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Abstract: Effective management of diabetes requires accurate monitoring of blood glucose levels.
Traditional invasive methods for such monitoring can be cumbersome and uncomfortable for pa-
tients. In this study, we introduce a noninvasive approach to estimate blood glucose levels using
photoplethysmography (PPG) signals. We have focused on blood glucose prediction using wrist PPG
signals and explored various PPG waveform-based features, including AC to DC ratio (AC/DC) and
intrinsic mode function (IMF)-based features derived from empirical mode decomposition (EMD). To
the best of our knowledge, no studies have been found using EMD-based features to estimate blood
glucose levels noninvasively. Additionally, feature importance-based selection has also been used to
further improve the accuracy of the proposed model. Among the four machine learning algorithms
considered in this study, CatBoost consistently outperformed XGBoost, LightGBM, and random
forest across a wide number of features. The best performing model, CatBoost, achieved Pearson’s r
of 0.96, MSE 0.08, R2 score 0.92, and MAE 8.01 when considering the top 50 features selected from
both PPG waveform-based features and IMF-based features. The p-values for all models were <0.001,
indicating statistically significant correlations. Overall, this study provides valuable insights into
the feasibility and effectiveness of noninvasive blood glucose monitoring using advanced machine
learning techniques.

Keywords: photoplethysmography; blood glucose; diabetes; machine learning; empirical mode
decomposition

1. Introduction

Diabetes is a long-term health condition that currently impacts an estimated 537 million
adults globally, and projections suggest this number could rise to 783 million by 2045 [1].
The disease becomes apparent when the body is either incapable of producing sufficient
insulin or unable to efficiently utilize the insulin it produces. This results in increased blood
glucose levels. Proper management of diabetes is necessary as there is no permanent cure
and subsequent health complications associated with it.

The reliable monitoring of blood glucose levels serves as essential in the manage-
ment of diabetes mellitus. Traditional methods for monitoring glucose rely on invasive
blood sampling, posing discomfort and adherence challenges for patients. Minimally
invasive methods allow for more continuous monitoring, but they also bring particular
challenges. A micro-needle implant is often required to detect glucose levels in interstitial
fluid. These approaches frequently result in reading delays, differences in actual glucose
levels, and the added cost and hassle of recurrent needle changes [2]. Consequently, the
quest for noninvasive monitoring technologies has been an area of significant interest and
active research.

Recent advancements in photoplethysmography (PPG) technology present a promis-
ing view for noninvasive and economical choice of blood glucose monitoring. PPG is a
noninvasive optical method of measuring blood volume fluctuations in the peripheral

Appl. Sci. 2024, 14, 1406. https://doi.org/10.3390/app14041406 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041406
https://doi.org/10.3390/app14041406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9357-4286
https://orcid.org/0000-0003-3010-4305
https://orcid.org/0000-0001-6784-5591
https://orcid.org/0000-0001-5052-3844
https://doi.org/10.3390/app14041406
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041406?type=check_update&version=1


Appl. Sci. 2024, 14, 1406 2 of 17

circulatory system. This study utilizes a wrist-worn PPG sensor that employs a reflec-
tive approach for signal detection. The radial arteries at the wrist, which is wider than
the fingertip capillaries, provide better signal quality in reflective mode compared to the
transmissive mode typically used at the fingertip [3]. Furthermore, the wrist serves as a
more convenient location for data collection with wearable PPG devices compared to other
potential sites such as the finger, earlobe [4]. Recent studies have shown varying degrees of
success applying machine learning techniques to PPG data to estimate blood glucose levels.
In our previous study [5–7], both transmissive and reflective PPG signals have been used
for noninvasive HbA1c estimation.

In this study, we focused on noninvasively estimating blood glucose levels by using
wrist PPG signals and applying empirical mode decomposition (EMD)-based machine
learning algorithms. Algorithms such as random forest (RF), XGBoost, CatBoost, and
LightGBM [8–11] have been applied to prediction models with the goal of achieving ac-
curate glucose level estimation from PPG signals and diabetes datasets. However, some
PPG-based estimations include external features such as BMI, SpO2, age, and other rele-
vant factors to improve the accuracy of predictions. Although the application of machine
learning algorithms for blood glucose prediction using PPG signals has yielded promising
outcomes, there is still ample room for research, especially in the exploration and applica-
tion of typical PPG-based features. This issue must be addressed to increase the accuracy
and reliability of the approach. Previous studies have mainly applied EMD to PPG signals
to estimate heart rate [12], respiratory rate [12,13]. However, this proposed work leverages
EMD to identify key features of blood glucose estimation and expand its application scope
beyond traditional vital signs monitoring.

In contrast to traditional invasive and minimally invasive methods, PPG technology
presents a more patient-friendly solution for blood glucose monitoring. Current methods,
such as finger-prick testing and microneedle implantation, often cause discomfort, adher-
ence issues and are subject to delays in glucose readings. PPG overcomes many of these
limitations by being noninvasive and wearable. It provides continuous, real-time monitor-
ing without the inconvenience of painful skin penetration or frequent sensor replacement.
Furthermore, the accuracy of PPG reflecting blood glucose variations has been improved
through advanced algorithms and signal processing techniques, such as EMD, which were
not applied to traditional methods. This study aims to demonstrate how PPG, particularly
through a wrist-worn device, can improve patient compliance and diabetes management
by providing a viable and user-friendly alternative to traditional blood glucose monitoring
methods. In this study, we explore the application of wrist PPG data to estimate blood
glucose levels, emphasizing only PPG signal-based features.

The contributions of this study can be stated as follows:

- The study focuses on PPG-based features for blood glucose estimation, aiming to
reduce dependence on conventional features by exclusively utilizing PPG waveform-
based features including ratios (AC/DCs) and ratio of ratios across various wavelength
combinations, and IMF-based features derived through empirical mode decomposi-
tion (EMD). Empirical mode decomposition has been newly applied to extract PPG
signal features for blood glucose level estimation.

- In this study, we have performed a detailed comparative analysis, measuring the per-
formance of PPG-based features against well-established machine learning algorithms,
including XGBoost, random forest, LightGBM, and CatBoost.

- Improved and more reliable blood glucose predictions were achieved using only PPG
signal-based features without the need for external information such as BMI, SpO2,
and age.

- The proposed study focuses on wrist PPG data with wearable applications in mind,
while previous results [5,6,9] are based on fingertip PPG data.
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2. Materials and Methods

Figure 1 shows the system architecture for implementing the proposed method. The
PPG signal is recorded using a wrist device and then undergoes the preprocessing steps.
First, the data were segmented and filtered. Afterwards, a number of PPG waveform-based
features were extracted and the EMD was also performed to obtain intrinsic mode functions
(IMF). Both PPG –waveform-based and IMFs-based features were provided as input to the
regression algorithm, and after feature selection, 50 features were selected to estimate the
blood glucose levels. Results were evaluated on 15% test sample data and validated using
reference glucometer data.
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Figure 1. Proposed system architecture.

2.1. Data Acquisition

In this work, we employed a TMD 3719 sensor-based system containing a white LED
(consisting of three wavelengths: blue (465 nm), green (525 nm), and red (615 nm)) and
a photodetector. The CareSens II blood glucose meter was used to measure the actual
corresponding blood glucose level and a simultaneous PPG signal was recorded for three
minutes. The sampling rate for PPG data was 24 Hz. Data were collected from a total
of 34 subjects. The entire data collection process was supervised and approved by the
institutional review board (IRB) at Kookmin University, Seoul, Korea, and the IRB protocol
number is KMU-202111-BR-286. Table 1 shows the dataset demographics of the 34 subjects.
The male to female ratio of subjects is 50:50.

Table 1. Dataset description.

Measurement Blood Glucose (mg/dL) Age (Years) HbA1c (%)

Min 86 23 5.1
Max 170 86 8.8

Mean ± SD 120.82 ± 25.12 55 ± 21.92 5.87 ± 0.63
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2.2. Segmentation

The PPG signal data are systematically segmented for feature analysis. The process
begins with extracting data from CSV files, each containing PPG signal information includ-
ing date, subject details, meal status, and blood glucose levels. The data are loaded into
pandas DataFrames, and unnecessary columns are removed to focus only on the red, green,
and blue (RGB) wavelength values. The segmentation process divides the continuous PPG
signal into 30-s intervals. This is accomplished by splitting each complete DataFrame (the
entire PPG signal record) into several smaller sub-DataFrames, each representing one of
these 30-s windows. After removing certain columns, the data are converted to numpy
arrays. These arrays are then layered to create a three-dimensional numpy array for each
subject. This array captures the segmented RGB signal data over time. In the final step,
we combine the data from all subjects into a standardized order. To maintain consistency,
each subject’s data are truncated to the size of the smallest subject data length. The end
result is a uniform three-dimensional array, containing segmented PPG signal data from
all participants, ready for further analysis. With a sampling rate of 24 Hz, each of these
smaller sub-DataFrames contains 720 samples, corresponding to a time span of 30 s.

2.3. Preprocessing

The raw PPG signal often contains noise and baseline drift due to factors such as
breathing, motion artifacts, etc. To address this, polynomial detrending is used to remove
the baseline drift, which is a low-frequency trend in the signal. This method involves fitting
a polynomial (in our case a 3rd-order polynomial) to the raw data to match the slow drift,
and then subtracting it to center the waveform. After detrending, high-frequency noise
in PPG signal is smoothed using a 2nd order low-pass Butterworth filter with a cutoff
frequency of 8 Hz. Additionally, residual low-frequency fluctuations are eliminated with a
2nd-order high pass filter with a cutoff frequency of 0.5 Hz.

2.4. Empirical Mode Decomposition (EMD) on PPG Signals

EMD is a technique that decomposes a signal into its fundamental components, termed
IMFs [14]. It employs a sifting process to identify peaks and troughs in the data to create
upper and lower envelopes. The mean of these envelopes is then removed from the signal,
isolating an IMF, which represents a basic oscillatory mode within the signal. Essentially,
EMD aims to represent a signal as the sum of these IMFs and a residual. The ‘EMD’ class
from the ‘PyEMD’ library was used to extract IMFs from the processed PPG signal. Each
RGB channel of the segmented PPG data undergoes filtering before EMD is executed on
each channel. Every IMF has certain characteristics: its upper and lower boundaries are
symmetrical, and the number of points where they cross zero and the number of peaks (or
troughs) differ by at most one. This means that the IMF must have at least one zero crossing
and one peak (or trough). This condition ensures that the oscillatory characteristic of the
IMF is consistent and regular. Figure 2 shows the decomposition of a blue channel signal of
the first segment of subject 1 into its intrinsic mode functions (IMFs) as an example.

The initial IMF (IMF 1 at Figure 2b) captures the highest frequency oscillations with
amplitudes around −20 to 20. Subsequent IMFs show progressively lower frequency
oscillations and smaller amplitude ranges. IMF 2 at Figure 2c oscillates between about
−10 to 10, IMF 3 at Figure 2d oscillates with smoother oscillations between −5 and 5, and
IMF 4 depicted in at Figure 2e shows much wider oscillations within an amplitude of −2 to
2. The fifth IMF (IMF 5 at Figure 2f) has a very narrow amplitude ranging from −1 to 1,
indicating very smooth oscillations. The last IMF or residual (Figure 2g) shows a nearly
constant trend with amplitudes around 4750, indicating a low-frequency drift in the signal.
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2.5. Ratio Features from PPG Signals

We used AC/DCs of the PPG signal as features and their ratios (ratios of different
wavelength AC/DCs) also as features for effective blood glucose estimation.

2.5.1. AC/DCs as Features

The AC-to-DC ratio (AC/DC) represents the ratio of the pulsatile (i.e., AC) to the
baseline or static (i.e., DC) component of the PPG signal. The relation between the AC/DC
value and blood glucose level may be causal. However, there is not much research on
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this subject. A proportional association between AC/DC values and glucose levels was
demonstrated in one study [15]. The relationship between blood glucose levels and AC/DC
values of PPG signals was demonstrated in another study [16]. A recent study [17] showed
a correlation between perfusion index (PI) and blood glucose concentration. The perfusion
index is a measure of pulse strength in a specific area of the body and is a relative assessment
of the blood flow to that area and similar to the AC/DC. They suggested that AC/DC as
PI could be a reliable indicator for noninvasive blood glucose estimation. Blood glucose
affects light scattering, and as glucose level in the blood rises, the amount of light scattered
decreases. As a result, the total absorbed light decreases. PI, which depends linearly on
the magnitude of the pulsatile component of blood flow, also decreases. They showed
a negative linear correlation between PI and blood glucose concentration. The AC (or
DC) detection from a PPG signal was performed using the AC (or DC) determination
algorithm [18]. Figure 3 shows AC/DC values versus glucose levels for 34 subjects used in
this study.
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Figure 3. AC/DC values vs. Glucose levels.

The observed characteristics of the PPG signal are influenced by the wavelength of the
light used in PPG sensors. In Figure 3, we can see the higher AC/DC for green wavelength
compared with red and blue wavelengths. The AC/DC value of the reflected PPG signal,
which is a critical factor in determining the quality of the PPG signal, varies with the light
wavelength. Specifically, green and yellow light yield higher AC/DC values, typically
between 3 and 5%, while red and infrared (IR) light produce a significantly lower value,
about 0.5 to 1% [19]. This variation is important because a higher AC/DC value generally
indicates a stronger PPG signal. Also, the green light has an inherently higher perfusion
index (PI), which correlates with a stronger PPG signal [20].

2.5.2. R1, R2, and R3 as Features

R1, R2, and R3 represent ratios of different AC/DC values of the PPG signal. It can
also be defined as ratio of ratios [21]. For all three wavelengths used in this study, R1 was
considered as the ratio of the green AC/DC to red AC/DC, R2 was considered as a ratio of
the blue AC/DC to the red AC/DC and R3 was considered as a ratio of green AC/DC to
the blue AC/DC. These are expressed in the following equations.

R1 =

[
AC
DC

]
green[

AC
DC

]
red

(1)
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R2 =

[
AC
DC

]
blue[

AC
DC

]
red

(2)

R3 =

[
AC
DC

]
green[

AC
DC

]
blue

(3)

In PPG, the absorbance of light by blood is directly related to the amount of blood
flowing through the tissue. This is because the light absorption changes with the pulsation
of blood flow, which corresponds to the heartbeats. The PPG signal consists of both an AC
component (a pulsatile component related to cardiac cycle) and a DC component (a non-
pulsatile component related to tissue structure). The absorbance for each wavelength can
be determined by the ratio of the AC component to the DC component of the PPG signal.
This ratio reflects how much light is being absorbed by pulsating blood compared to the
baseline blood volume. The term “ratio of ratios” comes from how SpO2 is calculated in
the study [21]. It involves taking the ratio of the AC/DC value for red light and dividing it
by the AC/DC value for infrared light. In that formula, each AC/DC value is a measure
of absorbance at a specific wavelength, and thus the term “ratio of absorbances” is used.
The division of these two AC to DC ratios (red and infrared) yields the “ratio of ratios”.
These ratios are derived from the PPG signal and calculated on the basis of three different
wavelengths and their combination in this study.

R1, R2, and R3 are important metrics in assessing the strength of a PPG signal as
they provide a normalized comparison of the AC and DC components of the signal and
can provide important information about cardiac output and peripheral perfusion. These
calculated ratios, derived from multi-wavelength PPG data, have been utilized as features
in this study to improve blood glucose level predictions. Figure 4 shows the trends of R1,
R2, and R3 versus glucose levels for 34 subjects. As shown in Figure 4, the R3 value is
the smallest compared to R1 and R2. As the red signal intensity is smaller, R1 and R2 are
relatively larger than R3.
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2.6. Feature Extraction from PPG Waveforms

Fifteen PPG-based general features were extracted at each of the three wavelengths.
The 15 features are zero-crossing rate (ZCR), autocorrelation (ACR), kurtosis (kurt), variance
(var), and mean of power spectral density (PSD); kurtosis (kurt), variance (var), mean,
and skewness (skew) of Kaiser-Teager energy (KTE); kurtosis (kurt) and skewness (skew)
of spectral analysis (spec); mean of wavelet analysis; autoregressive (AR) coefficients;
skewness and sum of absolute difference (SAD). The feature vector and detailed explanation
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of these PPG waveform-based features can be found in [9]. One of these 15 features is auto-
regressive coefficient feature, and we employed the Yule-Walker method to determine the
auto-regressive coefficients with an order of 2, yielding 3 additional features. Therefore, a
total of 48 PPG waveform-based features were extracted for three wavelengths, consisting
of 16 features for each wavelength. In addition to this, 3 AC/DCs and 3 ratios (R1, R2,
R3) were also included as features, and a total of 54 features were considered in this study.
Figure 5 shows the top 20 important features out of PPG waveform-based 54 features.
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2.7. Feature Extraction from IMF-Based Features Obtained through EMD

Each PPG signal segment was decomposed into intrinsic mode functions (IMFs) using
empirical mode decomposition (EMD), from which time- and frequency-domain features
were derived. Specifically, 20 features were computed for each IMF: mean ( IMFmean),
variance ( IMFvar), standard deviation ( IMFstd), peak-to-peak amplitude (PTP), skewness
( IMFskew), kurtosis ( IMFkurt), dominant frequency (Fd), total power (Pt) mean ampli-
tude envelope (AEmean) mean instantaneous frequency ( IFmean), zero crossing rate (ZCR),
extrema (ext), mean power spectral density (PSDmean), PSD variance (PSDvar), spectral
centroid (SC), spectral entropy (SE), spectral flatness (SF), peak to spectral energy ratio
(PSER), spectral band energy (SBE), spectral slope (SS). Basic statistical and frequency
domain features such as mean, variance, standard deviation, peak-to-peak amplitude,
skewness, kurtosis, dominant frequency, total power, and zero crossings are computed
using standard definitions that are well-established in the literature. For features related
to power spectral density (PSD), we have adhered to the procedure described in [9]. De-
scriptions and computational methods for the specific IMF-based features are detailed in
Appendix A.

Due to the varying number of IMFs across different wavelengths (red, green, and
blue), zero padding was employed to equalize the feature sets. This ensured uniformity
in cases where the number of IMFs observed in some signal segments did not reach the
maximum of seven. For example, if six IMFs are generated from a red signal while seven
IMFs are generated from a blue signal, the seventh IMF feature set of the red signal will
be padded with zeros. Therefore, we have a total of 420 IMFs-based features for three
wavelengths. From these extensive feature sets, we applied feature importance scores,
and Figure 6 shows the top 30 important features out of 420 features for blood glucose
estimation through EMD.



Appl. Sci. 2024, 14, 1406 9 of 17Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 17 
 

 

Figure 6. Top 30 important features extracted from IMFs. 

The overall feature extraction and selection procedure is illustrated in the flowchart 

of Figure 7. Feature selection is primarily guided by the importance of each feature, eval-

uated using different methods depending on the model. For random forest, the Gini im-

portance method was used, while for XGBoost and CatBoost, gain-based approaches were 

employed. The evaluation of LightGBM included both split- and gain-based methods. We 

then improved the model’s performance by selecting the most significant features based 

on the feature importance. 

 

Figure 7. Flow chart of feature extraction and selection procedure. 

Figure 6. Top 30 important features extracted from IMFs.

The overall feature extraction and selection procedure is illustrated in the flowchart
of Figure 7. Feature selection is primarily guided by the importance of each feature,
evaluated using different methods depending on the model. For random forest, the Gini
importance method was used, while for XGBoost and CatBoost, gain-based approaches
were employed. The evaluation of LightGBM included both split- and gain-based methods.
We then improved the model’s performance by selecting the most significant features based
on the feature importance.
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2.8. Application of IMF-Based Features Obtained through EMD

Intrinsic mode functions (IMFs) derived from empirical mode decomposition (EMD)
have been successfully applied in various studies to extract meaningful features from
physiological signals for health parameter estimation. For instance, IMF-based features
have been utilized for stress level and cognitive load detection from PPG signals [22]. Simi-
larly, in the neurophysiology domain, features such as Shannon’s entropy, spectral entropy,
standard deviation, skewness, and kurtosis extracted from IMFs have proven effective
in diagnosing sleep disorders through electroencephalogram (EEG) signal analysis [23].
Furthermore, energy features derived from IMFs have been utilized in heart rate variability
studies for stress detection [24]. These findings highlight the potential of IMF-based fea-
tures obtained from EMD in capturing relevant information from physiological signals,
including PPG, for the estimation of various health parameters. As IMF-based features
have not previously been used specifically for blood glucose estimation, we intended to
explore their potential for estimating blood glucose levels from PPG signals, given their
demonstrated applications in related biomedical fields.

2.9. Comparative Analysis between Wavelet Transform-Based Features and EMD-Based Features
for Blood Glucose Estimation from PPG Signals

Both EMD and wavelet transform are suitable techniques for analyzing nonlinear
and nonstationary signals. While EMD adaptively decomposes a signal into its intrinsic
oscillatory modes, the wavelet transform decomposes the signal into components in various
frequency bands. EMD is completely data-driven and does not require a predefined basis
function, whereas the wavelet transform is more mathematically defined and allows for
multi-resolution analysis. A recent study [25] has gathered various noninvasive technolo-
gies for blood glucose measurement, highlighting a range of features that can be used
effectively for glucose level estimation. The study demonstrated the extraction of features
from PPG signals shown in different research and discussed the application of machine
learning techniques to predict blood glucose levels. A detailed description about wavelet
transform-based feature wavelet entropy can also be found in [25]. The wavelet transform
provides detailed insights into PPG signal features by decomposing it into wavelet coeffi-
cients providing multi-resolution analysis. On the other hand, the EMD analysis proposed
in this study is an adaptive method that decomposes the signal into intrinsic mode func-
tions that represent simple oscillations. It is especially effective for nonlinear, nonstationary
data, working directly with the data without a fixed basis. The key advantage of EMD
over wavelet transform lies in its adaptability and direct extraction of data-driven features.
Another study [26] utilized wavelet transform for denoising and removal of baseline drift.
EMD can also be an alternative to signal preprocessing for noise reduction by selectively
excluding high- and low-frequency noise from the IMF representation.

3. Results and Discussion
3.1. Performance Using PPG Waveform-Based Features

The dataset provided in Table 1 was used to evaluate the performance of four machine
learning models: random forest (RF), XGBoost, LightGBM, and CatBoost in estimating
blood glucose levels. These specific algorithms were selected based on their proven effec-
tiveness in comparable prediction tasks [27,28]. Their robust nature and ability to identify
complex patterns in data, mentioned in [29], also contributed to their selection. To reduce
the risk of overfitting, careful adjustment of hyperparameters was undertaken. Addi-
tionally, the separation of training and testing data allowed for close monitoring of both
training and testing errors. It was observed that in no instances did the training error
fall below the testing error which indicates the overfitting. These four algorithms were
evaluated utilizing a set of 54 features on the test dataset and leave one out cross validation
(LOOCV) method was used for training dataset. Table 2 displays the relationship between
predicted and actual blood glucose values using various regression metrics. This includes
the Pearson correlation coefficient (Pearson’s r), along with other important measures such
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as root mean squared error (RMSE), R2 score, mean absolute percentage error (MAPE) and
mean absolute error (MAE).

Table 2. Results for the RGB combination of wavelengths using the 54 features.

Combination of
Wavelengths Metrics Random Forest XGBoost LightGBM CatBoost

RGB

Pearson’s r 0.85 0.88 0.84 0.91
RMSE (mg/dL) 22.37 18.75 20.89 16.38

R2 score 0.67 0.76 0.72 0.81
MAE (mg/dL) 10.45 12.60 15.25 12.03

MAPE (mg/dL) 7.02 8.77 11.54 8.99
Best values are in boldface font.

From Table 2, we can see that the CatBoost algorithm performs better than other
algorithms when we use PPG waveform-based features. The fact that the random forest
(RF) model exhibits a lower mean absolute error (MAE) and MAPE compared to other
algorithms may be attributed to the variance in performance variation over a wide range
of glucose values. Afterwards, feature importance-based selection was done for four
algorithms. The 20 features depicted in Figure 5 were applied as input to the regression
algorithms and results are shown in Table 3.

Table 3. Results for the RGB combination of wavelengths using selected 20 features out of 54 features.

Combination of
Wavelengths Metrics Random Forest XGBoost LightGBM CatBoost

RGB

Pearson’s r 0.89 0.92 0.84 0.93
RMSE (mg/dL) 15.72 13.83 19.4 14.02

R2 score 0.81 0.84 0.72 0.86
MAE (mg/dL) 10.23 10.96 15.20 10.46

MAPE (mg/dL) 7.78 8.46 11.54 8.64
Best values are in boldface font.

After feature selection, the performance of RF, XGB, and CatBoost improved, however
the performance of LightGBM was almost the same. LightGBM is known for handling
large sets of features well due to its efficient implementation of gradient boosting, and its
performance does not improve much when the number of features is reduced.

3.2. Performance Using 50 Features (Combining Top 20 PPG Waveform-Based Features with Top
30 IMF-Based Features)

In the context of this study, features derived from intrinsic mode functions (IMFs) are
utilized to encapsulate the intrinsic oscillatory modes inherent in PPG signals. In contrast,
features based on the PPG waveform primarily capture the overall characteristics of the
signal. Integrating these two types of features is intended to provide a comprehensive
representation of the information content of the signal. Towards this goal, the feature set
was expanded to include 50 features, consisting of the top 20 PPG waveform-based features
illustrated in Figure 5 along with the top 30 IMF-based features in Figure 6.

Expanding the feature set to 50 by combining PPG waveform-based features and IMF-
based features significantly improved the performance of random forest, with Pearson’s
r of 0.94, as shown in Table 4. The performance improvement observed with XGBoost
having Pearson’s r of 0.95 indicates that the inclusion of additional features provided
valuable insights. Similarly, LightGBM also showed notable improvement, with Pearson’s
drift r performance increasing from 0.89 to 0.93. Pearson’s r of CatBoost improved to 0.96,
maintaining its best performance position with the expanded feature set.
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Table 4. Results when we use 50 features after combining top IMF-based and waveform-based features.

Combination of
Wavelengths Metrics Random Forest XGBoost LightGBM CatBoost

RGB

Pearson’s r 0.94 0.95 0.93 0.96
RMSE (mg/dL) 13.37 11.86 14.63 10.94

R2 score 0.88 0.91 0.86 0.92
MAE (mg/dL) 8.2 7.05 9.21 8.01

MAPE (mg/dL) 6.11 6.66 7.02 6.04
Best values are in boldface font.

CatBoost enhances its performance using oblivious tress as a base learner, which
creates symmetrical decision trees by grouping features into single splits. The feature
grouping method in decision trees helps neatly organize data and avoid overfitting, leading
to more accurate predictions. CatBoost’s design also minimizes the need for extensive
hyperparameter tuning and provides superior performance despite longer training periods
than models such as XGBoost and random forest. This is a testament to its efficiency in han-
dling feature interactions. Conversely, XGBoost and random forest have progressed with
expanded features, but fall short of CatBoost’s proficiency. LightGBM also demonstrated a
performance improvement after using these combined features from the PPG waveform
and IMFs.

Note that 15% of the total data were reserved for testing at the initial stage, and the
results in Tables 2–4 were based on the test set, so the performance indicates that the models
are generalized well.

A scatter diagram of the predicted and actual (reference) glucose level values using 50
features obtained by combining PPG waveform-based features with IMFs-based features is
shown in Figure 8. The scatter plots in Figure 8 compare the performance of four machine
learning models (RF, XGBoost, LightGBM, CatBoost) in predicting blood glucose levels.
The RF model shows variability, especially at lower glucose values. XGBoost demonstrates
higher accuracy, notably in lower glucose ranges. LightGBM exhibits some accuracy but
with notable deviation in high glucose level. CatBoost, however, displays most predictions
closely aligned with the ideal line indicating superior accuracy in its predictions.

The commonly utilized Clarke’s error grid analysis (EGA) has been carried out to
confirm the clinical safety of the proposed noninvasive blood glucose estimation method.
Figure 9 displays the EGA plot with selected features. In the EGA, Zone A represents
the values within 20% of the reference sensor. Zone B contains points that are outside of
20% but would not lead to inappropriate treatment. Zone C are those points leading to
unnecessary treatment. Zone D are those points indicating a potentially dangerous failure
to detect hypoglycemia or hyperglycemia. Zone E are those points that would confuse
treatment of hypoglycemia for hyperglycemia. And the green dots in the EGA represent
data points. Most of the data points in case of RF, XGB, and LightGBM are in zone A,
while a very small percentage of data are in zone B. In this analysis, especially CatBoost, all
data points exist in zone A, supporting the better accuracy and reliability of the method
proposed in this study.

In our study, we conducted a comparative analysis of our proposed method against
two established methods for blood glucose estimation. The approach detailed in refer-
ence [30] employs a single pulse analysis (SPA) technique for feature extraction from PPG
signals to estimate blood glucose levels. In study [31], the authors utilized machine learning
algorithms on PPG signals, employing KTE, heart rate, AR coefficient-based features for
blood glucose level estimation. Our method, as demonstrated in Table 5, achieved a high
R2 score compared with other methods.
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Table 5. Comparison of the performance between glucose estimation methods.

Method Main Features Machine Learning Algorithm R2 Score

Method [27] SPA-based features Neural network 0.91

Method [28] KTE, AR, Heart rate
statistics, SpO2 range Random forest 0.90

Our Method Extracted from IMFs,
ratio features from PPG RF, XGB, CB, LightGBM 0.92

4. Conclusions

In this study, we investigated the feasibility of noninvasive blood glucose monitoring
through the analysis of PPG signals, utilizing a diverse array of features. This study
highlighted the importance of intrinsic mode function (IMF)-based features and ratio-
based features derived from red, green, and blue wavelength signals. Combining the PPG
waveform-based top 20 features and IMF-based top 30 features significantly improved the
overall prediction accuracy of the model, indicating the complementary nature of the two
feature sets. The results show that the quality and type of features (top 50 features based
on both PPG waveform and IMFs) play an important role in model performance. After
selecting those 50 features, the Pearson’s r values for RF, XGB, LightGBM, CatBoost were
0.94, 0.95, 0.93, and 0.96, respectively. Regardless of whether PPG waveform-based feature
selection or IMFs-based feature selection was applied, CatBoost consistently outperformed
the XGBoost, LightGBM, and RF algorithm in this specific application.

Our findings in this study suggest that the proposed noninvasive blood glucose
measurement system has the potential to provide accurate and reliable measurements of
blood glucose levels, which may have important clinical implications for patients with
diabetes. In the future, we plan to improve the performance of the proposed method by
collaborating with medical institutions to acquire additional clinical data and improve and
expand the proposed method through deep learning.
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Appendix A Computational Methods for Specific IMF-Based Features Obtained
through EMD

Spectral centroid: The spectral centroid of an IMF is computed to quantify the center
frequency of the power spectrum of that IMF, effectively indicating the “gravity” of its
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spectrum [32]. It is determined by first applying the fast Fourier transform (FFT) to the IMF
to obtain the frequency domain representation. The spectral centroid is then calculated as
the weighted mean of the frequencies present in the signal, with the magnitudes of the FFT
serving as the weights. Mathematically, the spectral centroid for an IMF is given by:

SC =
∑(fi|FFT(i)|)

∑|FFT(i)| (A1)

Here, fi represents the frequency corresponding to the ith bin, which is derived from
the FFT frequency bin associated with the IMF, and |FFT(i)| is the magnitude of the FFT at
the ith bin.

Spectral entropy: It is defined as the entropy of the power spectral density (PSD) of
the IMF, which can be computed as in [33]:

SE = −∑(PSDn × log(PSDn)) (A2)

where PSDn means a normalized PSD.
Spectral flatness: It is calculated as the geometric mean of the FFT values of IMF

divided by their arithmetic mean [34].

SF
Geometric mean of|FFT(i)|
Arithmetic mean of|FFT(i)| (A3)

Peak to spectral energy ratio: It is a measure of how much of the signal’s energy is
packed into a single frequency component relative to the entire spectrum of frequencies.
The maximum magnitude of the FFT of the IMF is divided by total power Pt of the spectrum
calculated by summing the squared magnitudes of all FFT components.

PSER =
max(∑ | FFT(i) |)

Pt
(A4)

where
Pt =

(
∑ | FFT(i) |

)2 (A5)

Spectral band energy: It is calculated to assess the distribution of power within a
predefined frequency band of a signal’s power spectrum. The spectral band energy for a
given frequency band ( fmin to fmax) is given by:

SBE = ∑ fmax
fmin

(| FFT(i) |)2 (A6)

where fmin and fmax are the indices corresponding to the lower and upper bounds of the
frequency band of interest.

Spectral slope: It can be calculated using a linear regression fit on the log-transformed
power spectrum [34] as follows:

SS =
d(log|FFT(f)|)

d(log f)
(A7)

Here, log(f) represents the natural logarithm of the frequency bins, starting from the
first non-zero bin to avoid the singularity at zero. log(|FFT(f)|) is the natural logarithm of
the magnitude of the FFT components, also starting from the first non-zero bin. Numpy
polyfit is used to perform the linear regression on the log-transformed frequency bins and
FFT magnitudes, and then the [0] index is used to select the slope coefficient from the
fit results.
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Mean amplitude envelope: The mean amplitude envelope, AEmean, of a signal captures
the absolute value of the analytic signal A(t) (which is the output of the Hilbert transform
H applied to the IMF(t)). The Hilbert transform was performed using SciPy’s signal.hilbert.

AEmean =
1
T

∫ T

0
|A(t)|dt (A8)

where T is the total duration of the signal.
Mean instantaneous frequency: The phase angle of the analytic signal θ(t) was calcu-

lated using numpy ‘angle’ library and then used ‘unwrap’ for correction of phase angle
values. Then the derivative of unwrapped phase angle was computed with respect to time
to get the instantaneous frequency f(t). Finally, the mean value was calculated to get the
mean instantaneous frequency.

IFmean =
1
T

∫ T

0
f(t)dt (A9)

where

f (t) =
1

2π
dθ(t)

dt
(A10)

and θ(t) is the unwrapped phase of A(t).
20 distinct features were computed for each IMF. In our analysis, we have constructed

a feature vector Xi
f from each IMF. This vector is denoted as

Xi
f = [IMFmean, IMFvar, IMFstd, PTP, IMFskew, IMFkurt, Fd, Pt, AEmean, IFmean, ZCR, ext, PSDmean, PSDvar, SC, SE, SF, PSER, SBE, SS] (A11)
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