73,74].

2.5.3. Gradient Boosting Regression

Gradient boosting regression (GBR) stands as a formidable ensemble-trained super-
vised machine learning model renowned for its predictive capabilities. This method
operates by amalgamating numerous simple models into a singular composite model, a
technique recognized as boosting. Boosting is often characterized as an additive model
due to its incremental addition of basic models while maintaining the model’s trees un-
changed. The amalgamation of more fundamental models consistently enhances predictive
accuracy. Central to gradient boosting is the reduction in losses through gradient descent,
an iterative optimization procedure of the first order. In the realm of gradient boosting,
decision trees function as weak learners, employing a squared error loss function. GBR
orchestrates the training of a weak model to map features to the anticipated residuals of
that weak model. These residuals are seamlessly integrated into the input of the current
model, steering it toward the desired outcome. Through recurrent iterations of this process,
the overall predictive accuracy of the GBR model steadily advances. The effectiveness
of gradient boosting regression (GBR) is profoundly influenced by key hyperparameters
that govern its behavior. The subsample parameter determines the fraction of samples
used for fitting the individual base learners, playing a role in mitigating overfitting. The
parameter n_estimators specifies the number of boosting stages or trees, directly impacting
the complexity and performance of the model. The min_samples_split hyperparameter
dictates the minimum number of samples required to split an internal node, influencing
the model’s tendency to partition the data. Simultaneously, min_samples_leaf sets the
minimum number of samples needed in a terminal or leaf node, contributing to the preven-
tion of overly specific nodes. The max_depth parameter controls the maximum depth of
the individual decision trees, managing their capacity to capture complex relationships.
Lastly, the learning_rate hyperparameter governs the contribution of each tree to the model,
regulating the impact of new trees on the overall ensemble [75,76].

2.5.4. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost), a prominent implementation of gradient boost-
ing machines (GBM), stands out as a high-performing tool in supervised learning, versatile
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for both regression and classification challenges. Its accelerated execution speed, par-
ticularly in out-of-core computations, makes it a preferred choice among data scientists.
Powered by advanced mechanisms such as tree pruning, regularization, and gradient boost-
ing, XGBoost synergistically enhances predictive capabilities, demonstrating adaptability
in handling missing data instances and providing regularization strategies. To unlock its
full potential, meticulous hyperparameter tuning is paramount. The learning rate and
maximum depth, among other key hyperparameters, play crucial roles in optimizing effi-
ciency. The ‘colsample_bytree’ parameter controls the subsample ratio of columns when
constructing each tree, influencing model diversity. The ‘subsample’ parameter determines
the fraction of training samples used for tree fitting, contributing to the algorithm’s ro-
bustness. ‘N_estimators’ specifies the number of boosting rounds, impacting the overall
model complexity. Together, these hyperparameters contribute to the fine-tuning process,
ensuring XGBoost operates at its peak performance for various predictive tasks [77].

2.5.5. Support Vector Regression

Support vector machine (SVM) has found extensive application in diverse predictive
scenarios, encompassing both classification and regression tasks. In the realm of regression,
it takes on the name of support vector regression (SVR) [78]. In regression, the model
undergoes a transformation of inputs into a higher-dimensional space, constituting the
foundation of SVR’s training process grounded in the principles of structural risk mini-
mization (SRM) [79]. A pivotal role in this intricate transformation is assigned to a kernel
function, responsible for mapping inputs to the higher-dimensional space. The key hy-
perparameters critical to SVR’s performance are C, epsilon, and kernel. The parameter
C influences the trade-off between a smooth decision boundary and accurate fitting of
the training data. Epsilon defines the margin of tolerance, determining the sensitivity of the
model to errors. The choice of kernel, whether linear, polynomial, or radial basis function
(RBF), significantly affects the model’s ability to capture complex relationships within the
data. Each hyperparameter plays a crucial role in shaping the SVR model’s accuracy and
generalization capability, demanding careful consideration during the model tuning process.

2.5.6. Artificial Neural Networks

Artificial neural networks (ANN) constitute a computational framework comprised of
artificial neurons designed to mimic information transfer processes akin to the human brain,
enabling knowledge acquisition. They create sophisticated input–output models capable of
discerning intricate relationships within multidimensional data, finding applications across
various engineering disciplines [80,81]. ANN displays diverse network configurations,
encompassing single and multiple layers. For instance, the feedforward back propagation
neural network (FFBP) features an input layer for data reception, an intermediate hidden
layer, and culminates in an output layer providing outcome-specific insights in response to
input stimuli. Key hyperparameters governing the performance of ANN models include
learning_rate, batch size, hidden layers function, and linkage between the hidden layer
and the ultimate output layer function. The learning_rate determines the step size during
optimization, influencing the convergence speed and model stability. Batch size regulates
the number of samples processed before updating model parameters, impacting both
computational efficiency and model generalization. The choice of the hidden layers function
dictates the activation function applied to neurons within the hidden layers, shaping the
network’s ability to capture complex patterns. The linkage function between the hidden
layer and the ultimate output layer is pivotal in defining how information flows through
the network, determining the model’s capacity to map inputs to accurate outputs. Figure 11
depicts an ANN model with four neurons in the input layer, two hidden layers with five
neurons in each, and an output layer.
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In the realm of machine learning, hyperparameters play a pivotal role in shaping the
behavior and performance of models. These parameters serve as configuration settings,
influencing how a model learns patterns from data. The careful adjustment of hyperparam-
eters is crucial to achieving optimal model accuracy and overall effectiveness in solving
specific tasks. A thoughtful tuning of hyperparameters is, therefore, essential to harness
the full potential of machine learning algorithms, enabling them to adapt and perform well
across diverse datasets.

2.6. Building the Dataset and Evaluation of the Models

In this study, the previously mentioned algorithms outlined in Section 2.2 are utilized
to construct developed models to predict the applied stress and dry unit required to
achieve the lowest swell amplitude in expansive soil. To formulate these models, various
geotechnical identification parameters of expansive soil will be introduced as inputs to the
machine learning models. These parameters include the liquid limit (LL), initial degree of
saturation (SR), maximum dry unit weight ( γdmax) as determined by the standard Proctor
test, and the dry unit weight ( γd) to predict the optimal applied stress ( σmin), while the
parameters including liquid limit (LL), initial degree of saturation (SR), maximum dry unit
weight ( γdmax), and the applied stress ( σ) will be used to predict the optimal dry unit
weight ( γmax) as shown in Table 3. The output parameter will be the applied stress and
dry unit weight required to achieve the lowest level of swell amplitude (almost zero) in
expansive soil.

In evaluating the effectiveness of the developed models, the initial step involves
subjecting them to scrutiny using the training data. Subsequently, to assess the models’
generalization capabilities, the method of ‘Cross-Validation’ is employed. This involves
testing the models with datasets distinct from those used during the training phase. In this
research, a total of 657 datasets were used in developing each predictive model, specifically
designed to estimate the applied stress needed to achieve minimal volumetric changes.
Among these datasets, 70% were allocated for the training phase, while the remaining 30%
were carefully reserved for the crucial purposes of validation and testing, employing the
Cross-Validation methodology.

The dataset used in this study comprises 657 systematically curated entries, enhancing
the precision of our machine learning models. Specifically, 648 entries were generated
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from experimental findings, systematically covering various parameters such as sand
percentages, initial degrees of saturation, and dry unit weights. For each sand percentage,
16 samples, corresponding to unique liquid limits, were generated. Within each degree of
saturation, four initial dry unit weights were considered, resulting in 16 samples for each
percentage. Each sample underwent replication four times and testing with applied stress
values (25–300 kPa) to identify dry unit weight and stress levels nullifying swell amplitude.
To address the significant impact of applied stress on predictive accuracy, we employed a
condensed approach for each sand percentage. This involved deriving trendline equations
capturing the relationship between applied stress and the corresponding dry unit weight,
with the goal of nullifying swell amplitude for each saturation degree. These equations
enabled the projection of dry unit weights across a range of stress values (25–300 kPa) in
systematic 10 kPa intervals. The dataset was thus expanded to encompass 27 consolidated
stress levels, each multiplied by four initial saturation degrees and further multiplied by
six distinct sand percentages, resulting in the generation of 648 datasets. Additionally,
nine data points from previous research by Zou [82] and Rosenbalm [83] were included,
contributing to the compilation of 657 systematically curated datasets.

During the training, validation, and testing process of the models, the performance
was evaluated by calculating the root mean square error (RMSE) (Equation (1)), mean
absolute error (MAE) (Equation (2)), and the coefficient of determination (R2) (Equation
(3)). The RMSE is the root of average squared difference between the predicted outputs
and the actual targets, where a lower RMSE value indicates better performance. On the
other hand, the correlation coefficient (R), which is the square root of the coefficient of
determination, measures the degree of correspondence between the predicted outputs and
the actual targets. A value of R close to 1 indicates a more accurate estimation.

RMSE =

√
∑n

i=1
(
Y′

i − Yi
)2

n
(1)

MAE =
1
n∑n

i=1

∣∣(Y′
i − Yi

)∣∣ (2)

R2 =

 ∑N
j=1

(
Y − Y

)(
Yj − Yj

)√
∑N

j=1
(
Y − Y

)2
√

∑N
j=1

(
Yj − Yj

)2

2

(3)

where:

Y, Yj—refers to the observed values and expected values by machine learning models.
Y, Yj—are the average of Y, Yj, respectively.
N—represents the number of data.

2.7. Hyperparameters Optimization

This study adopts a systematic approach to hyperparameter tuning, focusing on
optimizing machine learning models exclusively through the GridSearchCV technique.
GridSearchCV is carefully applied to XGBoost, GBR, SVR, DTR, ANN, and RFR. This
method entails an iterative exploration of a predetermined grid of hyperparameter values,
conducting cross-validation for each combination to identify the optimal set that maximizes
model performance. Given the smaller and more manageable hyperparameter spaces of
these models, a comprehensive search proves both practical and advantageous [74,84,85].
The study acknowledges that both the GBR and ANN models feature larger and more
complex hyperparameter spaces, necessitating more time for optimization. However, for
the sake of consistency, the study opts to utilize GridSearchCV for GBR as well. This
strategic decision ensures a thorough and systematic exploration of the hyperparameter
space, aligning with the study’s methodology and eliminating the need for Randomized
Search CV [85].
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The TensorFlow-based artificial neural network (ANN) assumes a pivotal role in
capturing intricate patterns within the dataset. The ANN architecture, comprised of
interconnected nodes organized into layers, is employed for regression tasks, mapping
input features to continuous output values. Hyperparameter optimization for TensorFlow-
based ANNs involves a comprehensive exploration of the parameter space, encompassing
network architecture parameters (e.g., layer count, neuron count per layer, and activation
functions) as well as training process parameters (e.g., learning rate, batch size, and the
number of training epochs). This systematic process aims to identify the hyperparameter
combination that maximizes predictive accuracy, considering various configurations and
leveraging TensorFlow’s capabilities for efficient training and evaluation.

Table 4 shows the optimal configurations for each model concerning γmax and σmin,
respectively.

Table 4. The optimal hyperparameters for models.

Model Hyperparameter Values Range Optimal Values

σmin γmax

DTR
max_depth 5 to 15 14 13

min_samples_leaf 1 to 5 1 1
min_samples_split 1 to 5 3 1

RFR

max_depth 5 to 15 14 10
min_samples_leaf 1 to 5 1 1
min_samples_split 1 to 5 1 1

n_estimators 50 to 150 110 130

GBR

subsample 0.5 to 1 0.8 0.9
n_estimators 50 to 250 250 200

min_samples_split 2 to 20 17 10
min_samples_leaf 1 to 20 3 2

max_depth 3 to 15 10 5
learning_rate 0.01 to 0.4 0.1 0.2

XGBoost

colsample_bytree 0.6 to 1 1 0.8
learning_rate 0.01 to 0.4 0.1 0.2
max_depth 1 to 15 7 6

n_estimators 50 to 250 200 200
subsample 0.5 to 1 0.8 0.6

SVR
C 0.1 to 10,000 1000 10

epsilon 0.001 to 100 10 0.01
kernel linear, poly, rbf rbf rbf

ANN

number of neurons in layer1 2 to 100 8 8
number of neurons in layer2 2 to 100 56 56

learning_rate 0.01 to 0.4 0.05 0.025
batch size 10 to 50 16 12

hidden layers function ReLU, tanh, linear, Sigmoid ReLU tanh
linkage between the hidden layer and the

ultimate output layer function ReLU, tanh, linear, Sigmoid linear ReLU

3. Results and Discussion
3.1. Experimental Work Results and Discussion

The relationship between the swelling amplitude and the dry unit weight of the
soil samples was examined for each percentage of added sand, with an initial degree of
saturation of 75%, as shown in Figure 12. The results indicate that the swell amplitude
increases as the dry unit weight of the soil samples increases, for all percentages of added
sand. It should be noted that the swelling values decrease with an increase in the applied
stress to the soil. Similar observations were made for the other initial degree of saturation.
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Figure 12. Swelling amplitude vs. dry unit weight for different percentages of sand at 75% degree of
saturation; (a) applied stress = 75kPa, (b) applied stress = 150kPa.

For each applied stress considered as σmin, the dry unit weight ( γmax) at which
volumetric changes become insignificantly small (indicated by a swelling amplitude of
0) was determined. This determination is illustrated in Figure 13, which presents the
correlation between dry unit weight and the percentage of added sand at various applied
stress levels that lead to a swelling amplitude of 0, while maintaining a degree of saturation
at 75%. An analysis of Figure 13 reveals that, under the same applied stress resulting
in minimal volumetric changes (swelling amplitude = 0), the necessary dry unit weight
increases proportionally with the increase in sand content up to approximately 30%. Beyond
this point, the rate of increase becomes less prominent. Furthermore, it is noteworthy
that as the dry unit weight increases, the required applied stress to achieve zero swell
amplitude also increases. Similar results hold true for other degrees of saturation as well.
Consequently, structures with varying weights require a careful consideration of foundation
dimensions. This ensures that the applied stress aligns with the initial dry density and
degree of saturation, ultimately minimizing foundation heave.
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Figure 13. The dry unit weight corresponding to swelling amplitude = 0 vs. sand percentage for 75%
degree of saturation.

In view of the complexity of the swelling phenomenon and the significant variability
in the results obtained through statistical methods, machine learning is proposed to assist
in predicting the applied stress required to minimize volumetric changes. The inputs
to the model will comprise data obtained from simple experiments that are not overly
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time-consuming or resource-intensive, while the outputs will be used to compare and
validate the model’s predictions against experimental data.

3.2. Machine Learning Results and Discussion

The Results and Discussion section initiates with a comparative analysis aimed at
evaluating the strengths and weaknesses of each model in relation to others, offering
nuanced insights. Subsequently, a detailed examination of each model’s training and
test datasets is conducted separately, ensuring a comprehensive understanding of their
individual performance.

3.2.1. Comparison of Machine Learning Models

This section provides a concise comparative analysis of various machine learning
models used in this study, with a specific focus on their performance across training
validation and testing datasets. The evaluation includes both quantitative metrics, as
presented in Table 5, and visual representations depicted in Figures 14 and 15. Additionally,
Figure 16A–F and Figure 17A–F provide graphical illustrations that collectively enhance
the understanding of the relative predictive capabilities of these models. Based on the
metrics presented in Table 5 and supported by Figures 14 and 15, ANN and XGBoost
had superior performance measures. However, ANN performed better than XGBoost in
predicting σmin. ANN and XGBoost achieved the highest R-squared values and the lowest
RMSE and MAE, establishing themselves as the top performers in predicting applied
stress and dry unit weight. GBR followed closely in second place, showcasing strong
predictive capabilities, while SVR and RFR ranked third in terms of predictive accuracy.
However, DTR demonstrated a less favorable performance, indicated by its performance
metrics and instances of overestimation for specific data points. It is important to note that
while SVR achieved metrics similar to GBR, its lower ranking was due to the presence of
mispredicted points that deviated significantly from the best fit trend line (ideal line) as
shown in Figures 16 and 17. As a result, in predicting σmin and γmax for the expansive soil
under consideration, ANN and XGBoost outperformed GBR, RFR, SVR, and DTR.

Table 5. The metrics for different algorithms used in the study.

Algorithm Metrics
σmin γmax

Training Validation Testing rd (%) Training Validation Testing rd (%)

DTR
R2 0.995 0.9337 0.9372 5.8 1 0.9931 0.9845 1.6

RMSE 5.79 22.63 21.79 276.3 0 0.10344 0.158 -
MAE 3.65 17.414 16.414 349.7 0 0.0816 0.0965 -

RFR
R2 0.9946 0.9698 0.9636 3.1 0.999 0.9937 0.9924 0.7

RMSE 5.975 15.273 16.6 177.8 0.0374 0.0985 0.111 196.8
MAE 4.728 12.344 12.954 174.0 0.0244 0.0687 0.0696 185.2

GBR
R2 0.9997 0.9839 0.9789 2.1 0.999 0.9954 0.9954 0.4

RMSE 1.385 11.16 12.64 812.6 0.01 0.085 0.087 770.0
MAE 1.017 8.332 9.172 801.9 0.0081 0.052 0.0463 471.6

XGBoost
R2 0.9999 0.9841 0.9856 1.4 0.9999 0.9985 0.9976 0.2

RMSE 0.932 11.1 10.43 1019.1 0.01 0.048 0.062 520.0
MAE 0.7035 8.19 7.92 1025.8 0.0068 0.035 0.039 473.5

SVR
R2 0.9554 0.971 0.972 1.7 0.9967 0.9954 0.9936 0.3

RMSE 17.26 15.07 14.60 15.4 0.069 0.0836 0.102 47.8
MAE 10.79 10.622 11.37 5.4 0.0237 0.0444 0.0488 105.9

ANN
R2 0.9946 0.994 0.9917 0.3 0.9963 0.9977 0.9954 0.1

RMSE 6.01 6.82 7.92 31.8 0.073 0.06 0.086 17.8
MAE 4.625 5.085 5.872 27.0 0.051 0.048 0.061 19.6
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It should be highlighted that the generalization capacity of an ML model is measured
by how well it predicts the testing (unseen) dataset. Metric scores in the testing stage
unsurprisingly show a decrease in performance for all models, albeit somewhat, due to the
unknown data, when compared to the training stage. To quantify this performance gap,
Equation (4) [86] defines the degradation rate, or rd:

rd =

∣∣∣∣mtrain − mtest

mtrain

∣∣∣∣× 100% (4)

where mtrain and mtest are the values of a specific measure throughout the testing and
training stages.

All performance measurements reveal that among all models, the ANN produced
the least degree of performance degradation. The SVR comes next, although its metrics
were not the best. The performance of the other algorithms fell dramatically, especially
when it came to the RMSE and MAE for DTR. The ANN produced the most consistent
results across both performance phases (training and testing), while the XGBoost and ANN
produced the most accurate predictions and highest metrics as shown in Figures 14 and 15.
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So, ANN is recommended as the best model as it achieved a high performance with the
least degree of performance degradation.
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The visualization in Figures 16 and 17 provides a thorough analysis of the models’
predictive capabilities of σmin and γmax, respectively. Figures 16 and 17 depict the com-
parison between actual and predicted values for training, validation, and test sets. In the
training set, most of the models demonstrated excellent accuracy, achieving an R-squared
value of almost 1 and a low RMSE and MAE. This indicates that it effectively captured
the variability in the training data and made minimal prediction errors. However, it is
worth noting that some data points notably deviated from the best fit trend line (deal line),
indicating limitations of the SVR and DTR models in specific situations.
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ANN and XGBoost Models clearly aligned closely with the ideal line, demonstrating their
accurate predictions across a range of stress levels. GBR models followed this trend with minimal
deviations from the reference line, although there were some exceptions. RFR also showed good
alignment overall, with occasional deviations. In contrast, DTR and SVR exhibited more noticeable
differences from the ideal line, indicating variations between actual and predicted.

Furthermore, determining an acceptable error margin is critical in determining the
training dataset’s adequacy. Figures 16 and 17 show a 20% error margin for σmin models and
a 1% error margin for γmax models on each cross plot to demonstrate this. The prediction
of γmax requires increased precision, with the smallest possible margin of error due to the
significant influence even minor changes can have on its behavior, as shown in Figure 17,
where most projected values fall within the 1% error margin boundaries. Both the σmin and
γmax models performed well, with most predictions falling within the error margin lines
during the training, validation, and testing phases. This demonstrates that the training
dataset was enough to support the σmin and γmax predictive models using the ANN and
XGBoost algorithm proposed in this study.

3.2.2. Models Results
DTR Model Results

Figure 18 provides a comprehensive analysis of the DTR model’s predictive performance
for σmin and γmax across both training and test datasets. The training set exhibits exceptional
accuracy, as indicated by a coefficient of determination (R-squared) of 0.995 and 1 for σmin
and γmax, respectively, along with low RMSE and MAE values (5.79 and 3.65 for σmin, 0 for
γmax). This suggests robust capturing of training data variance and minimal prediction errors.
However, in the test set, performance diminished, with R-squared values of 0.9372 and 0.9845
for σmin and γmax, respectively, and higher RMSE and MAE values (21.79 and 16.414 for σmin,
0.158 and 0.0965 for γmax). This confirms a notable degradation in predictions for unseen data.
The combined assessment of metrics and visualization highlights the DTR model’s limited
ability to align predictions with actual values, particularly evident in the deviation of certain
unseen data points from the best-fit trend line in specific contexts.
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RFR Model Result

Figure 19 presents a visualization of the RFR model’s predictive performance for σmin
and γmax across both training and test datasets. The training set showcased exceptional
accuracy, with a coefficient of determination (R-squared) of 0.9946 and 0.999 for σmin and
γmax, respectively. Additionally, the model exhibited low RMSE and MAE values (5.975 and
4.728 for σmin, 0.0374 and 0.244 for γmax), indicating robust capturing of training data variance
and minimal prediction errors, akin to DTR but with a slight advantage favoring DTR.
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In the test set, RFR outperformed DTR, with R-squared values of 0.9636 and 0.9924
for σmin and γmax, respectively, along with lower RMSE and MAE values (16.6 and 12.954
for σmin, 0.111 and 0.0696 for γmax). While there was still a degradation in predictions
for unseen data, it is notably better than DTR. The combined assessment of metrics and
visualization indicates that the RFR model had a strong ability to align predictions with
actual values.

Clear evidence suggests that the RFR model surpassed the DTR model, showcasing
enhanced predictive capabilities. However, it is essential to note that although the number
of data points deviating from the best-fit trend line had significantly been reduced compared
to the DTR model, some instances still exist, particularly for lower stress values. These
deviations indicate ongoing challenges in specific situations, emphasizing the need to
explore other models to address these discrepancies.

GBR Model Results

Figure 20 provides a visualization of the GBR model’s predictive abilities for σmin and
γmax across both training and test datasets. In the training set, the model demonstrated
exceptional accuracy with a coefficient of determination (R-squared) of 0.9997 and 0.999
for σmin and γmax, respectively. The low RMSE and MAE values (1.385 and 1.017 for σmin,
0.01 and 0.0081 for γmax) underscored the robust capturing of training data variance and
minimal prediction errors, although slightly better than RFR. However, in the test set, GBR
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outperformed RFR with R-squared values of 0.9789 and 0.9954 for σmin and γmax, respectively.
The RMSE and MAE values (12.64 and 9.172 for σmin, 0.087 and 0.0463 for γmax) indicate a
degradation in predictions on unseen data compared to the training set. While GBR’s metrics
were higher than RFR, its overall performance was considerably better. The reason lies in GBR
achieving superior metrics for the training set compared to the RFR model.
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Metrics and visualization collectively demonstrate the RFR model’s ability to match
predictions with actual values. Despite a slight increase in prediction errors compared
to the training set, the model showcased a notable capacity to generalize predictions on
unseen data.

In summary, GBR surpassed RFR in performance, showcasing enhanced predictive
capabilities. However, deviations from the ideal line persisted, particularly for low stress
values. GBR is highly recommended for dry unit weight predictions due to minimal
deviations from the ideal line.

XGBoost Model Results

The analysis presented in Figure 21 delves into the XGBoost model’s predictive prowess
concerning σmin and γmax across both training and test datasets. Notably, the training set
showcased exceptional accuracy, boasting a coefficient of determination (R-squared) of
0.9999 for both σmin and γmax. Additionally, the model exhibited low RMSE and MAE
values (0.932 and 0.7035 for σmin, 0.01 and 0.0068 for γmax), signifying its adeptness in
capturing training data variance with minimal prediction errors. While comparable to GBR,
the XGBoost model slightly outperformed GBR in the training set.

In the test set, XGBoost outshone GBR, evident in the R-squared values of 0.9856 and
0.9976 for σmin and γmax, respectively. Correspondingly, the RMSE and MAE values (10.43
and 7.92 for σmin, 0.062 and 0.039 for γmax) reinforced XGBoost’s proficiency in delivering
precise predictions on independent data. Although there was a marginal increase in
prediction errors on unseen data compared to RFR, XGBoost’s metrics and performance
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surpassed GBR. The key differentiator lies in XGBoost achieving higher metrics for the
training set than the GBR model.
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In summary, XGBoost unequivocally outperformed the DTR, RFR, and GBR models
in terms of predictive accuracy and closely aligned with the ideal line. Despite minor
deviations from the ideal line among certain data points, these discrepancies remained
within acceptable bounds. Crucially, these instances hold significance, particularly in
predictions at low stress levels, where the predicted stress occasionally exceeds the actual
value. This serves as a safety measure, preventing swelling and thereby enhancing the
model’s overall predictive utility and practical applicability.

SVR Model Results

Figure 22 offers an analysis of the SVR model’s predictive performance for σmin and
γmax across both training and test datasets. The training set exhibited a coefficient of
determination (R-squared) of 0.9554 for σmin and 0.9967 for γmax, along with an RMSE of
17.26 for σmin and 0.069 for γmax, and an MAE of 10.79 for σmin and 0.0237 for γmax. Despite
being less accurate than previous models in the training set, SVR demonstrated acceptable
predictive capabilities. In the test set, SVR performed slightly better than DTR and nearly
matched RFR’s performance, evident in R-squared values of 0.972 for σmin and 0.9936
for γmax. The RMSE and MAE values (14.6 and 11.37 for σmin, 0.102 and 0.0488 for γmax)
confirmed SVR’s effectiveness in providing reasonably accurate predictions on independent
data. However, SVR exhibited some discrepancies from the ideal line, highlighting its
limitations compared to RFR, GBR, and XGBR models. While SVR can deliver accurate
predictions, there were instances where data points deviated significantly from the ideal
line, akin to the limitations observed in the DTR model.
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In direct comparison to RFR, GBR, and XGBR models, SVR fell short in its predictive
ability. Despite providing reasonably accurate predictions, the noticeable deviations from
the ideal line suggest caution in using SVR for stress and dry unit weight predictions. Given
its relative inferiority, it is advisable to prioritize RFR, GBR, and XGBR models for more
accurate and reliable predictions in applied stress and dry unit weight scenarios.

ANN Model Results

Figure 23 provides an examination of the ANN model’s predictive capacity for σmin
and γmax across both training and test datasets. The training set exhibited a coefficient
of determination (R-squared) of 0.9946 for σmin and 0.9963 for γmax, along with an RMSE
of 6.01 for σmin and 0.073 for γmax, and a low MAE of 4.625 for σmin and 0.051 for γmax.
Although displaying slightly less accuracy than its predecessors in the training set, the
ANN model demonstrated notable predictive capabilities. In the test set, the performance
of the ANN model stands out, ranking among the top models and closely approaching the
performance of XGBoost and GBR models. The ANN model achieved R-squared values of
0.9917 for σmin and 0.9954 for γmax, with an RMSE of 7.92 for σmin and 0.086 for γmax, along
with an MAE of 5.872 for σmin and 0.061 for γmax. These results underscore the proficiency
of the ANN model in delivering reliable predictions for unseen (test) data instances. A
comparative analysis with previous models revealed that the ANN model holds a favorable
position, offering near-perfect accuracy and minimal degradation, as evidenced in Table 5.
This high level of performance positions the ANN Model as a valuable tool for predicting
applied stress and dry unit weight.
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3.2.3. Streamlined Interface for ANN Model Predictions

The introduction of a user-friendly interface complements this approach by offering
a simplified, one-click prediction process. This user-friendly interface ensures that users,
regardless of their technical proficiency, can effortlessly harness the predictive capabilities
of the ANN model. For example, to utilize the ANN Optimal Dry Unit Weight Model,
one can open the ‘ANN Gama model.ipynb’ Python file using the Jupyter Notebook app
(see Supplementary Materials). With a simple press of Shift + Enter, the interface swiftly
materializes, providing a user-friendly experience as shown in Figure 24. This same process
seamlessly applies to the ANN Optimal Applied Stress model, ensuring a consistent and
accessible user interaction.
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4. Conclusions

This study delved into the complex behaviors of expansive soils, emphasizing key
factors such as initial dry unit weight, initial degree of saturation, sand content, and
applied stress in influencing soil swelling amplitude. A cost-effective methodology was
proposed, leveraging stress application based on soil engineering properties, demonstrating
a substantial reduction in swelling amplitude and offering an effective approach to mitigate
associated risks.

The introduction of an innovative machine learning-based methodology has enabled
the prediction of optimal dry unit weight and stress levels for controlling soil swelling.
Among the various models, XGBoost and ANN have emerged as frontrunners, showcasing
exceptional performance with the highest R-squared values: 0.9856 and 0.9917 for σmin pre-
dictions, and 0.9976 and 0.9954 for γmax predictions. These models have also demonstrated
the lowest RMSE (10.43 and 7.92 for σmin, 0.062 and 0.086 for γmax) and the lowest MAE
(7.92 and 5.872 for σmin, 0.039 and 0.0488 for γmax), respectively.

Importantly, the ANN model exhibits the least degree of performance degradation,
underlining its robustness in providing reliable predictions. This proposed methodology
holds significant potential to advance geotechnical engineering practices, empowering in-
formed decision-making in construction projects involving expansive soils and minimizing
potential damage.

This study’s limitations arise from depending on a specific dataset tailored to a partic-
ular range for each parameter, as indicated in Table 3. Additionally, Atterberg limits should
be positioned slightly above and near line A on the Casagrande chart. This commitment to
achieving accurate predictions may, however, pose constraints on the generalizability of the
findings. Future research in this field should focus on expanding the dataset and refining
risk mitigation strategies related to expansive soils, thereby contributing to the continual
advancement of geotechnical engineering practices. These enhancements aim to further
solidify the applicability and effectiveness of the proposed approach in real-world scenar-
ios. In conclusion, while the current study provides valuable insights, addressing these
limitations through broader datasets and refined strategies will be crucial for advancing
the reliability and robustness of predictive models in geotechnical engineering.
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