
Citation: Oliveros-Oliveros, J.J.;

Conde-Sánchez, J.R.;

Hernández-Gracidas, C.A.;

Morín-Castillo, M.M.; Conde-Mones,

J.J. FPGA-Based Hardware

Implementation of a Stable Inverse

Source Problem Algorithm in a

Non-Homogeneous Circular Region.

Appl. Sci. 2024, 14, 1388. https://

doi.org/10.3390/app14041388

Academic Editor: Edyta

Plebankiewicz

Received: 5 October 2023

Revised: 22 January 2024

Accepted: 22 January 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FPGA-Based Hardware Implementation of a Stable Inverse
Source Problem Algorithm in a Non-Homogeneous
Circular Region
José Jacobo Oliveros-Oliveros 1,*,† , José Rubén Conde-Sánchez 1,† , Carlos Arturo Hernández-Gracidas 2,† ,
María Monserrat Morín-Castillo 3,† and José Julio Conde-Mones 1,†

1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio
y 18 sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria, Puebla C.P. 72570, Mexico;
rconde@fcfm.buap.mx (J.R.C.-S.); jose.conde@correo.buap.mx (J.J.C.-M.)

2 CONAHCYT-BUAP, Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla,
Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria,
Puebla C.P. 72570, Mexico; cahernandezgr@conahcyt.mx

3 Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y
18 Sur, Colonia San Manuel, Edificio FCE1, Ciudad Universitaria, Puebla C.P. 72570, Mexico;
maria.morin@correo.buap.mx

* Correspondence: jose.oliveros@correo.buap.mx; Tel.: +52-(222)-2295500 (ext. 2178)
† These authors contributed equally to this work.

Abstract: Objective: This work presents an implementation of a stable algorithm that recovers
sources located at the boundary separating two homogeneous media in field-programmable gate
arrays. Two loop unrolling architectures were developed and analyzed for this purpose. This inverse
source problem is ill-posed due to numerical instability, i.e., small errors in the measurement can
produce significant changes in the source location. Methodology: To handle the numerical instability
when recovering these sources, the Tikhonov regularization method in combination with the Fourier
series truncation method are applied in the stable algorithm. This stable algorithm is implemented
in two different architectures developed in this work: The first architecture (Mode 1) allows for
different operating speeds, which is an advantage depending on whether we work with fast or slow
signals. The second one (Mode 2) reduces resource consumption by exploiting the characteristics
of the source identification algorithm, which is an advantage for multichannel problems such as
inverse electrocardiography or electroencephalography. Results: The architectures were tested on
four devices of the 7 Series of Xilinx: Spartan-7 xc7s100fgga484, Virtex-7 xc7v585tffg1157, Kintex-7
xc7k70tfbg484, and Artix-7 xc7a35tcpg236. The two hardware implementations of the stable algorithm
were validated using synthetic examples implemented in MATLAB, which shows the advantages of
each architecture. Contributions: We developed two efficient architectures based on a loop unrolling
design for source identification problems. These are effective strategies to divide and assign tasks
to the configurable hardware, and they appear as an appropriate technique for implementing the
algorithm. The first one is simple and allows for different operating speeds. The second one uses a
control system based on multiplexors that reduce resource consumption and complexity of the design
and can be used for multichannel problems. From the numerical test, we found the regularization
parameters. The synthetic examples developed here can be considered for similar problems and can
be extended to concentric spheres.

Keywords: field-programmable gate arrays (FPGAs); loop unrolling architectures; inverse source
problem; ill-posed problems; Tikhonov regularization

1. Introduction

In this paper, we propose two architectures based on field-programmable gate arrays
(FPGAs) [1] for implementing an inverse source identification algorithm. The inverse

Appl. Sci. 2024, 14, 1388. https://doi.org/10.3390/app14041388 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041388
https://doi.org/10.3390/app14041388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1715-3631
https://orcid.org/0000-0001-9950-5348
https://orcid.org/0000-0003-0267-6306
https://orcid.org/0000-0002-9121-5917
https://orcid.org/0000-0002-3686-7031
https://doi.org/10.3390/app14041388
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041388?type=check_update&version=1

Appl. Sci. 2024, 14, 1388 2 of 26

source identification problem that we address involves determining the source from mea-
surements produced by it on the exterior boundary. The inverse source problem has many
applications in practical problems such as inverse electroencephalography and inverse
electrocardiography, for which study has been conducted using operational equations
defined in Hilbert spaces [2,3]. These operational equations are ill-posed in the sense of
Hadamard [4]. Here, we solved the operational equation, from which, the algorithm was
obtained using Fourier series. More precisely, we solved the normal equations obtained
using the Tikhonov regularization method. Some inverse source problems lead us to alge-
braic systems of linear equations, which are obtained from the operational equations by
discretization [5]. The matrices in these systems of equations are ill-conditioned, which
must be considered when we solve the system with error on the right side because the sys-
tems are unstable, which is a consequence of the ill-posedness of the operational equations.
At this point, it is important to consider that handling precision inadequately might worsen
the results, as the solution found for data with errors might be too far from the one for
data without errors in addition to increasing other costs via hardware resources and critical
paths. In [6], the authors pointed out that using 2× 2 matrices to show how ill-conditioning
and precision can affect system design (resources, cost, etc.), and they illustrated the effect
generated in the calculation of the inverse of an ill-conditioned matrix when its elements
were approximated by truncation.

We consider a circular, non-homogeneous medium and that the sources are located on
the separation interface of two homogeneous media, which make up the non-homogeneous
media. Sources and measurements are correlated by a boundary value problem, which
allows us to make an operational statement from where the ill-posedness (in the sense of
Hadamard) is analyzed, and the source identification algorithm is obtained. We consider
the algorithm given in [7], in which the inverse source problem was developed for sources
located on the interface of two homogeneous media. The authors developed the algorithm
using the technique of Fourier series for circular geometry and the finite element method
for a complex geometry. Since we are considering a circular geometry, we implemented the
algorithm in an FPGA using the Fourier series technique, i.e., we used the trigonometric
base to express the solution to the inverse problem. Ill-posedness is related to numerical
instability, which can produce significant changes in the solution due to small measurement
changes. The Tikhonov regularization method is employed to handle this numerical
instability; it depends on a parameter called the Tikhonov regularization parameter, which
must be properly chosen in terms of the measurement error [5]. We chose the Tikhonov
regularization parameter numerically.

Associated with the trigonometric base is an arithmetic kernel, which allows hardware
resources to be reused in a repetitive type system to reduce the number of operations [8].
The proposed architectures, labeled Mode 1 and Mode 2, were tested on four FPGAs of
the 7 Series of Xilinx [1]: Spartan-7 xc7s100fgga484, Virtex-7 xc7v585tffg1157, Kintex-7
xc7k70tfbg484, and Artix-7 xc7a35tcpg236. We report on the performance of architectures
Mode 1 and Mode 2 in terms of power and resource consumption.

The two architectures can also be replicated, leading to a multichannel structure. This
offers the possibility of applying these architectures to problems for which their nature
is multichannel, such as identifying bioelectrical sources from electroencephalographic
or electrocardiographic signals. In the first case, voltage measurements are taken on the
scalp through electrodes following different arrangements (10–20 being the most-used).
Up to a thousand measurements per second are recorded on each electrode, which implies
applying the source identification algorithm the same number of times. In the case of
electroencephalography, for which the maximum frequency is 120 Hz, it is feasible to use
both architectures. However, the Mode 2 architecture consumes fewer hardware resources,
which can contribute to the development of portable electroencephalographs.

The problem that we are addressing involves developing and implementing two efficient
loop unrolling architectures for a stable source identification algorithm in FPGAs.

To achieve this, we set the following objectives:

Appl. Sci. 2024, 14, 1388 3 of 26

1. Develop loop unrolling architectures for implementing a stable source identification
algorithm.

2. Analyze the stable algorithm to determine the regularization parameters numerically.
3. Validate the FPGA implementations.

We make the following contributions:

1. Development of two efficient architectures based on a loop unrolling design for
source identification problems. Architecture Mode 1 is simple and allows for different
operating speeds.

2. Architecture Mode 2 uses a control system based on multiplexors, reducing resource
consumption and complexity and allowing multichannel problem usage.

3. Implementation of the source identification algorithm in four FPGAs.
4. Design of a control system based on multiplexors for both architectures.
5. Analysis and comparison of resource consumption.
6. Creation of ad hoc synthetic examples: particularly, the jump function, which is

commonly used in electronic applications.
7. Implementation of synthetic examples in MATLAB 2013a.
8. Numerical analysis to choose the regularization parameters to handle the numerical

instability of the algorithm.
9. Validation of the performance of the hardware architectures compared with software

results in terms of error.

This work is organized as follows. In Section 2, we present the foundations for this
work. Section 3 presents the mathematical model that relates the sources with measure-
ments. Furthermore, we solve the forward and inverse problems. The solution to the
inverse problem provides the stable source identification algorithm; Section 4 presents
numerical examples associated with forward and inverse problems. These examples are
developed using MATLAB software to validate the source identification algorithm given in
Section 3. In Section 5, we implement the source identification algorithm in FPGAs using
the two proposed architectures. In Section 6, we validate the hardware implementations
using the same examples developed in Section 4. In Section 7, we discuss the obtained
results. Finally, we present our conclusions in Section 8.

2. Basic Elements

This section presents the foundational components of the research. It serves as the
cornerstone for the rest of the paper and provides the reader with the necessary background
information to understand the main results and conclusions.

2.1. FPGA

An FPGA is an integrated circuit designed to be configured after the manufacture,
assembly, and even deployment of the product it is part of. FPGAs contain programmable
logic blocks (capable of performing a range of operations from simple logic gates to complex
functions) and memory blocks. These blocks can then be connected using a hierarchy of
reconfigurable interconnects. The combination of these elements improves the performance
of the FPGA in many varied applications.

Some advantages of FPGAs are:

1. FPGAs are more flexible than complex programmable logic devices as they generally
have a greater number of both logic blocks and programmable interconnects.

2. FPGAs have a lower development cost than application-specific integrated circuits
(ASICs). Although an ASIC can perform the same operations as an FPGA and is
specific to the application, it cannot be reprogrammed.

3. FPGAs have a faster time-to-market and lower non-recurring engineering cost
than ASICs.

Three of the main characteristics of FPGAs, which are related to the speed of the
process, are:

Appl. Sci. 2024, 14, 1388 4 of 26

1. Throughput: the amount of data that are processed per clock cycle (bits/second).
2. Latency: the time between data input and processed data output (clock cycles).
3. Timing: the logic delays between sequential elements (frequency).

2.2. Inverse and Ill-Posed Problems

On the one hand, inverse problems entail finding an unknown property of an object
or medium from observations of its responses to test signals. Forward problems, on the
other hand, present information about the causes that describe a process in a medium, and
the solution to the problem leads to the discovery of the effect produced by such causes.
Therefore, in contrast to forward problems, inverse problems provide partial information
about the results or effects produced in the medium by some unknown causes that must be
found by analyzing these results. Thus, forward problems are cause–effect problems, while
inverse problems are effect–cause problems [4].

Source identification problems are widely investigated in many research fields, and
they are modeled as boundary value problems for which both the associated forward
problem and its corresponding inverse problem must be considered. The inverse problem
involves determining the source that produced measurements on the boundary of a region.
It appears in applications such as inverse electroencephalography, inverse electrocardiog-
raphy, and inverse geophysics, for which problems are modeled using partial differential
equations.

An operational equation of the form Ax = y, where A : X −→ Y and X and Y are
Banach or Hilbert spaces, is well-posed if it satisfies the following conditions [4]:

1. For each y ∈ Y, a solution to the problem exists.
2. For each y ∈ Y, the solution to the problem is unique.
3. The solution x to the problem continuously depends on initial data y.

Problems that violate one or more of these conditions are referred to as ill-posed
problems. Condition 3 is associated with numerical instability, i.e., small errors on the
right side of the operational equation can result in significant changes to the location of the
solution x. To address this numerical instability, regularization methods must be applied.
In this work, we applied the Tikhonov regularization method, which involves choosing a
regularization parameter in terms of the error [4,5].

2.3. FPGAs and Inverse Source Problems

Inverse source problems appear in many applications. One such application is the
inverse electroencephalographic problem, which involves determining bioelectrical sources
of the brain from scalp measurements of the electrical potential produced by these sources.
Identifying dipolar sources associated with epileptic foci is particularly important given
that epilepsy affects around 50 million people worldwide according to the World Health
Organization. Another application is the inverse electrocardiography problem, which
involves determining the epicardial potential from measurements of the potential on the
chest. These examples are multichannel problems for which the architectures developed in
this work can be applied. These are generally ill-posed problems in the sense of Hadamard
due to the non-uniqueness of the solution and the numerical instability, which can produce
large changes to the location of the source when errors are presented. Regularization
methods are employed to handle this instability. The Tikhonov regularization method
is the best known among them; it depends on a parameter that must be chosen in terms
of the measurement error. The identification problem studied in this work only presents
numerical instability since the problem has a unique solution [7,9]. The regularization in
this work considers two parameters. The former is the Tikhonov regularization parameter.
The latter is the term in which the series is truncated. From numerical tests, we found these
parameters. This is a contribution of this work.

FPGA devices offer several advantages for the implementation of algorithms: the
primary one being their capability to accelerate algorithms. Inverse source identification
problems, which appear in many applications, are one such area where these advantages

Appl. Sci. 2024, 14, 1388 5 of 26

can be leveraged. In this work, we have developed two architectures for an algorithm
designed to solve inverse source identification problems.

A natural question arises: How are these problems and the architectures related?
The answer lies in the stable source identification algorithms (one for each of them). This
work presents two roll-up architectures in which a stable algorithm was implemented
to recover sources located on the interface that separates two homogeneous media that
make up a non-homogeneous medium. The algorithm is developed in the bidimensional
case, but the tridimensional case corresponds to the identification of sources located in
the cerebral cortex. In the tridimensional case, we must use other elements for the base
(spherical harmonics instead of circular harmonics), but the methodology presented here
can be extended without problem.

One of the key advantages of the architectures developed in this work is our ability
to determine the number of coefficients required, as this number significantly influences
the numerical stability of the algorithm. Additionally, we can select the number of bits to
achieve accurate approximations while minimizing hardware consumption. For instance,
the tridimensional version of the algorithm is presented here. These developments can assist
us with constructing portable devices for source and potential identification. Furthermore,
they can facilitate the design and implementation of reconfigurable devices for real-time
imaging of sources.

It is crucial to highlight that these architectures are designed to serve as a foundation
for other algorithms. We can deduce that the architectures developed in this work can be
repurposed for other similar algorithms by leveraging their reconfigurable features. In the
following, we provide some insights into FPGAs and the loop unrolling architectures.

Broadly speaking, the design of systems based on FPGAs is geared towards enhancing
performance and optimizing loops. The loop unrolling technique, which expands loops
into an iterative version, has shown promising results in this area [10]. Loop unrolling
architectures are effective strategies for distributing tasks to configurable hardware, re-
ducing overhead, and enabling parallel processing [11,12]. Moreover, loop unrolling is
advantageous as it minimizes latency and optimizes the use of hardware resources.

In Section 2.4, we detail several algorithms implemented on FPGAs. These algorithms
are related to the Fourier transform, the resolution of systems of algebraic equations, finite
impulse response filters, and the classification of generalized and focal epileptic seizure
types. Despite the advantages of loop unrolling architectures, our comprehensive literature
review did not uncover any instances for which loop unrolling was employed to implement
source identification algorithms.

In light of this, we have implemented a stable algorithm in two loop unrolling archi-
tectures that were developed as part of this work.

2.4. Implementation of Algorithms in FPGAs

A variety of algorithms have been implemented in FPGAs [13–18]. The study [16]
addresses the challenge of implementing histogram projection using FPGAs. Histogram
projection is an effective enhancement technique for images captured by uncooled infrared
imagers. Thermal imagers that utilize uncooled focal plane array detectors offer several
significant advantages over their cooled counterparts. These advantages include lower
cost, silent operation, absence of delicate mechanical parts for cooling, reduced lifecycle
cost, and decreased weight and power consumption. Despite suffering from limitations in
thermal and geometrical resolutions, these imagers are highly performant and are widely
accepted for commercial applications. This acceptance is largely due to their reasonable
price point, especially when compared to cooled imagers, which, while offering superior
image quality, are prohibitively expensive for commercial use.

In the study [17], digital watermarking is examined. This technique, which embeds
watermark information into a digital signal in a way that makes it difficult to remove,
is of significant importance. The authors developed an adaptive digital watermarking
algorithm to improve performance in a multi-parametric solution space for hiding copyright

Appl. Sci. 2024, 14, 1388 6 of 26

information. This was achieved through the use of phase congruence and singular-value
decomposition, which was supported by an information-hiding technique. The Tikhonov
regularization method is analyzed as a filter that reduces the effect of the small-singular-
value decomposition using the regularization parameter. The truncation of the series is
considered as another regularization parameter: thereby eliminating the effects of the small-
singular-value decomposition. The performance of the algorithm is evaluated through
a simulation in MATLAB using metrics such as the peak signal–noise ratio, structural
similarity index metrics, and the normalized cross-correlation index.

In [13], the authors present an efficient FPGA implementation of a reconfigurable
finite impulse response (RFIR) filter. This implementation utilizes anti-symmetric product
coding and odd multiple storage modules. The finite impulse response filter is widely
used in various digital signal processing applications, such as echo removal, speech signal
processing, speaker standardization, versatile noise removal, and communication. The RFIR
filter has the advantage of allowing real-time changes to the coefficient while performing
operations. In this particular case, filters were not used to clean the signal. Instead, a
random error was emulated by adding it using the rand function of MATLAB.

In the study [18], the authors developed an FPGA-based solution for classifying
generalized and focal epileptic seizure types using a feed-forward multi-layer neural
network architecture. The FPGA implementation in the last two works was validated by
comparing its results with those of the MATLAB implementation: a method also employed
in our study to validate our FPGA implementation.

In [14], the authors implemented the minimum residual algorithm: an effective method
for solving problems provided the matrix exhibits certain characteristics. The paper ex-
amines an IEEE 754 single-precision floating-point implementation of the algorithm on an
FPGA. It demonstrates that through parallelization and heavy pipelining of all floating-
point components, it is possible to achieve sustained performance of up to 53 GFLOPS on
the Virtex5-330T. This performance compares favorably to other hardware implementations
of floating-point matrix inversion algorithms and represents an improvement of nearly an
order of magnitude compared to a software implementation.

In [15], the authors present an efficient implementation of a multiplier of irreducible
polynomials modulo for cryptographic encryption and decryption using FPGAs. For this
purpose, the Nexys 4 board based on the Artix-7 FPGA from Xilinx was chosen. Verilog
HDL was used to describe the circuit for reducing a number modulo. The results of a
timing simulation of the device are presented in the form of time diagrams for a given 8-bit
number and confirm the correct operation of the device.

In [19], the authors presented the first implementation of a 1 million point fast Fourier
transform completely integrated on a single FPGA without the use of external memory
or multiple interconnected FPGAs. The proposed architecture is a pipelined single-delay
feedback fast Fourier transform, which allows for processing one sample per clock cycle.

Loop unrolling architectures have been utilized to implement the algorithms described
in this section. Some of these algorithms correspond to Fourier transforms, the solution
to systems of algebraic equations, RFIR filters, the classification of generalized and focal
epileptic seizure types, and adaptive digital watermarking. According to our search, we
did not find any implementations related to the inverse source algorithm. As previously
mentioned, the inverse source problem that we study in this paper is ill-posed because
it presents numerical instability, making it a challenging task to implement on hardware.
To address this issue, we utilized the Tikhonov regularization method and the truncation
method. To the best of our knowledge, this work is the first to present the hardware
implementation of two architectures for a stable source identification algorithm on FPGAs.
Our approach demonstrates that the algorithm can be parallelized to take advantage of
the unique capabilities of FPGAs. This implementation demonstrates the feasibility and
efficiency of utilizing FPGAs for inverse source problems, which is an important and
growing field [2,3,9,20,21]. Hence, the implementation developed in this work provides a
new and promising solution for future research in this field.

Appl. Sci. 2024, 14, 1388 7 of 26

3. Stable Source Identification Algorithm

This section presents a mathematical model for a circular conductive region made
up of two homogeneous media and defines the forward and inverse problems for the
problem (1)–(5).

3.1. Mathematical Model

In this work, we consider a circular region Ω as a conductive medium composed of
two homogeneous media, as illustrated in Figure 1. Specifically, we consider that Ω consists
of two concentric circles centered at the origin with radii R1 and R2. Ω1 is the circle with
radius R1, and Ω2 corresponds to the difference between the circle with radius R2 and the
circle with radius R1, i.e., Ω = Ω1 ∪ S1 ∪Ω2, where S1 is the interface that separates regions
Ω1 and Ω2. The conductivities of regions Ω1 and Ω2 are denoted by σ1 and σ2, respectively.

Figure 1. A circular conductive region composed of two homogeneous media. The source is located
on the closed curve S1, which separates the regions Ω1 and Ω2 with constant conductivities σ1 and
σ2, respectively.

The boundary value problem to study the identification problem is given by [7]:

−σ1∆u1 = 0, in Ω1, (1)

−σ2∆u2 = 0, in Ω2, (2)

u1 = u2, on S1, (3)

σ1
∂u1

∂n1
= σ2

∂u2

∂n1
+ g, on S1, (4)

σ2
∂u2

∂n2
= 0, on S2, (5)

where g is the source, ui = u|Ωi
, i = 1, 2, and u represents the electric potential in Ω.

The symbol ∆ represents the Laplace operator, which is also denoted as ∇2. Boundary
condition (3) corresponds to the conductivity of the potential, and boundary condition (4) is
associated with the jump in current flow due to the presence of the source. The conductivity
of Ωc is assumed to be zero, which leads to boundary condition (5). Using Green’s formulas,
we obtain the following compatibility condition:∫

S1

gds = 0. (6)

Problem (1)–(5) is known as the superficial boundary value problem [7]. This problem
has been used to study the inverse source problem in electroencephalography for cortical
sources [2]. The following definitions are related to problem (1)–(5).

Appl. Sci. 2024, 14, 1388 8 of 26

Given g defined on S1, the forward problem involves finding a measurement V = u|S2
,

where u is the solution to problem (1)–(5).
Given a function V defined on S2, the inverse problem involves determining a source

g defined on S1 such that the solution u to the forward problem corresponding to g satisfies
that u|S2

= V.

3.2. Forward Problem

In this section, we consider the following functional spaces:

L2(Si) =

{
h : S1 → R : ⟨h, h⟩L2(Si)

=
∫

Si

h2(x)dx < ∞
}

, i = 1, 2,

L2,⊥(Si) =
{

h ∈ L2(Si) : ⟨h, 1⟩L2(Si)
= 0

}
, i = 1, 2,

L2(Ω) =

{
u : Ω → R : ⟨u, u⟩L2(Ω) =

∫
Ω

u2(x)dx < ∞
}

,

H1(Ω) = {u ∈ L2(Ω) : its derivative is in L2(Ω)},

H1,⊥(Ω) =
{

u ∈ H1(Ω) : ⟨u, 1⟩L2(Ω) = 0
}

,

where ⟨·, ·⟩ is the inner product in the space indicated by the subscript.
To find the solution to problem (1)–(5), we consider that

g(θ) =
∞

∑
k=1

g1
k cos kθ + g2

k sin kθ, (7)

where g1
k and g2

k are the Fourier coefficients of g. The solution to the forward problem is
given by

V(θ) = A(g)(θ) = u(R2, θ)

=
∞

∑
k=1

akg1
k cos kθ + akg2

k sin kθ,
(8)

where

ak =
2Rk+1

1 Rk
2

k[(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2]
. (9)

The linear operator A : L2,⊥(S1) −→ L2,⊥(S2) is defined as A(g) := u|S2
, where u ∈

H1,⊥(Ω) is the solution to problem (1)–(5).

3.3. Stable Algorithm for the Inverse Source Problem

For the inverse problem, we consider that the exact (ideal) measurement V(θ) =
∞

∑
k=1

V1
k cos kθ +V2

k sin kθ is known, where V1
k and V2

k are the Fourier coefficients of V. Using

Equation (8), we obtain the Fourier coefficients of the source, g.

gi
k =

Vi
k

ak
=

k(σ1 − σ2)

2R1

(
R1

R2

)k
Vi

k +

k(σ1 + σ2)

2R1

(
R2

R1

)k
Vi

k , i = 1, 2.

(10)

In practice, the measurement has errors for various reasons, such as errors from the mea-
surement device, truncation errors, and the application of filters to eliminate unwanted
signals (signal contamination). The error in the measurement is reflected in its Fourier

Appl. Sci. 2024, 14, 1388 9 of 26

coefficients, which must be considered carefully since the inverse source problem is nu-
merically unstable. More specifically, the error in the coefficients is reflected in the term(

R2
R1

)k
, k = 1, 2, ... of the coefficients in Equation (10). Note that as these terms grow with

increasing k, even a small error in the measurement V can result in significant changes
to the location of the source. More precisely, if we know Vδ instead of V and consider

measurement Vδ(θ) =
∞

∑
k=1

V1
k,δ cos kθ + V2

k,δ sin kθ, with ∥V − Vδ∥L2(S2)
≤ δ, the Fourier

coefficients of the recovered sources are given by Equation (11):

gi
k,δ =

Vi
k,δ

ak
=

k(σ1 − σ2)

2R1

(
R1

R2

)k
Vi

k,δ +

k(σ1 + σ2)

2R1

(
R2

R1

)k
Vi

k,δ, i = 1, 2.

(11)

However, the terms
(

R2
R1

)k
Vi

k,δ amplify the errors, and the series of the recovered source may
not converge. To address this numerical instability, the Tikhonov functional is used [5]:

Jα(δ)(g) =
1
2
∥A(g)− V∥2

L2(S1)
+

α(δ)

2
∥g∥2

L2(S2)
, (12)

where α(δ) > 0 is the Tikhonov regularization parameter, which can be chosen using the
L-curve criterion [22], and ∥·∥2

L2(Si)
denotes the norm of L2(Si), for i = 1, 2. To find the

unique minimum of Jα(δ), we must solve the normal equations [5] given by:

[A∗A + α(δ)I](g) = A∗V, (13)

where A∗ : L2,⊥(S2) → L2,⊥(S1) is the adjoint operator of A, which is given by [7]:

A∗(h)(θ) =
R2

R1

∞

∑
k=1

akh1
k cos kθ + akh2

k sin kθ, (14)

where h(θ) =
∞

∑
k=1

h1
k cos kθ + h2

k sin kθ, and ak is given by Equation (9).

After substituting into the normal Equations (13), we obtain the regularized solution:

gα(δ)(θ) =
∞

∑
k=1

Ak(α)
[
V1

k,δ cos kθ + V2
k,δ sin kθ

]
, (15)

where
Ak(α) =

akR2

(ak)2R2 + α(δ)R1
. (16)

Remark 1. When α = 0 in (15), the Fourier coefficients of the recovered source coincide with the
coefficients given in Equation (11). Equation (15), obtained from the Tikhonov functional (12),
provides us with a stable algorithm for recovering the regularized source gα(δ) from the measurement
Vδ. This algorithm will be implemented on the FPGA, and in the next section, we will illustrate
algorithm (15) by implementing examples in MATLAB as a first step.

4. Numerical Examples: MATLAB Implementation

In this section, we illustrate the source identification algorithm by considering the
forward and inverse problems for different sources. We developed MATLAB programs to
validate the algorithm for its computational implementation. The following section will
describe the FPGA implementation of the source identification algorithm, and we will

Appl. Sci. 2024, 14, 1388 10 of 26

compare the hardware implementation with the MATLAB implementation using the same
examples. The region Ω is described in Section 3.1, and it is shown in Figure 1.

To illustrate the algorithm, we built synthetic examples as follows:

1. We took some values for parameters σ1, σ2, R1, and R2 and defined a source g on S1.
2. We solved the boundary value problem (1)–(5).
3. We computed the exact measurement V = u|S2 using Equation (8) for N = 16, which

was chosen by numerical tests.
4. To emulate the measurement with error, we added an appropriate random error to

the coefficients V1
k and V2

k (where k = 1, 2 . . .) using the rand function of MATLAB.
Hence, we obtained the coefficients V1

k,δ and V2
k,δ, k = 1, 2 . . . of the measurement with

error Vδ, which satisfies ∥Vδ − V∥L2(S2)
≤ δ.

5. We obtained the regularized solution to the inverse problem by taking N = 16 in
Equation (15), i.e., we used

gα(δ),N(θ) =
16

∑
k=1

Ak(α)
[
V1

k,δ cos kθ + V2
k,δ sin kθ

]
, (17)

as an approximate (regularized) solution, where Ak(α) is given in (16). In the examples
below, we considered δ = 0.1 and α = 10−3 (which were chosen numerically).

In the plots presented in the following examples, the magnitudes are either dimen-
sionless or have a dimension of one. In other words, they are quantities that do not have an
associated physical dimension. Consequently, they are pure numbers that can describe a
physical characteristic without a dimension or an explicit unit of expression.

Example 1. In this example, we set R1 = 1, R2 = 1.2, σ1 = 3, and σ2 = 1 and considered
the exact source g given by

g(x, y) = f (x, y)− 1
m(S1)

∫
S1

f (x, y)ds, (18)

for all (x, y) ∈ S1, where f (x, y) = e
− ∥(x,y)−(a1,a2)∥2

2β2 for (x, y) ∈ S1, (a1, a2) = (0, 1) ∈ S1,
β2 = 0.1, and m(S1) = 2πR1. In polar coordinates (r, θ), g is given by

g(θ) = f (R1, θ)− 1
2π

∫ 2π

0
f (R1, θ)dθ, for all θ ∈ [0, 2π], (19)

where f (R1, θ) = e
R2

1 cos(θ−θ0)

β2 for all θ ∈ [0, 2π], θ0 = π
2 , and β2 = 0.1.

We approximated the exact source g by its truncated Fourier series gN using the
first N = 16 terms. The Fourier coefficients g1

k , g2
k , k = 1, 2, . . . , N were obtained numer-

ically using the quadl function of MATLAB. In this case, the exact measurement V was
generated using Equation (17).

The relative error between the exact source g and the recovered source gα(δ),N , denoted
by RES1(gα(δ),N , g), is given by

RES1(gα(δ),N , g) = ∥gα(δ),N − g∥L2(S1)
/∥g∥L2(S1)

= 0.12.

Figure 2 displays both the exact measurement V and the measurement with error Vδ, where
δ = 0.1.

Figure 3 displays the plot of both the exact source and the recovered source without
regularization. We observe the necessity of applying regularization methods.

Figure 4 displays the plot of both the exact and the recovered source with regularization.

Appl. Sci. 2024, 14, 1388 11 of 26

Figure 2. Exact measurement is shown in red, and recovered measurement is in blue. The error in the
exact measurement was obtained by adding a random error to the exact measurement using the rand
function of MATLAB.

Figure 3. Exact source is shown in red, and recovered source without regularization is in blue. In this
case, the recovered source was obtained using the coefficients given by Equation (11), and it was far
from the exact source due to the numerical instability of the inverse source problem.

Figure 4. Exact source is shown in red, and recovered source with regularization is in blue. In
this case, the regularized source given by (17), which was obtained using Tikhonov regularization,
allowed us to handle numerical instability to get a good approximation of the exact source.

Example 2. We considered the same values for R1, R2, σ1, and σ2 as in the previous example.
We considered the following function: g(x, y) = yex + ey + x2, which in polar coordinates is

Appl. Sci. 2024, 14, 1388 12 of 26

given by g(θ) = sin(θ)ecos(θ) + esin(θ) + cos2(θ). Using Equation (8), we found the solution
to the forward problem V, i.e., to find the ideal (exact) measurement V, we had to find the
solution to problem (1)–(5) and then restrict it to the boundary S2. The noisy data Vδ was
obtained as in the previous example. Figure 5 displays both the exact measurement V (in
red) and the measurement with error Vδ (in blue).

Figure 5. Exact measurement is shown in red, and measurement with error is in blue. The latter
was obtained by adding a random error to the exact measurement, which was done using the rand
function of MATLAB.

Figure 6 shows the plot of both the exact source and the recovered source without
regularization. As in the previous example, we also observed the necessity of applying
regularization methods.

Figure 6. Exact source is shown in red, and recovered source without regularization is in blue. The
difference shows the necessity to apply regularization methods.

Figure 7 displays both the exact and recovered sources when regularization was
applied. The relative error between the exact source g and the recovered regularized source,
gα(δ),N , denoted by RES1(gα(δ),N , g), is given by

RES1(gα(δ),N , g) = 0.054.

Appl. Sci. 2024, 14, 1388 13 of 26

Figure 7. Exact source is shown in red, and the recovered source with regularization is in blue. In this
case, the regularized source given by Equation (17) allowed us to obtain a stable approximation of
the source.

Example 3. We considered the same values for R1, R2, σ1, and σ2 as in the previous example.
We considered the following square-wave function given in polar coordinates as

g(θ) =

{
−1, if − π ≤ θ < 0,

1, if 0 ≤ θ < π.
(20)

We found the solution V to the forward problem and the noisy data Vδ for the boundary
S2 as in the previous examples. Figure 8 displays both the exact source g (red) and its
approximation by Fourier series gN (blue) when truncating the Fourier series (7) to the first
N = 16 terms. Figure 9 shows both the exact measurement V (in red) and the measurement
with error Vδ (in blue).

Figure 8. Plot of the exact square-wave function g (red) and its approximation by Fourier series (blue).
We observe the Fourier series oscillations and the presence of the Gibbs phenomenon. This jump
function is frequently used in electronic signals.

Appl. Sci. 2024, 14, 1388 14 of 26

Figure 9. Exact measurement is shown in red, and measurement with error is in blue. The measure-
ment with error was obtained by adding a random error to the exact measurement, which was done
using the MATLAB function rand.

Figure 10 displays both the exact and recovered sources without regularization. As in
the previous examples, we observed the importance of regularization methods to obtain
stable solutions to the inverse problem.

Figure 10. Implementation in FPGA: exact source is shown in red, and recovered source without
regularization is in blue. The results obtained are similar to those found using MATLAB 2013a, which
are shown in Figure 3.

Figure 11 displays both the exact and recovered sources when regularization was
applied. The relative error between exact source g and recovered source gα(δ),N , denoted
by RES1(gα(δ),N , g), is given by

RES1(gα(δ),N , g) = 0.051.

Appl. Sci. 2024, 14, 1388 15 of 26

Figure 11. Exact source is shown in red, and the recovered source with regularization is in blue.
The Tikhonov regularization method was used to handle numerical instability and to obtain a good
approximation of the exact source. The regularized solution acted as a smoothing filter.

5. FPGA Implementation

Implementing algorithms on hardware devices is crucial as it optimizes the use of
hardware resources. For instance, we can determine the number of coefficients in a series
to achieve an appropriate approximation of and the number of bits used to represent a
real number (precision). We can also ascertain if the implementation can be duplicated for
multichannel problems.

Analyzing the arithmetic operations in Equation (17), we conclude that a feedback
implementation is appropriate, as it minimizes hardware resources. The operations in
Equation (17) will be repeated as follows:

1. Perform the products A1V1
1 cos(θ) and A1V2

1 sin(θ). The two’s complement format
is chosen for number representation, as the algorithm involves signed arithmetic
operations.

2. Sum the results from the previous step.
3. Temporarily store the result.
4. Perform the products A2V1

2 cos(2θ) and A1V2
2 sin(2θ) and add them to the temporary

result.
5. Repeat the process until term N = 16.

The advantage of this implementation is that the arithmetic modules can be reused.
The hardware implementation components include:

1. A double-memory ROM block to store the coefficients AkV1
k and AkV2

k .
2. A Xilinx direct digital synthesizer (DDS) module (see [23]) to generate the values of

sin(kθ) and cos(kθ) for k = 1, . . . , 16.
3. Multiplexers to maintain synchrony in the control section.

Considering this, Figures 12 and 13 show the required hardware resources for archi-
tecture Modes 1 and 2, respectively.

The implementation results presented were obtained using the VHDL (Very High
Speed Integrated Circuit Hardware Description Language) code synthesized on the Vivado
IDE c2018.2.2 (64 bit) and tested on the Xilinx® 7 FPGA series. This series comprises four
FPGA families that address a complete range of system requirements ranging from low-cost,
small form factor, cost-sensitive, high-volume applications to ultra-high-end connectivity
bandwidth, logic capacity, and signal processing capability for the most demanding high-
performance applications: Spartan-7 xc7s100fgga484, Virtex-7 xc7v585tffg1157, Kintex-
7 xc7k70tfbg484, and Artix-7 xc7a35tcpg236. Tests were carried out using a 100 MHz
base clock.

Appl. Sci. 2024, 14, 1388 16 of 26

Figure 12. Feedback architecture, Mode 1: In this mode, the control unit (Section B), as well as the
phase generation and the processing unit, are independent in each channel. This allows for operation
at different speeds.

Figure 13. Feedback architecture, Mode 2: In this mode, the control section is shared with the algo-
rithm operations section, resulting in coupled synchronization of the trigonometric base operations.

The instrumentation developed for the implementation of the algorithm consists
of 48 coefficients involved in expression (13) with N = 16. Each coefficient is 16 bits
long. Therefore, there are 16 coefficients for Ak, V1

k , and V2
k . The DDS component was

configured with a partition of 8 bits for the phase and amplitude of the sinusoidal functions.

Appl. Sci. 2024, 14, 1388 17 of 26

The product requires 40 bits since we have 32-bit and 8-bit numbers. Finally, both the
accumulated sum and the resulting output require 40 bits.

5.1. Architecture Description

Figures 12 and 13 show the architectures for Modes 1 and 2, respectively. Both
architectures contain two channels, with each composed of:

1. Section A: This section contains the arithmetic operations.
2. Section B: This section controls the operations in Section A to synchronize the pipeline

operations.

The design of the architecture consists of three blocks:

1. The trigonometric base.
2. Linear combination of the elements of the base.
3. Control module.

Trigonometric base: The counterX module performs the following three fundamental
actions through its four least-significant bits:

1. Acts as an 8-bit selector control in the 16-to-1 multiplexer.
2. Increments the consecutive value from 1 to 16 for the resolution.
3. Synchronizes the addressing and reading of the ROM memory.

To evaluate the functions cos(θ) and sin(θ) and address the ROM memory, a latency
of two cycles is used. This maintains synchronization between the DDS module and the
ROM memories.

Linear combination of the trigonometric base: The following latencies are required for
different operations:

1. A two-cycle latency for the DDS module to reflect the sine and cosine values on the
data bus and for the ROM memory module to reflect the coefficients simultaneously
on the data bus. Both modules work in parallel.

2. A one-cycle latency for each operation (product and sum). These operations are
performed in series.

3. A one-cycle latency to store the result in the accumulator.
4. A latency of 16 cycles to obtain g(θ).

Thus, a new value of g(θ) is calculated every 16 cycles. With the main clock of the
used FPGA operating at 100 MHz, each point in the partition has an output frequency of
6.25 MHz.

Construction of the control section: The control section, shown in Section B of
Figures 12 and 13, corresponds to the synchronization of the algorithm. Its design al-
lows for efficient use of throughput, which provides the amount of data processed in each
clock cycle. The pipeline plays a crucial role in this section, as input phase-generation data
must be synchronized to get output data, which correspond to new values of g(θ). Output
data are generated in this form, which must be aligned. The processing stages of the control
section must be applied in each clock cycle.

The control section is utilized to manipulate phase shifts of the main clock to ensure
overall synchronization of the architecture. The design operates using two clock signals
generated by the digital clock manager block. The signal sys_clk is used for constructing
both the trigonometric base and the linear combinations of the trigonometric base sections. To
maintain synchronizations of the accumulator and shift register elements, ssys_clk2 must
be twice as fast as ssys_clk. The multiplexer array ssys_clk2 serves as a control element
for resetting the accumulator content, clock signal, and bypass signal. The bypass signal
allows for passing on sum results to shift the register, which results in obtaining the first
phase sum.

We developed two architectures, labeled Mode 1 and Mode 2, which are identical in
the case of a single channel. For multiple channels, the Mode 2 architecture takes advantage
of the characteristics of the algorithm to reduce hardware consumption. This reduction

Appl. Sci. 2024, 14, 1388 18 of 26

can be observed in Section A of Figure 13, where the generation of the functions sin kx and
cos kx, where k = 1, 2, . . . , is shared across different channels. The control module, shown
in Section B, is shared by both architectures. The Mode 1 architecture allows for operation
at different speeds, which is beneficial when working with either fast or slow signals. The
Mode 2 architecture reduces resource consumption by exploiting the characteristics of the
source identification algorithm.

5.2. Resource Description

The resources of the Xilinx 7 series FPGAs are:

1. LUTs (lookup tables): These contain the logical elements that determine the out-
put from one or multiple inputs. They are essentially truth tables created from the
description of the VHDL program.

2. FFs (flip flops): Sequential logical elements with one bit of memory.
3. RAM blocks (random access memory): Each block has a storage capacity of 32 K-bit.
4. DSP blocks (digital signal processing): Specialized blocks for product, sum, and

accumulation operations for signed numbers in two’s complement format. These
operations are called: multiply–accumulate (MAC).

5. Power consumption: Determines the energy consumption of the system.

From Section B in Figure 12, it can be seen that the channel blocks share control,
which synchronizes MAC operations, phase generation, and sine and cosine values, i.e., the
trigonometric functions that make up the base. Combining the common control operations
with sine and cosine generation reduces the number of hardware resources.

Figures 14 and 15 show the resources used in the proposed architectures. In the case of
one channel, both architectures have identical resource consumption. Architecture Mode 2
presents lower resource consumption for more than one channel.

Figure 14. Resources, Mode 1: We observe that as the number of channels increases, resource
consumption linearly increases in all FPGAs, and there is no difference in consumption.

Appl. Sci. 2024, 14, 1388 19 of 26

Figure 15. Resources, Mode 2: We observe that resource consumption is lower for LUTs, FFs, and
BRAM (block RAM) compared to Mode 1 as the number of channels increases. In particular, there is
no increase in BRAM consumption as the architecture uses the same resources. The DSP consumption
is identical for both architectures.

Figure 16 shows the results of the following relation:

mode 1 − mode 2
mode 1

= 1 − mode 2
mode 1

. (21)

Figure 16. Using Equation (21), we calculated the percentage of resources consumed by Mode 2
compared to Mode 1. As the number of channels increases, this percentage also increases. For LUTs,
the percentage is nearly identical. For FFs, both Kintex-7 and Virtex-7 have identical performance.

Appl. Sci. 2024, 14, 1388 20 of 26

The relation gives the percentage of resources that Mode 2 consumes compared to
Mode 1. For two channels, 5.9% fewer LUT resources are obtained for Artix and Kintex.
For four channels, 8.9% fewer LUT resources are obtained for all FPGAs. For 16 channels,
11% fewer LUT resources are obtained for all FPGAs.

For two channels, 21% fewer FF resources are obtained for all FPGAs. For 16 channels,
40% to 46% fewer FF resources are obtained. For 16 channels, BRAM consumption is re-
duced by a factor of 15, as architecture Mode 2 uses only one DDS module. For 16 channels,
power consumption is reduced by 17%, 12%, 16%, and 14% in Artix, Virtex, Kintex, and
Spartan, respectively.

Figure 17 shows the power consumption. Mode 2 has lower current consumption. For
both modes, Artix-7 has the lowest consumption.

Figure 17. Left: Power, Mode 1. Right: Power, Mode 2. We observe that Mode 2 has lower current
consumption. For both modes, Artix-7 has the lowest consumption.

6. Validation of the Hardware Implementation

In this section, we present the results of the FPGA implementation of the same exam-
ples given in Section 4. We validate those examples by using MATLAB.

Figures 18–22 show the examples from Section 4. Figures 23–25 show the error between
the recovered sources using MATLAB and the FPGA.

Figures 19, 21, and 26 show the recovered sources without regularization provided
by the FPGA. We can see that the recovered sources are far from the exact source from the
MATLAB implementation. Figures 18, 20, and 22 show the recovered sources provided by
the FPGA implementation using regularization. We emphasize that we obtained similar
results from MATLAB.

We define the norm of maximum absolute error (NMAE) between the regularized
recovered source gα,N and the recovered implemented source gI

α,N as follows:

NMAE = max
θ

{
∣∣∣gα,N(θ)− gI

α,N(θ)|
}

.

We define the maximum absolute error (MAE) as:

MAE(θ) =
∣∣∣gα,N(θ)− gI

α,N(θ)
∣∣∣, for all θ ∈ [−π, π].

Figures 23–25 show the MAE between the sources recovered using MATLAB and the
sources recovered using the FPGA implementation. We observe that the NMAE is less than
10−3. This result confirms that the FPGA implementation of the algorithm is reliable.

Appl. Sci. 2024, 14, 1388 21 of 26

Figure 18. The exact source is shown in red, and the result provided by the FPGA implementation
using Equation (17) with regularization is shown in blue. Results similar to those from the MATLAB
implementation are obtained, thus validating the FPGA implementation.

Figure 19. Exact source is shown in red, whereas the blue line shows the approximate source obtained
by the implementation in the FPGA using Equation (11) (without regularization). Results similar to
those from the MATLAB implementation are obtained. Thus, we validate the FPGA implementation.
The recovered source is obtained by applying the algorithm to the measured data.

Figure 20. Exact source is shown in red. Source recovered by the FPGA implementation using
Equation (17) with regularization is shown in blue. Results similar to those from the MATLAB
implementation are obtained. Thus, we validate the FPGA implementation.

Appl. Sci. 2024, 14, 1388 22 of 26

Figure 21. Exact source is shown in red, whereas the blue line shows the approximate source obtained
by the FPGA implementation using Equation (11) without regularization. Results similar to those
from the MATLAB implementation are obtained. Thus, we validate the FPGA implementation.

Figure 22. Exact source is shown in red, and result provided by the FPGA implementation using
Equation (17) with regularization is in blue. Results similar to those from the MATLAB implementa-
tion are obtained. Thus, we validate the FPGA implementation.

Figure 23. MAE between the source recovered using MATLAB programs and the one recovered by
the FPGA implementation (note the scale on the y-axis). The NMAE is less than 10−3, which shows
that the FPGA implementation gives almost the same results as the MATLAB implementation.

Appl. Sci. 2024, 14, 1388 23 of 26

Figure 24. MAE between the source recovered using MATLAB programs and the one recovered by
the FPGA implementation. Note the scale. The NMAE is less than 10−3, which shows that the FPGA
implementation gives almost the same results as the MATLAB implementation.

Figure 25. MAE between the source recovered using MATLAB programs and the one recovered by
the FPGA implementation. Note the scale. The NMAE is less than 10−3, which shows that the FPGA
implementation provides results that are comparable to the MATLAB implementation.

Figure 26. Exact source is shown in red, and the approximate source obtained by the FPGA imple-
mentation using Equation (11) without regularization is in blue. We obtained similar results to those
of the MATLAB implementation, thus validating the FPGA implementation.

Appl. Sci. 2024, 14, 1388 24 of 26

7. Discussion

The source identification problem arises in many applications, such as inverse elec-
troencephalography, inverse electrocardiography, and inverse geophysics. An FPGA is
an integrated circuit that allows the implementation of algorithms and other complex
mathematical operations. In this work, we implemented a source identification algorithm
considering a non-homogeneous medium made up of two homogeneous media and with
sources located on the interface separating the homogeneous media. The algorithm is
expressed as a Fourier series expansion that considers the circular geometry.

Since the source identification problem presents numerical instability, we used the
Tikhonov regularization method and a cut-off of the Fourier expansion to handle the
numerical instability. The Tikhonov regularization parameter and the truncation term were
chosen through numerical testing.

This work presents a hardware architecture with two designs to implement the source
identification algorithm. These architectures were tested on four FPGAs from the 7 Series
of Xilinx: Spartan-7 xc7s100fgga484, Virtex-7 xc7v585tffg1157, Kintex-7 xc7k70tfbg484,
and Artix-7 xc7a35tcpg236. Each architecture contains two channels, each of which is
composed of two sections: one for the arithmetic operations and one for the control of the
operations. We report the resource consumption of the 7 Series of Xilinx FPGAs. These
resources include LUTs, RAM blocks, FFs, DSP blocks, and power consumption. One of
the developed architectures can be used for problems with a larger number of channels.
One example of this case is inverse electroencephalography, for which many inverse source
problems must be solved per second.

To validate the hardware implementation, we constructed three synthetic examples
in MATLAB. The results of both the hardware and software implementations were then
compared in terms of error. These synthetic examples correspond to three types of functions
that encompass a wide range of sources.

The first example is a trigonometric polynomial, while the second is a smooth function
with rapidly decaying Fourier coefficients. The third example is a jump function, which
represents a different class of functions. In this last case, the Fourier series exhibits the
Gibbs phenomenon at the jump point. However, the regularization technique applied
here acts as a smoothing mechanism, eliminating the Gibbs phenomenon in the recovered
source.

As mentioned in the article, we conducted additional software and hardware imple-
mentations using similar functions and observed comparable results.

Given that we are considering two regularization parameters, we performed numerical
tests to identify the pair that most effectively recovers the sources. We found that when
the Tikhonov regularization parameter is fixed and the truncation parameter increases, the
error between the exact source and the recovered source also increases. Similarly, when the
truncation parameter is fixed, the results obtained for other regularization parameters are
less accurate. Moreover, the precision of the hardware implementation does not improve
when considering other pairs of parameters close to the chosen pair.

8. Conclusions

In this paper, we proposed two loop unrolling architectures for implementing a stable
source identification algorithm on FPGAs. Our extensive literature review revealed no
instances for which loop unrolling was utilized in the implementation of inverse source
identification algorithms.

FPGA devices provide several advantages for algorithm implementation: the most
significant being their ability to accelerate these algorithms. Loop unrolling architectures
serve as effective strategies for task distribution to configurable hardware and thereby
reduce overhead and facilitate parallel processing.

The first architecture (Mode 1) is an expanded implementation that encompasses all
operations involved in the algorithm. In contrast, the second architecture (Mode 2) lever-

Appl. Sci. 2024, 14, 1388 25 of 26

ages the algorithm’s properties to apply a pipeline system and reuse hardware resources,
thereby enhancing performance.

We tested the implementation using synthetic examples and obtained comparable
numerical results for both architectures. The error between the exact source and the
recovered source was found to be less than 10−3, which is deemed an acceptable result.
One of the tested examples involved a square source function, for which the recovered
source exhibited smoothing properties, as evidenced by the lack of variation in the Fourier
series expansion.

A key advantage of the architectures developed in this study is our ability to determine
the required number of coefficients, as this number significantly impacts the numerical
stability of the algorithm. Furthermore, we can select the number of bits to achieve accurate
approximations while minimizing hardware consumption. It is important to note that
these architectures are designed to serve as a foundation for other algorithms. We infer that
the architectures developed in this study can be repurposed for other similar algorithms
arising from inverse source problems by leveraging their reconfigurable features.

The results presented here can be extended to concentric spheres and complex geome-
tries. In these cases, the trigonometric base must be changed and implemented. For spheres,
the base is the spherical harmonics, and for complex geometries, we can choose a base gener-
ated for the finite element method or the finite difference method. The second architecture
(Mode 2) employs a control system based on multiplexors (as opposed to finite state ma-
chines), which reduces flip-flop resource consumption and design complexity and can be
used for multichannel problems. Therefore, the architectures developed for implementing
the inverse source algorithm can enable the creation of portable devices for problems
in various fields such as engineering and medicine, as they can simplify the design and
implementation process due to their reconfigurability.

Author Contributions: Conceptualization, J.J.O.-O., C.A.H.-G., M.M.M.-C., J.R.C.-S. and J.J.C.-M.;
methodology, J.J.O.-O., C.A.H.-G., J.R.C.-S. and J.J.C.-M.; software, J.J.O.-O., J.R.C.-S. and J.J.C.-M.;
validation, J.J.O.-O., J.R.C.-S. and J.J.C.-M.; formal analysis, J.J.O.-O., J.R.C.-S., C.A.H.-G., M.M.M.-C.
and J.J.C.-M.; investigation, J.J.O.-O., J.R.C.-S., C.A.H.-G., M.M.M.-C. and J.J.C.-M.; resources, J.J.O.-O.,
J.R.C.-S., C.A.H.-G., M.M.M.-C. and J.J.C.-M.; data curation, J.J.O.-O., J.R.C.-S. and J.J.C.-M.; writing—
original draft preparation, J.J.O.-O., J.R.C.-S., C.A.H.-G., M.M.M.-C. and J.J.C.-M.; writing—review
and editing, J.J.O.-O., J.R.C.-S., C.A.H.-G., M.M.M.-C. and J.J.C.-M.; visualization, J.J.O.-O., J.R.C.-S.,
C.A.H.-G., M.M.M.-C. and J.J.C.-M.; supervision, J.J.O.-O., C.A.H.-G., J.R.C.-S. and J.J.C.-M.; project
administration, J.J.O.-O., J.R.C.-S., C.A.H.-G., M.M.M.-C. and J.J.C.-M.; funding acquisition, J.J.O.-O.,
J.R.C.-S., C.A.H.-G., M.M.M.-C. and J.J.C.-M. All authors have read and agreed to the published
version of the manuscript.

Funding: This The research was funded by the National Council of Science and Technology in Mexico
(CONAHCYT) and Project 00221 VIEP-BUAP.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xilinx, 7 Series FPGAs Data Sheet: Overview, DS180 (v2.6.1), 8 September 2020. Available online: https://docs.xilinx.com/v/u/

en-US/ds180_7Series_Overview (accessed on 10 April 2023).
2. Morín-Castillo, M.M.; Netzahualcoyotl-Bautista, C.; Conde-Mones, J.J.; Oliveros-Oliveros, J.J.; Santillán-Guzmán, A. Stable

identification of sources associated with epileptic focus on the cerebral cortex. Rev. Mex. Ing. Biomed. 2019, 40, e201854.
3. Morín-Castillo M.M.; Arriaga-Hernández J.; Cuevas-Otahola B.; Oliveros-Oliveros, J.J. Analysis of Dipolar Sources in the Solution

of the Electroencephalographic Inverse Problem. Mathematics 2022, 10, 1926. [CrossRef]
4. Gockenbach, M.S. Linear Inverse Problems and Tikhonov Regularization; The Carus Mathematical Monographs, 32; The Mathematical

Association of America: Washington, DC, USA, 2016.

https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
http://doi.org/10.3390/math10111926

Appl. Sci. 2024, 14, 1388 26 of 26

5. Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed.; Springer: New York, NY, USA, 2011; Volume 120.
6. Algredo-Badillo, I; Conde-Mones, J.J.; Hernández-Gracidas, C.A.; Morín-Castillo, M.M.; Oliveros-Oliveros, J.J.; Feregrino-Uribe, C.

An FPGA-based analysis of trade-offs in the presence of ill-conditioning and different precision levels in computations. PLoS ONE
2020, 15, e0234293. [CrossRef] [PubMed]

7. Morín, M.M.; Netzahualcoyotl, C.; Oliveros, J.J.; Conde J.J.; Juárez, H. Stable identification of sources located on separation
interfaces of two different homogeneous media. Adv. Differ. Equ. Control Process. 2019, 20, 53–97.

8. Hennessy, J.L.; Patterson D.A. Computer Architecture: A Quantitative Approach, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011.
9. Conde Mones, J.J.; Estrada Aguayo, E.R.; Oliveros Oliveros, J.J.; Hernández Gracidas, C.A.; Morín Castillo, M.M. Stable

Identification of Sources Located on Interface of Nonhomogeneous Media. Mathematics 2021, 9, 1932. [CrossRef]
10. Hosseinabady, M.; Nunez-Yanez, J.L. A systematic approach to design and optimise streaming applications on FPGA using

high-level synthesis. In Proceedings of the 27th International Conference on Field Programmable Logic and Applications (FPL),
Ghent, Belgium, 4–8 September 2017; pp. 1–4.

11. Jarrah, A.; Al-Tamimi, A.K.; Albashir, T. Optimized parallel implementation of extended Kalman filter using FPGA. J. Circuits
Syst. Comput. 2018, 27, 1850009. [CrossRef]

12. Dragomir, O.S.; Stefanov, T.; Bertels, K. Optimal loop unrolling and shifting for reconfigurable architectures. ACM Trans.
Reconfigurable Technol. Syst. (TRETS) 2009, 2, 1–24. [CrossRef]

13. Reddy, K.S.; Madhavan, S.; Falkowski-Gilski, P.; Divakarachari, P.B.; Mathiyalagan, A. Efficient FPGA Implementation of an RFIR
Filter Using the APC–OMS Technique with WTM for High-Throughput Signal Processing. Electronics 2022, 11, 3118. [CrossRef]

14. Boland, D.; Constantinides, G.A. An FPGA-based implementation of the MINRES algorithm. In Proceedings of the 2008
International Conference on Field Programmable Logic and Applications, Heidelberg, Germany, 8–10 September 2008; p. 379384.

15. Ibraimov, M.K.; Tynymbayev, S.T.; Park, J.; Zhexebay, D.M.; Alimova, M.A. Hardware Implementation of the Coding Algorithm Based
on FPGA; En IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021.

16. lsuwailem, A.M. Real-time FPGA-based Image Enhancement Using Histogram Projection Technique for Uncooled Infrared
Imagers. J. King Saud Univ. Eng. Sci. 2007, 21, 15–22.

17. Nayak, M.R.; Bag, J.; Sarkar, S.; Sarkar, S.K. Hardware implementation of a novel water marking algorithm based on phase
congruency and singular value decomposition technique. Int. J. Electron. Commun. 2017, 71, 1–8. [CrossRef]

18. Sarić, R.; Jokić, D.; Beganović, N.; Pokvić, L.G.; Badnjević, A. FPGA-based real-time epileptic seizure classification using Artificial
Neural Network. Biomed. Signal Process. Control 2020, 62, 102106. [CrossRef]

19. Kanders, H.; Mellqvist, T.; Garrido, M.; Palmkvist, K.; Gustafsson, O. A 1 million-point FFT on a single FPGA. IEEE Trans. Circuits.
Syst. I Regul. Pap. 2019, 66, 3863–3873. [CrossRef]

20. Arias-Cruz, J.A.; Morín-Castillo, M.M.; Oliveros-Oliveros, J.J.; Gutiérrez-Arias, J.E. Stable identification of sources located on the
cerebral cortex from EEG over the scalp. Rev. Mex. Fis. 2023, 69, 050702. [CrossRef]

21. El Badia, A; Duong, T.H. Some remarks on the problem of source identification from boundary measurements. Inverse Probl. 1998,
14, 883–891. [CrossRef]

22. Hansen, P.H. The L-curve and its use in the numerical treatment of inverse problems. In Computational Inverse Problems in
Electrocardiography; Johnston, P., Ed.; WIT Press: Southampton, UK, 2001; pp. 119–142.

23. Xilinx, DDS Compiler v6.0, PG141, 21 January 2021. Available online: https://docs.xilinx.com/v/u/en-US/pg141-dds-compiler
(accessed on 10 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1371/journal.pone.0234293
http://www.ncbi.nlm.nih.gov/pubmed/32559235
http://dx.doi.org/10.3390/math9161932
http://dx.doi.org/10.1142/S0218126618500093
http://dx.doi.org/10.1145/1575779.1575785
http://dx.doi.org/10.3390/electronics11193118
http://dx.doi.org/10.1016/j.aeue.2016.10.025
http://dx.doi.org/10.1016/j.bspc.2020.102106
http://dx.doi.org/10.1109/TCSI.2019.2918403
http://dx.doi.org/10.31349/RevMexFis.69.050702
http://dx.doi.org/10.1088/0266-5611/14/4/008
https://docs.xilinx.com/v/u/en-US/pg141-dds-compiler

	Introduction
	Basic Elements
	FPGA
	Inverse and Ill-Posed Problems
	FPGAs and Inverse Source Problems
	Implementation of Algorithms in FPGAs

	Stable Source Identification Algorithm
	Mathematical Model
	Forward Problem
	Stable Algorithm for the Inverse Source Problem

	Numerical Examples: MATLAB Implementation
	FPGA Implementation
	Architecture Description
	Resource Description

	Validation of the Hardware Implementation
	Discussion
	Conclusions
	References

