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Abstract: Most existing object tracking research focuses on pedestrians and autonomous driving while
ignoring sports scenes. When general object tracking models are used for ball tracking, there are often
problems, such as detection omissions due to small object sizes and trajectory loss due to occlusion.
To address these challenges, we propose a ball detection and tracking model called HMMATrack
based on multiscale feature enhancement and multilevel collaborative matching to improve ball-
tracking results from the entire process of sampling, feature extraction, detection, and tracking. It
includes a Heuristic Compound Sampling Strategy to deal with tiny sizes and imbalanced data
samples; an MNet-based detection module to improve the ball detection accuracy; and a multilevel
cooperative matching and automatic trajectory correction tracking algorithm that can quickly and
accurately correct the ball’s trajectory. We also hand-annotated SportsTrack, a ball-tracking dataset
containing soccer, basketball, and volleyball scenes. Extensive experiments are conducted on the
SportsTrack, demonstrating that our proposed HMMATrack model outperforms other representative
state-of-the-art models in ball detection and tracking.

Keywords: ball tracking; small object detection; multiscale feature; multilevel collaborative matching

1. Introduction

Sports videos have always been a favorite type of entertainment video for most audiences.
With the rapid development of Internet technology, the number of videos has increased dra-
matically, and the number of online video users has also increased. The intelligent processing
of sports video technology has emerged because it is difficult to process such a large number of
sports videos manually. It is necessary to obtain more accurate semantic knowledge for object
analysis in sports videos, including recognition of athlete movements, analysis of competition
tactics, and prediction of competition results. However, obtaining object location information
and object category identification is the most basic and essential. Object tracking, a basic
task in computer vision, can meet this need. Object tracking technology has been applied in
many real-world fields, such as security surveillance systems [1], autonomous vehicles [2],
and sports video broadcasts [3]. Balls, players, referees, coaching teams, and spectators on
the court are the main objects in sports video object tracking. Among them, ball tracking is
essential to object tracking in sports videos. In team ball sports, the movement of the ball
is the core and driving force of movement for all other objects. Sports interactions such as
cooperation and confrontation between athletes and the behavior of referees are closely related
to the trajectory of the ball on the field.

With the application of deep learning technology in ball object-tracking tasks, exist-
ing research has achieved initial results. Ball-tracking methods based on deep learning
generally follow two steps: ball detection and ball tracking. Existing research also mainly
improves from these two aspects. The detection results are often the input of the tracking
process, so the improvement of ball-tracking accuracy largely depends on the accuracy
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of the ball detector. Kamble et al. [4,5] added a classification confidence branch to the
detection model, obtained the detection bounding box, and divided the image blocks into
three categories, balls, players, and backgrounds, making the positioning of balls more
accurate in the tracking phase. Kukleva [6] used a method based on a fully convolutional
neural network with automatic encoding and decoding structure: first, generate a ball
candidate area on the original image [7], then calculate the distance between the candidate
area and the truth ball, delete the wrong candidate area by setting a threshold, and detect
the model output containing the confidence of the ball and the diameter of the ball. In the
tracking stage, existing research mainly focuses on solving the problems of motion blur
and deformation caused by the fast movement of balls and trajectory incoherence caused
by occlusion and out-of-drawing. Using a bounding box overlap probability measurement
algorithm [4] can generate a more robust ball trajectory from tracking loss and recovery;
estimating the ball’s position through the extended Kalman filter [8] can better cope with
sports videos. Uncertainty in ball movement: the ball’s motion state is modeled based on
time-varying fission filters [9], and the relative space filter is used to correct the trajectory,
integrating spatiotemporal information. Dong et al. [10] consider the volleyball flight pro-
cess. The most influential air resistance and gravity factors are used to simulate the ball’s
motion state, and a trajectory correction algorithm based on time–motion characteristics
is proposed. The WITHDRAW model [11] combines center-of-mass tracking with an im-
proved Kalman filter to estimate the ball’s trajectory accurately. Zhao et al. [12] combined
the MeanShift algorithm with adaptive object area size to improve Kalman filter tracking
estimation, improving tracking accuracy and speed. Zhang et al. [13] utilize Harris corner
detection, SURF feature extraction, and a particle swarm optimization algorithm to improve
basketball tracking results. Roman et al. [14] preset a fixed basketball size and search for
basketball position points in the scene using RANSAC (Random Sample Consensus). In
a posterior step, the sphere center is fitted using z-score values eliminating outliers from
the sphere. Huang [15] embed graph convolution to effectively aggregate deep features.
On the other hand, most recent sports video detection and tracking techniques directly
adapt general detection and tracking methods to sports-specific applications. For instance,
Naik et al. [16], Vicent et al. [17], and Huang [15] all employ the YOLO series of methods,
while Kevca et al. [18] employ several classic general lightweight detection models. While
this straightforward adaptation may be convenient, it often overlooks the unique challenges
encountered in sports scenarios, such as motion blur, occlusion, and other issues.

Although specific progress has been made in ball tracking in sports videos, these
methods use the same method to uniformly handle balls and human objects on the court in
sports analysis systems, ignoring the analysis of the unique attributes of ball objects. First,
the number of active ball objects on the playing field is far smaller than that of humans.
There is only a fixed number of balls moving on the court, unlike the number of players,
which is uncertain. The trajectory of the ball is fixed and continuous to the same target,
while the trajectories of the players on the court belong to multiple players with different
identities. Second, ball objects are smaller in size. The ball object covers a small pixel area,
resulting in relatively few available features, which could be more conducive to extracting
abstract-level features. Third, locating the bounding box of the ball is more challenging.
Under the IoU evaluation standard, balls occupy a small proportion of pixels in the image,
causing the error impact caused by the offset of the object bounding box to be much larger
than the general scale. Fourth, due to the complexity of the background and movement in
sports competition videos, ball objects can easily blend into the background and become
difficult to detect. Due to its high speed of movement, the ball usually appears blurred in
the image. Precise boundary determination is difficult, which brings greater challenges to
detection and tracking.

Based on the above analysis and benefiting from small object detection and multiobject
tracking, this paper proposes a ball detection and tracking method based on multiscale
feature enhancement and multilevel collaborative matching to improve tracking results
from multiple angles. Specifically, for the complex problem of the ball being too small
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and moving on the court, our goal is to capture more discriminating features and explore
tracking algorithms based on the ball’s motion characteristics. Through data enhancement,
the size of the data set is expanded, the diversity of the data set is enriched, and the propor-
tion of small ball object samples is increased to enhance the generalization ability of the
detection model. Multiscale feature learning can integrate the spatial location information
of low-level features and the abstract semantic information of high-level features to im-
prove small object detection capabilities while reducing the amount of calculation as much
as possible. A certain correlation exists between objects and objects and between objects
and backgrounds. By capturing this potential relationship context, detection performance
can be improved. Considering object recall, positive and negative sample distribution,
and calculation amount, the prior anchor frame is abandoned, and the confidence of the
object’s existence and the bounding box coordinates is directly predicted through key
point estimation, which improves the performance of small object detection while reducing
problems. Complexity. The ball constantly tracks the same object, avoiding the ID assign-
ment process during the tracking process. Unlike single-object tracking, all links in the
object motion analysis process of sports competition videos are automatic, and there is
no prior information about the object position and category in the first frame. Therefore,
we use a simplified multiobject tracking method and rule matching to generate the ball’s
trajectory online. Then, based on the characteristics of the generated ball trajectory, we
automatically correct it through a simple linear motion model to improve the accuracy of
tracking in batch processing. According to the above ideas, this article comprehensively
improves ball-tracking accuracy from multiple perspectives, such as sampling strategy,
feature extraction, ball object detection trajectory generation, and trajectory correction.

The contributions of our approach are summarized as follows:

1. We propose a heuristic composite sampling strategy. In our method, local region
sampling and global image sampling are used for data augmentation;

2. We propose an anchor-free detection network with a classifier. Among them is the
backbone network, a new multiscale feature enhancement and context information
fusion network specially designed for balls;

3. We propose a tracking algorithm for multilevel collaborative trajectory matching and
correction. Automatically correcting the trajectory for different generated trajectory
states can provide more stable tracking;

4. We propose a ball-tracking data set specifically for sports match videos. The data set in-
volves three sports, soccer, basketball, and volleyball, and the annotation information
is all manually produced.

2. Related Work
2.1. Anchor-Free Detection

Balls in sports videos belong to the category of small objects, and the tracking results
of small objects largely depend on the quality of the detector. Therefore, we discuss small
object detection models in this section. In object detection, anchor boxes are multiple
bounding boxes with different sizes and aspect ratios generated in the center of each image
pixel. The current mainstream object detection algorithms are divided into anchor-based
and anchor-free. Although the object detection algorithm based on the anchor frame
mechanism can use a dynamic anchor frame size setting mechanism to improve a particular
small object detection performance, compared with larger anchor boxes, the detector selects
fewer small object anchor boxes, resulting in an imbalance of positive and negative samples,
which is detrimental to small object detection. Secondly, the anchor box introduces too
many hyperparameters, such as the number of anchor boxes, size, aspect ratio, etc. The
research idea of the anchor-free mechanism is to change the original operation of using
anchor boxes to select objects to position objects based on key points. CornerNet [19] turns
the detection of the object box into a pair of key points, namely the upper left corner and
the lower right corner, thus eliminating the trouble of designing the anchor. In addition,
corner pooling helps CNNs better locate corner locations. ExtremeNet [20] also turns object
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detection into a key point estimation problem, including four extreme points and one
center point of the object, and these five geometrically calibrated points form an object box.
FSAF [21] is based on the online feature selection capability of the feature pyramid structure
(FPN). It can dynamically allocate each instance to the most suitable feature layer during
training, work with anchored module branches during inference, and output prediction
results in a parallel manner. CenterNet [22] defines the object as a single point, that is, the
center point of an object box. The detector uses key point estimation to find the center point
and regress other object characteristics, such as size, 3D position, orientation, and posture.
Anchor-free detection effectively solves the difficulty of small object detection caused by
the predetermined fixed size and aspect ratio of the anchor frame. It has been applied in
remote sensing images [23], face detection [24], surveillance pedestrian detection [25], and
tennis ball detection in sports video [26]. We improve the ball detection and tracking model
based on anchor-free CenterNet. CenterNet uses three key points, namely the upper left
corner point, the center point, and the lower right corner point. A pair of detected corner
points and embeddings are used to detect potential object frames; then, the detected center
key point determines the final frame position. The acquisition of center points can enhance
the network’s discrimination ability and reduce redundant and wrong object frames.

2.2. Ball Tracking by Detection

Siamese networks [27–29] mainly perform similarity matching through Siamese net-
works. This single-object tracking method requires manually selecting the object in the
initial image, traversing each position in subsequent video frames, and determining the
position through similarity comparison. However, in sports competition videos, there is no
information about the object in the first frame. It is necessary to automatically provide each
frame, including the object information in the first frame of the video and the algorithm
for reappearing after the object disappears in the middle frame. The tracking-by-detection
algorithm [30] means that the object information in each image is obtained through the
detection algorithm before tracking. It first detects the object and then matches it to the
existing trajectory. The number of tracking objects and the type of tracking object are all
determined by the results of the detection algorithm.

The detection-based object tracking algorithm process mainly includes detecting the
object position in each frame, predicting the position where the object will appear in the
next frame, and then comparing and correlating the predicted position with the detection
results of the next frame. When there are multiple tracking objects, it is also necessary
to distinguish based on object characteristics to determine which existing trajectory the
new tracking result is associated with. Another important feature of ball tracking is that
the number of ball objects that need to be tracked in each frame does not fluctuate within
a certain range like the number of players that need to be tracked. Therefore, it can
be considered that the same object is tracked at any time, which avoids the identity ID
allocation link in the tracking process and reduces the complexity of the tracking problem.

2.3. Kalman Filter

The Kalman filter [31] is a key processing flow in the detection-based object tracking
algorithm. It is essentially a linear minimum variance estimation algorithm, which can
be divided into two stages: prediction and update. The core is to use the previous state
to predict the current state, and then through observation, the information corrects the
prediction results and is more suitable for predicting the state sequence in the dynamic
system, so it can be used to estimate the detection state in the object motion trajectory.

The state transition equation and observation equation in Kalman filtering can be
expressed by Equations (1) and (2), where A represents the state transition matrix, H is
the observation matrix, uk−1 represents the control parameters, and W and V represent the
process noise and observation noise matrices, respectively.
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xk = Axk−1 + Buk−1 + Wk−1 (1)

yk = Hxk + Vk−1 (2)

Let W and V be Gaussian white noise with a mean value of 0, where Q and R,
respectively, represent the covariance matrices of their respective distributions. In order
to simplify the calculation, they are generally taken as constants. In the actual prediction
process, since the true noise cannot be known, and there will be errors in the prediction
and observation processes, there will also be errors between the final prediction results xk
and the true values xk. Assuming that the error also obeys the normal distribution with
mean 0 and covariance P−k , and the resulting predicted covariance is Pk , then the complete
Kalman filter formula can be obtained as Equations (3)–(7).

x̂−k = Ax̂k−1 (3)

x̂k = x̂−k + Kk(yk − Hx̂−k ) (4)

P−k = APk−1 AT + Q (5)

Kk =
P−k HT

HP−k + R
(6)

Pk = (I − Kk H)P−k (7)

Equation (3) represents the a priori prediction output, and Equation (4) represents
the posterior prediction output yk, modified using the observation results. Kk represents
the Kalman gain, I represents the identity matrix and uses Equations (5) to (7) to com-
plete the state corresponding to the future moment k through iterative prediction and
parameter update.

3. Methods
3.1. Method Overview

Our proposed HMMATrack for ball detection and tracking includes 3 sequentially executed
modules, as shown in Figure 1: Heuristic Compound Sampling Strategy, MNet-based detection,
Tracking of Multilevel Cooperative Matching, and automatic trajectory correction.

Tiling

Heuristic
sampling

Hard
sampling

...

N patches

MNet

w & h

heatmap

conf

Kalman
filter
match

Linear
motion
match

Appearance
features
match

state1

state2 state3

Automatic
trajectory
correction

Heuristic Compound Sampling Strategy Detection based on MNet

Tracking

Figure 1. The framework of the proposed HMMATrack model. The left part is the Heuristic
Compound Sampling Strategy, which includes three mechanisms: tiling sampling, composite (patch
level and image level) sampling, and hard sample resampling. The upper right part is the MNet-based
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detection module. The lower right part is the tracking module including multilevel collaborative
trajectory matching and automatic trajectory correction, where trajectory matching includes Kalman
filter matching, linear motion matching, and appearance feature matching.

3.2. Heuristic Compound Sampling Strategy

For the small size of balls in sports video, if we simply increase the resolution of the
input image to increase the pixel size of the soccer detection frame, it is feasible from
a sampling point of view. However, the amount of calculation and memory usage will
increase exponentially. Most pixels are invalid background areas. If we only use random
sampling, the number of negative samples in the sample will be much larger than the
positive. Because one ball is on the court at most and occupies a small proportion of the
area, this creates a severe sample imbalance. Therefore, we apply a heuristic composite
sampling strategy that can cope with small object sizes and imbalanced data samples. We
perform difficult sample mining to improve ball detection and tracking capabilities in
complex motion situations.

3.2.1. Tiling

Tiling [32] divides images with larger resolutions into smaller images by dividing
them into multiple overlapping patches. The small patch generated by tiling sampling will
be used as a new image without scaling. The relative size of the ball in the patch will be
larger than that of the entire image after scaling, thereby reducing the difficulty of detection.
In order to obtain the global features of the image, we will also use the original image as
training data. The purpose of dividing patches with overlapping is to retain the objects
at the boundaries of each patch and prevent the integrity of the patch edge objects from
being lost due to cropping. Specifically, N represents the number of input frames, w and h
represent frame width and height, and rw, rh represent the sampling reduction factor of w
and h. The number of samples after tilling is N ∗ rw ∗ rh. The patch width wtiling and height
htiling obtained by sampling are calculated by Equations (8) and (9).

wtiling =
4w

3rw + 1
(8)

htiling =
4h

3rh + 1
(9)

3.2.2. Heuristic Sampling

Cropping leads to many useless background patches due to the undersized balls. Patches
containing balls are positive samples, whereas patches that do not contain balls are negative
samples. The positive and negative samples will be seriously imbalanced. The number of ball
samples of different shapes also shows a long-tailed distribution. Imbalanced morphological
distribution will eventually reduce the model’s generalization ability in real detection scenarios.
To tackle this dilemma, we proposed sampling positive and negative samples according to
categories while mining complex samples. The Heuristic Compound Sampling Strategy
covers different image granularities: patch-level and image-level.

Considering the balance of positive and negative samples, we adopted a heuristic rule
to sample patches containing balls and patches with only background information. For
the positive sample, assuming the coordinates of the center point of the true ball labeling
box and the size, use Equations (10) to (11) to obtain the horizontal and vertical clipping
offsets and Equations (12) and (13) to obtain the corresponding clipping boundaries. A ball
patch can be obtained according to Equations (10) to (13). Repeating the above process can
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obtain a set of multiple positive samples. Negative sample sampling is from any part of the
original image that does not include the ball.

o f fx = max(0, random(w, psize− w)) (10)

o f fy = max(0, random(h, psize− h)) (11)

borderx = [max(0, x0 − o f fx), max(0, x0 − o f fx) + psize] (12)

bordery = [max(0, y0 − o f fy), max(0, y0 − o f fy) + psize] (13)

where w and h represent the width and height of the original image, psize represents patch
size, and x0 and y0 represent the center point of the object box.

3.2.3. Hard Sample Mining

We classify sports video images into two types, easy and difficult, according to the
complexity of the sports competition scene. Simple refers to a clear boundary between the
ball and the background, which can be easily distinguished and has the least classification
difficulty, as Figure 2a shows. Difficulties include different factors such as occlusion, motion
blur, and background blending. Occlusion means that part of the ball is covered by the
player, but the complete position of the ball can still be inferred based on the remaining
part, as shown in Figure 2b. Motion blur refers to the fact that when the ball is moving
at high speed, and due to shooting reasons, the ball has a relatively long shadow, no
obvious boundaries, and the most severe deformation, as shown in Figure 2c. Background
integration means that the ball is completely integrated into a similar background, such
as billboards, auditoriums, etc., as shown in Figure 2d. This article uses simple samples
as the benchmark when constructing the training data set. For each difficult situation,
resampling is performed according to the resampling factor. The samples marked as
difficult are repeated multiple times to form a new training fine-tuning data set. In this
way, we perform difficult sample mining to improve ball detection capabilities in complex
motion situations.

(a) (b) (c) (d)
Figure 2. Examples of easy and hard samples: (a) simple samples; (b) occlusion samples; (c) motion
blur samples; (d) background integration samples.

3.3. Detection Based on MNet
3.3.1. CenterNet

CenterNet [22] is a single-stage detection model without anchor boxes, which we use
as the base detection model. In CenterNet, an input RGB image I ∈ RH×W×3 is passed
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through the feature extraction network backbone to obtain the feature map A ∈ R
H
r ×

W
r ×3,

where r is the downsampling multiple of the feature map relative to the input, which is
generally determined by the backbone. For example, in the VGG, the feature output from
the image input to the final stage will be downsampled 5 times, while in the ResNet [33],
it will be downsampled 4 times. The shared feature map will be processed by different
branches to obtain the corresponding key point heat map, position offset, and size (width
and height). The heatmap heatmap ∈ R

H
r ×

W
r ×C represents the confidence prediction of the

object’s potential location, C represents the total number of categories to be detected, and
the value at each position represents the probability score of the object there. The center
point position offset o f f set ∈ R

H
r ×

W
r ×2 represents the deviation between the predicted

position and the real position when a key point in the heatmap is mapped back to the input.
This deviation is caused by rounding the key point position after downsampling and is
optional. The size wh ∈ R

H
r ×

W
r ×2 represents the width and height of the object pointed to

by each point in the heat map. During training, it is necessary to create a corresponding
object label for each sample according to the central point confidence heatmap, o f f set, and
w and h according to the output dimensions.

The advantage of CenterNet is that it is simple and efficient and has excellent detection
performance on large and medium objects in general data sets. However, its limitation
is that it is not fully designed for small object detection and cannot effectively retain the
feature information of small objects. In addition, sports tasks in specific competition
field scenarios are also temporarily unavailable. We combined small object detection and
improved the result from the perspective of multiscale feature extraction to enhance the
small object detection capability of moving videos.

3.3.2. MNet

Balls in sports videos are small objects. The backbone network for small object feature
extraction needs to consider multiple aspects, such as the amount of calculation, the
receptive field, and the abstraction level of the features. The feature level continues to
become abstract as the network deepens, and the receptive field will also become larger with
convolution and pooling. However, as the amount of calculation continues to increase, the
spatial location information is weakened. During the convolution operation, a certain level
of features often only uses the same specification of convolution, and the capture of local
context semantics is relatively weak. Therefore, multiple groups of parallel convolutions are
used to capture the local semantics in different areas, and then mutual fusion forms a richer
comprehensive semantics. To sum up, we redesigned the multiscale feature enhancement
backbone network (MNet) from the perspectives of multiscale feature fusion, context
learning, and integration. Its core modules are the MC Block and Upsample Block. The
improved backbone network structure is shown in Figure 3.

Multiscale feature enhancement and local contextual feature fusion block (MC Block)
is the feature extraction module in the backbone network of this chapter, which can increase
the receptive field and complete local context fusion. As shown in Figure 3b, the MC Block
first uses a down sampling convolution to reduce the size of the feature map to reduce the
amount of calculation, and then we use a set of dilated [34] convolutions with expansion
rates of 1 with different steps s ∈ {1, 2, 3, 4} to process feature map. The convolution of
each branch can be regarded as focusing on the local feature map of different area sizes.
Among them, the stride s = 1 convolution is the basic branch, and the s > 1 branch is
the enhancement branch. To facilitate concatenation, we establish corresponding padding
values across distinct branches. Subsequently, we concatenate the feature maps generated
by multiple branches that possess identical dimensions. The concatenation of multiple
branches can be regarded as the fusion of local contexts of different scales. Since we
use dilated convolution, the model does not bring additional weight parameters while
increasing the receptive field, so the backbone network will become relatively lightweight.
After the features of multiple branches are spliced, convolution is used to reduce the
dimensionality, and then residual connections are performed in the form of residual blocks
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in ResNet. Note that when the downsampling part and enhancement branch are removed,
the MC Block degenerates into the classic residual block structure. The upsampling module
restores the feature map to its original resolution size. We use a simple bilinear interpolation
method to increase the resolution and then use a convolution with a stride of 1 to add details.

256×256×32 128×128×64

MC MC

64×64×128

MC

32×32×256

UP UP UP

64×64×128
128×128×64 256×256×32

(a)

(b)

(c)

Conv2d kernel=3

BatchNorm

ReLU

Dilated Conv
kernel=3
stride=1

BatchNorm

ReLU

Dilated Conv
kernel=3
stride=2

BatchNorm

ReLU

Dilated Conv
kernel=3
stride=3

BatchNorm

ReLU

Dilated Conv
kernel=3
stride=4

BatchNorm

ReLU

Conv2 kernel=1

Concat

ReLU

Bilinear
Upsampling

Conv
kernel=3
stride=1

BatchNorm

ReLU

Figure 3. The architecture of MNet . (a) MNet. The input image shape is 256 × 256 × 3. After 3 MC
downsampling blocks, the feature map size is 32 × 32 × 256, and then it is restored to 256 × 256 × 3
after 3 Up Blocks. (b) MC block contains 4 groups of different scale feature extraction branches. The
output features of each branch are concatenated and then residual connections are performed. (c) Up
block uses bilinear interpolation to complete upsampling.

The improved backbone network focuses on the detection of small objects. Compared
with other backbone networks, there are fewer downsampling steps. Therefore, with the
same input size, MNet has the largest output space size, which brings a certain performance
improvement. Secondly, MNet uses dilated convolution to balance the network depth and
receptive field and limit the scale of model parameters.

3.3.3. Detection Module

Ball detection has a priori characteristics. In general, it can be considered that in a
sports match, the number of balls in each frame does not exceed 1. Under this simple
assumption, this article converts global detection into regional detection, that is, it first
determines the original image area RoI (Region of Interest, RoI) [35] where the ball may
appear and then performs conventional detection tasks on this RoI to output soccer. The
precise detection frame is similar but not identical to RPN. In order to enhance the detection
accuracy of soccer and reduce the computational cost, based on the basic structure of
CenterNet, the heuristic composite sampling strategy and multiscale-enhanced backbone
network mentioned above are used to improve it into a new ball detection model with
a foreground and background classifier. Specifically, for the complete input image, the
local area patch needs to be cut out through the heuristic composite sampling strategy
mentioned above. Each patch contains a label, whether it belongs to the background or
the foreground. That is, it contains a ball or does not contain a ball. Each patch needs to
extract features through the MNet we proposed and then output the center point prediction,
detection frame size prediction, and classifier prediction.
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p is the true position of a certain object key point in the picture, and c is the category.
p̂ = ⌊ p

r ⌋ is the position on the low-resolution image corresponding to p, then Equation (14)
is the heat map estimate of category c.

Yxyc = exp(−
(x− p̂x)2 + (y− p̂y)2

2σ2
p

) (14)

where σp represents the standard deviation appropriate to the object size. If the radius
of the label area formed by the two objects overlaps, the overlapping area will take the
maximum value. The objective function during training is Focal Loss, which is the logistic
regression function at the pixel level shown as Equation (15).

Lk =
−1
N ∑

{
(1− Ŷxyc)αlog(Ŷxyc), i f Yxyc = 1

(1−Yxyc)β(Ŷxyc)αlog(1− Ŷxyc), otherwise
(15)

where α and β are the hyperparameters when training according to the Focal Loss set in
CornerNet, and N is the total number of samples that control the loss normalization of all
positive samples. For each real object frame k and its boundary position data, its real size
can be obtained by Sk = (x(k)2 − x(k)1 , y(k)2 − y(k)1 ), so the width and height size output of the
object can still be trained through L1 loss, shown as Equation (16).

Lsize =
1
N

N

∑
k−1
|Ŝpk − Sk| (16)

The improved predictor we proposed uses r = 1 equal resolution processing in ball
detection, and its advantage is that it can remove the prediction of the center point offset.
At the same time, a classifier is added to determine whether the current Patch contains a
ball. Finally, each Patch will get a 0 < ŷ < 1 probability output to indicate whether other
predictions corresponding to the current Patch are valid. For foreground or background
classification problems, the cross-entropy function can be used as the objective function
for classifier prediction. Assuming that the true label corresponding to the i-th patch is
yi ∈ {0, 1}, the corresponding loss of the training set containing a total of N patch samples
is shown in Equation (17).

Lcon f = −
1
N

N

∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (17)

Equation (18) is the final ball detection loss.

Ldet = Lk + λsizeLsize + λcon f Lcon f (18)

where λsize and λcon f are the balance factors. λsize will always be set to 0.1 and λcon f set
to 1. In the prediction stage, the entire image is first cropped into multiple overlapping
patches. After each patch passes the detection model, a prediction set of classification,
center point, and size will be obtained. Find the corresponding center point coordinates
and size based on the index corresponding to the patch with the highest classification
prediction probability, and then add the center point coordinates to the offset during tiling
to obtain the ball detection frame relative to the entire image.

3.4. Ball Tracking

We divide the ball-tracking process into two stages: multilevel collaborative matching
and automatic trajectory correction. In the multilevel collaborative matching stage, the
simplified multiobject tracking method and rule matching are mainly used to generate
the ball motion trajectory online. In the automatic trajectory correction stage, the trajec-
tory generated by multilevel collaborative matching is automatically corrected mainly
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through a simple linear motion model, and the tracking accuracy is increased in the form
of batch processing.

3.4.1. Multilevel Cooperative Matching

Kalman filter matching. Use the latest box of the existing trajectory and Kalman filter
to estimate the position of the next box; calculate the distance between the selected box
and the estimated box in turn. According to the ball detection algorithm described above,
multiple detection results can be obtained in the form of tiling in the image. Assume that
each detection result object is Di, and a capacity of M can be maintained based on the
confidence score of each detection. A small root heap is used to construct a candidate
set D that needs to be searched for potential detection objects as a continuation trajectory.
The Kalman filter matching branch is the preferred method in the multilevel collaborative
trajectory matching stage, that is, the appropriate observation object is first selected in
the form of distance calculation and matching in D as the output of the Kalman filter
matching process. Different from the classic object tracking algorithm [30], in the process of
calculating the distance, the original IoU distance is replaced by the distance between the
center points of the detection objects. Assume that the trajectory frame at time k− 1 in the
current trajectory is Tk−1, calculate the distance between each candidate detection Di and
the estimated value Tk at the time of k by Equation (19).

d(1)
(i,k) = α + tanh(λ∥Di − Tk∥) + β (19)

where α and β are balance factors, with a value of 0.5, and λ is a scaling factor, with a value
of 0.02.

Linear motion matching. Based on the assumption that the ball moves in a straight line
at a uniform speed, linear screening selects new candidate detections from D by judging
whether the object at different times complies with simple linear motion. Considering that
different videos may have different frame rates, and even the movement speed of the ball
at different times in the same video is very different, the linear model only considers the
latest trajectory results k− 1 moments and the current detection Di to be filtered. Assuming
that the latest tracking Tk−1 in the trajectory is valid, the rate is vk−1, and its position is
Sk−1, then the current i-th detection is based on a simple linear model. The prediction of
the location can be expressed as Equation (20).

Sk = Sk−1 + vk−1 + δ (20)

Equation (20) needs to always calculate the speed corresponding to the last valid
detection. This process can also be simplified according to the characteristics of the ball
scene, that is, ignoring the motion direction information, calculating the speed of each valid
detection in the sum D Distance, and finding the one with the minimum distance; if it is
less than the threshold, it can be used as a new detection to continue the trajectory, then add
the trajectory result set and update to end the linear filtering process. δ is the fluctuation
bias constant, which generally takes the side length of the last detected ball boundary box.
If the position of the candidate detection Di is Si, then the linear motion matching distance
is shown in Equation (21).

d(2)
(i,k) = ∥Sk − Si∥2 (21)

Appearance features match. Feature matching uses the appearance features of the
ball set in advance to match the most likely detection in D after both Kalman filtering and
linear motion matching fail or multiple detection frames are matched. By constructing the
appearance feature set of the ball in advance, the single confidence level in the detection
model is supplemented by calculating the degree to which the new detection matches
the extracted features, thereby reducing the probability of false detection in the detection
set. Considering computational efficiency and performance, this paper uses the method
of manually constructing a ball HOG feature [36] library as a feature basis to calculate
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the matching degree of ball appearance features. First, in the training data set, soccer,
basketball, and volleyball balls were intercepted in different motion states, i.e., ball instance,
then the HOG features of each ball sample were extracted to construct the matrix hl , and
then the same method was used to calculate the HOG feature hi of each candidate detection.
Equation (22) indicates that at this time, the candidate detection that has the minimum
average distance and meets the threshold can be used as the final matching detection.

d(3)
(i,l) = min{ 1

N
∥hi − hl∥} (22)

The pseudocode of multilevel collaborative matching is shown as Algorithm 1.

Algorithm 1 Multilevel Cooperative Matching

Require: Detection indices D = {D1, . . . , Di, . . . , DM}, Track indices T = {T1, . . . , Tk−1}
Ensure: New track T

1: Initialization set of matchesM← ∅
2: Initialization set of unmatched detections U ← D
3: for Di in D do
4: Compute KF matching distance d(1)(i, k)
5: Compute LM matching distance d(2)(i, k)
6: if d(1)(i, k) > t(1) and d(2)(i, k) > t(2) then
7: M← Di
8: end if
9: end for

10: for Di inM do
11: Compute the minimize AF matching distance d(3)(i, l)
12: Tk = Di
13: T ← Tk
14: end for
15: return T

3.4.2. Automatic Trajectory Correction

Automatic trajectory correction aims to provide a more stable tracking trajectory in an
online and lower-cost form, and it always tends to retain more detection to form a longer
trajectory. Multilevel collaborative matching processing can produce sufficiently accurate
ball-tracking trajectories when the accuracy of ball detection is relatively high. However,
in most cases, due to complex sports scenes, the results of ball detection are not reliable
enough, so additional processing is required. Automatic trajectory correction improves the
accuracy of the trajectory, thereby enhancing the performance of motion behavior analysis.

Trajectory analysis. There are several forms that a trajectory segment that has not
undergone automatic trajectory correction may be in. Among them, Figure 4a represents
a complete and smooth trajectory, which is the ideal state. At this time, each detection
represents the state of the ball at a certain moment to the greatest extent possible. No
correction processing is required. Figure 4b represents that part of the detection is missing
in a section of the trajectory, causing the trajectory to be interrupted. For example, the ball
is blocked by a player. In this case, only interpolation is needed based on the position of
the missing frame. Figure 4c represents a small amount of misdetection in a section of the
trajectory, but it does not affect the main body of the movement trajectory. This kind of
situation often occurs when the image quality is poor, and the player part is extremely
similar to the ball. In view of this, such situations need to be corrected based on the before
and after detection results of false detection. Figure 4d represents a relatively drastic change
in the spatial position of the ball during this time period, resulting in two far-apart trajectory
segments. The possible reason is that the ball flew out of the screen at this time or the
camera switched. For this kind of situation, you only need to handle the boundary between
the two fragments before and after. Figure 4e represents the extreme case of case Figure 4c.
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When there are no balls in the picture for a long time, a large number of false detections
cause the trajectory segments to become very messy, and any subset composed of detection
cannot meet the requirements of forming a smooth trajectory, i.e., a minimum threshold, so
these illegal detections need to be discarded until new trajectory segments appear.

(a) (b) (c) (d) (e)

Figure 4. The analysis of ball tracklets: (a) smooth normal trajectory; (b) smooth but incomplete
trajectory with a small number of missing detections; (c) trajectory with a small amount of deviation;
(d) old trajectory segment ends and new trajectory segment begins; (e) cluttered detection collection
of results.

Trajectory correction algorithm. Automatic trajectory correction adopts the idea of
sliding windows and the form of a finite state machine (FSM) [37] to handle the above
situations automatically. Finite state machines can be divided into three states, showed as
Figure 5. The search state is used to find the left boundary of a suitable sliding window.
If found, a sliding window can be constructed and entered into the candidate state for
verification processing. Otherwise, the left pointer will be moved until it is found or reaches
the end. The candidate state is to check whether the detection set in the current window
can extend the ball trajectory. Trajectory fragments may both extend the old trajectory and
serve as a new beginning. Extending the old trajectory as much as possible can reduce the
number of trajectory segments and improve the overall stability of tracking. The repair
state is to repair the deviation detection in the window according to the simple linear
motion model or to interpolate the missing detection to improve the tracking accuracy as
much as possible.

Search state

Candidate
state Repear state

Start

Window
valid

Window
invalid

End

Track
exists

Track 
not exists

Window processing
completed

Figure 5. Automatic trajectory correction with sliding windows and finite state machine. The search
state finds the starting boundary of the sliding window; the candidate state verifies whether the
detection is added to the existing trajectory; the repair state repairs deviated detections or supplements
missing detections by interpolation.

Candidate states look for the most promising detection within the window. Use
Equation (21) to determine whether detection i and detection j satisfy a linear relationship.
If satisfied, they will vote against each other, and the detection with the most votes in the
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final window and exceeding a certain proportion threshold will be elected as the anchor
detection to be used to repair the status benchmark. If no detection is selected, discard the
detection if the detection on the left side of the window has not been repaired, and move
the window one step forward to search for anchor detection in the new window. If the
detection on the left has been repaired, then only move the window.

The repair state first calculates the distance between each detection and the anchor
detection. If the simple linear motion model is satisfied, it is marked as repaired. If
the current detection is an invalid detection, the two detections closest in time to the
detection are used for interpolation. When there are no such two detections, the position is
interpolated using Equation (21), and the frame number difference between the current
detection and the anchor detection is marked as repaired. Similarly, if the current detection
is not satisfied, you only need to use Equation (21) to recalculate and replace. When all
detections are in the repair state, move the window pointer forward by at least a distance
greater than half the window capacity.

4. Experiments
4.1. Data Set and Evaluation
4.1.1. SportsTrack

There is currently no public sports competition broadcast video data set, including
basketball, soccer, or volleyball, that specifically contains object ball detection and tracking.
We used a small-scale manual annotation method to build a relatively high-quality object
tracking data set containing soccer, basketball, and volleyball competition broadcast videos
as a supplement to the research data. The self-built data set is named SportsTrack. The
competition videos used for annotation are all from professional public competition broad-
cast videos. On the premise of complying with the rules of video use and dissemination,
4K ultra-high-definition soccer competition videos and 1080 p high-definition basketball
and volleyball competition videos were selected and downloaded as source videos. Several
clips from long-range shots were intercepted from the original video; each clip was no
longer than 15 s, and the complex conditions of detection and tracking were fully taken
into account to increase the difficulty of the task and finally formed a video with multiple
resolutions and high image quality, creating a relatively high-precision ball object tracking
data set covering three sports scenes: soccer, basketball, and volleyball. It can be used for
the detection and tracking tasks of soccer, basketball, and volleyball at the same time. The
relevant parameter information of the self-built data set SportsTrack is shown in Table 1.
Soccer has a corresponding 4K version, and basketball and volleyball have corresponding
1080 p versions.

Table 1. Self-built data set SportsTrack.

Object Train Test Frame GT Pixel FPS

Soccer 2164 1196 3360 3282 1280 × 720 30
Basketball 2196 1464 3660 3498 1280 × 720 30
Volleyball 2160 1400 3600 3520 1280 × 720 30

Compared with other sports-related tracking data sets, our self-built data set Sport-
sTrack has the following three advantages:

1. Contains multiple types of resolutions and higher resolutions. Soccer videos have
larger stadiums, farther objects from the shooting camera, and smaller objects. The
resolution of the collected competition broadcast videos reaches 4K, which can provide
richer detailed information;

2. Covers multiple complex sports scenes. Our data set contains three important team
ball sports: soccer, basketball, and volleyball. Compared with other previous object
tracking data set scenarios, the movement form and background information of the
object in the video are more complex;
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3. The annotation information comes from manual annotation and has undergone sec-
ondary manual quality inspection, so the annotation accuracy is high.

4.1.2. Data Partition

In the detection model training, we adopt the joint data set training mode and use the
public SoccerDB [38], APIDIS [39], and VolleyballVision [40] data sets as auxiliary training.
SoccerDB [38] is a comprehensive soccer scene data set proposed by Xinhua Zhiyun that
can be used for various tasks such as object detection, action recognition, temporal seg-
mentation, and highlight detection [5]. The images used for the soccer detection task are
crawled from the Internet or sampled from competition videos. There are 45,732 frames of
images belonging to the competition videos. In order to ensure the efficiency of training
and the relative balance of sample distribution, SoccerDB is eliminated during training.
There are no objects or samples containing sparse objects, and there are 40,615 frames of
images used for training after screening. The advantage of SoccerDB is that it is large in
scale and includes the detection and annotation of soccer balls, players, and goals. How-
ever, the disadvantage is that all annotation data are generated by detectors rather than
manual annotations, resulting in a large number of annotation errors. In addition, the
image quality is relatively poor. APIDIS [39] is a basketball scene data set provided by the
UCLouvain image and signal processing team of ICTEAM in Belgium that can be used for
event detection, object detection, and tracking. The video sequences in the data set come
from the European APIDIS project. The data set used for the available basketball tracking
task contains 12,907 frames with a video resolution of 1600 × 1200. The advantage of the
APIDIS data set is that the data set annotations are all manual annotations and are relatively
accurate. The disadvantage is that all video clips come from the same basketball compe-
tition, and the scene is relatively singular. VolleyballVision [40] is a volleyball detection
data set provided by the Roboflow computer vision platform and Dong-A University. The
images used to detect come from public images on the Internet. There are 25,239 images
containing volleyball, 17,679 training sets, 2539 test set images, and 5021 verification set
images. Annotation information is provided, but the verification set image is the source.
The images in the training set and test set were processed, so we only selected a total of
20,218 images in the training set and test set in the original VolleyballVision as the volleyball
detection auxiliary training set. The advantage of VolleyballVision is that it is large in scale,
including indoor, outdoor, hard volleyball, air volleyball, beach volleyball, and other scenes.
The disadvantage is that all images are single images and not derived from video sequences.
There is no continuity or correlation between the images in the data set, and it can only be
used for volleyball detection tasks without tracking annotations.

The division of the joint training set and test set used for detection is shown in Table 2.
In addition, this paper also randomly divides 25% of the entire set as a detection training
set for model search and ablation experiments, while the test set remains unchanged.

Table 2. Training and test data set partitioning.

Data Set Object Train Test

SoccerDB Soccer 40,615 -
VolleyballVision Volleyball 20,218 -

APIDIS Basketball 12,907 -
SportsTrack Soccer/Basketball/Volleyball 6520 4060

4.1.3. Evaluation

To evaluate the tracking performance of balls, these benchmarks adopt commonly used
evaluation metrics for single-object tracking: precision, P, normalized precision, PNorm, and
area under the success curve, AUC.
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4.2. Performance Comparison with Other Ball-Tracking Methods

In order to fully evaluate the effectiveness and advancement of our proposed method,
we selected six of the currently best-performing single-object tracking methods and open-
source ball-tracking methods in the comparative experimental evaluation of ball-tracking
results, including UNINEXT [41], OSTrack [42], STACK [43], Deepsport [44], VolleyVi-
sion [45], and EKF [8]. UNINEXT reformulates diverse instance perception tasks into a
unified object discovery and retrieval paradigm and can flexibly perceive different types
of objects by simply changing the input prompts. OSTrack unifies feature learning and
relationship modeling by connecting template search image pairs with bidirectional in-
formation flow. Through mutual guidance, discriminative object-oriented features can be
dynamically extracted. In the in-network candidate early elimination module, a strong
similarity prior to calculation in a single-stream framework is added, which can signifi-
cantly improve the reasoning efficiency. STACK transforms object tracking into a direct
bounding box prediction problem and predicts it through an encoder–decoder transformer
structure. The encoder models the global spatiotemporal feature dependencies between
the object object and the search region, while the decoder learns a query embedding to
predict the spatial location of the object object. Deepsport proposes to solve the task of
diameter, localization, and confidence of a basketball obtained from a calibrated monoc-
ular camera by estimating information about the basketball’s diameter in pixels and the
true ball’s diameter in meters. VolleyVision combines the YOLO detection model and the
DaSiamRPN single-object tracking method to form a volleyball tracking system that can
quickly and efficiently locate and track volleyballs in videos. EKF reduces the missed ball
rate by determining the candidate position of the soccer ball instead of trying to identify
the soccer ball’s position, calculating the distance between the soccer ball and the candidate
soccer ball, removing incorrect soccer candidate positions through a threshold, and finally
estimating the ball’s position through the extended Kalman filter’s location.

Table 3 lists the results of our proposed method and other methods on the tracking
result indicators AUC, P, and PNorm on the SportsTrack test set. As can be seen from the
table, the method we proposed has the best overall tracking effect in soccer, basketball,
and volleyball. It can be seen from the comparison results that on PNorm, our method
has achieved the highest results in three types of balls (soccer, basketball, and volleyball),
which are 87.9%, 84.7%, and 84.6%, respectively. In terms of AUC, our method is more
than 2.9% higher than other comparison methods on the basketball test set; it is more than
4.4% higher than other methods on the volleyball test set. On P, our method is more than
6% higher than other methods on the basketball test set; it is more than 3.7% higher than
other methods on the volleyball test set. FPS is the abbreviation of frame per second, which
represents the average inference speed of the model. In our model, the detection algorithm,
trajectory matching algorithm, and trajectory correction algorithm are processed in stages.
The FPS of our model in Table 3 is the overall processing speed calculated by adding the
processing times of the three stages. Therefore, the overall processing speed of our model
is slower compared with other SOTA comparison methods. Nonetheless, the speed of
our tracking method, 28.2, is close to real-time processing standard (FPS = 30) and can be
adapted to ball tracking in sports broadcast videos.

To evaluate the overall performance of the proposed HMMATrack, we analyzed the
detection results, as shown in Figure 6. Among them, P represents the detection precision,
R represents the recall rate, and AP represents the average precision of IoU = 50, and the
threshold is set to 0.3. As can be seen from the figure, our detection algorithm exhibits
higher accuracy; however, its complete recall is relatively low, indicating that there is a large
number of undetected instances in the algorithm. The framework we adopt belongs to the
detection-based tracking category, which may explain the insufficient tracking performance.
Going forward, our focus will be on improving the recall of our detection algorithms.
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Table 3. Comparison results with other state-of-the-art methods on AUC, P, and PNorm in the
SportsTrack test set including soccer, basketball, and volleyball. The best results are in bold. FPS is
the average inference speed.

Method Soccer Basketball Volleyball
AUC P PNorm AUC P PNorm AUC P PNorm FPS

UNINEXT 78.5 86.1 87.5 63.7 69.0 71.2 61.6 67.7 70.3 30.3
OSTrack 76.1 81.6 84.2 71.6 77.5 79.5 72.3 79.0 81.9 69.7
STACK 66.5 72.9 75.0 57.9 63.4 65.5 56.7 62.2 64.8 35.6
Deepsport 63.7 70.0 72.8 72.0 77.9 80.4 60.7 66.7 69.2 28.6
VolleyVision 67.0 73.0 75.1 59.8 65.1 67.2 70.4 76.2 78.9 57.3
EKF 64.4 70.1 72.3 66.8 72.6 75.2 57.3 64.0 66.3 16.4
Ours 78.3 85.5 87.9 74.9 83.9 84.7 76.7 82.7 84.6 28.2

Figure 6. MNet-based detection results on P, R, AP in SportsTrack test data.

Figure 7 shows the advantages of our method for ball tracking in the presence of
occlusion, motion blur, and blend in the background. Figure 7 shows an example of
tracking results comparing our method with other methods. We selected three situations
with tracking difficulties: occlusion, motion blur, and background blending. In frames
29 to 36 of the fourth clip of SportsTrack’s basketball test set, the player’s hands obscured
the basketball. (a) and (b) in Figure 7 are screenshots of the basketball part of these eight
consecutive images. Other methods did not track the basketball, as shown in Figure 7a. In
contrast, our method tracks all basketballs with hand occlusion. In frames 352 to 359 of the
first clip of SportsTrack’s soccer test set, the soccer ball blends into the background of the
auditorium. Figure 7c,d is screenshots of the soccer part of these eight consecutive images.
Other methods did not track the soccer player, as shown in Figure 7c. In contrast, our
method tracks the entire ball in a situation where the ball is very similar to the head in the
audience, as shown in Figure 7d. In the first clip of SportsTrack’s volleyball test set, motion
blur occurs from frames 97 to 104 due to the excessive speed of the volleyball. Figure 7e,f is
screenshots of the volleyball part of these eight consecutive images. The blurred volleyball
was not tracked by other methods, as shown in Figure 7e. In contrast, our method tracks
all volleyballs, as shown in Figure 7f.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Examples of comparisons of results with other methods: (a,b), respectively, show partial
screenshots of the tracking results of Deepsport and HMMATrack on frames 29 to 36 of episode 4 of
the basketball test set; (c,d), respectively, show partial screenshots of the tracking results of UNINEXT
and HMMATrack on frames 352 to 359 of episode 1 of the football test set; (e,f), respectively, show
partial screenshots of the tracking results of OSTrack and HMMATrack on frames 97 to 104 in episode
1 of the volleyball test set.

4.3. Ablation Experiments
4.3.1. Analysis of the Effectiveness of the Heuristic Composite Sampling Strategy

First, we conducted ablations on the components of the Heuristic Compound Sampling
Strategy. In the actual video of the ball team sports competition, there are long-shot videos,
close shots, and close-up videos. Even in the same long shot or panoramic shot, as the
position of the ball changes in the court, the position between the ball and the camera will
also change. Therefore, the relative size of the balls changes as the camera moves or the
ball itself moves. We not only want to detect and track smaller balls in the distance but
also capture larger balls in the distance. Secondly, in actual sports videos, there is only
one valid ball object by default. Therefore, after the original image is randomly cropped
to the size of the network input, there is a large gap in the number of positive samples
containing the ball object and negative samples that do not contain the object, resulting in
positive and negative samples being severely imbalanced. Finally, there are often unusual
situations such as occlusion and motion blur in team ball sports scenes. In order to verify
the effectiveness of the heuristic composite sampling strategy, we constructed different
sampling strategies for ablation experiments: (a) HMMATrack random cropping and
random sampling, and other structures remain unchanged; (b) HMMATrack (w/o tilling):
the tilling sampling mechanism is not used, and the detection and tracking network remains
unchanged; (c) HMMATrack (w/o heuristic sampling): heuristic sampling is not used, and
other structures remain unchanged; (d) HMMATrack (w/o hard sample mining): uses



Appl. Sci. 2024, 14, 1376 19 of 23

random sampling without distinguishing between hard samples and ordinary samples, and
other structures remain unchanged; and (e) HMMATrack: complete sampling, detection,
and tracking pipeline. From the results of Figure 8, it can be seen that the tracking effect
obtained by using the complete sampling strategy is the best.
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Figure 8. Heuristic composite sampling ablation analysis on soccer, basketball, and volleyball test
data sets.

4.3.2. Analysis of the Effectiveness of MNet Backbone Network

In order to verify the effect of the MNet backbone network proposed in this article,
we conduct lightweight backbone networks SqueezeNet [46], EfficientNet [47], and Mo-
bileNetV2 [48] as comparison models. Four sets of comparative experiments were designed:
(a) SqueezeNet; (b) EfficientNet; (c) MobileNetV2; and (d) MNet. In these comparative
experiments, only the backbone network was modified, and other structures remained
consistent. It can be seen from Figure 9 that using the MNet backbone network proposed
in this article can better capture smaller ball objects.

Figure 9. MNet backbone ablation analysis on soccer, basketball, and volleyball test data sets.

4.3.3. Tracking Module Effectiveness Analysis

In order to further objectively analyze the effectiveness of our proposed tracking
algorithm, we designed three sets of comparative experiments: (a) HMMATrack (w/o
multilevel cooperative matching): does not use multilevel cooperative matching but only
uses the classic Kalman filter matching algorithm other structures remain unchanged;
(b) HMMATrack (w/o automatic trajectory correction): the automatic trajectory correction
module is not used, and other structures remain unchanged; and (c) HMMATrack: the
complete HMMATrack framework. It can be seen from Figure 10 that the ball trajectory
obtained by the tracking model using the complete trajectory correction algorithm has
better continuity.
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Figure 10. Tracking module ablation analysis on soccer, basketball, and volleyball test data sets.

Table 4 objectively evaluates the effectiveness of each functional module design from
the three indicators of AUC, P, and PNorm. Table 4 shows the average results of different
network structures on the three indicators of AUC, P, and PNorm for three ball objects. It can
be seen from the table that the algorithm that only performs random cropping and random
sampling without any other sampling strategies performs the worst in terms of AUC,
P, and PNorm. Compared with the MNet network, the algorithm using ResNet-18 as the
backbone network has lower AUC, P, and PNorm indicators. On the contrary, the network
that adds a complete heuristic composite sampling strategy, MNet detection module and
multilevel collaboration, and automatic matching and tracking function modules performs
the best in the three indicators of AUC, P, and PNorm.

Table 4. Comparison of ablation experiment evaluation results of HMMATrack. The best results are
in bold.

Modules Network AUC P PNorm

Sampling Module

(a) Random cropping and sampling 76.2 81.5 83.0
(b) w/o Tilling 74.3 81.4 84.3
(c) w/o Heuristic sampling 74.2 79.9 83.3
(d) w/o Hard sample mining 75.0 80.9 83.7

MNet Backbone
(a) SqueezeNet 74.5 81.1 82.4
(b) EfficientNet 76.5 83.2 86.9
(c) MobileNetV2 76.4 83.8 85.5

Track Module (a) w/o Multilevel cooperative matching 78.8 83.4 85.4
(b) w/o Automatic trajectory correction 74.8 82.3 84.5

HMMATrack 76.6 84.0 85.7

5. Conclusions

We propose a ball detection and tracking method based on multiscale feature enhance-
ment and multilevel collaborative matching, which can improve the tracking effect from the
whole process of visual target tracking, including a heuristic composite sampling module,
an MNet small object detection module, a multilevel collaborative matching module, and an
automatic trajectory correction module. We designed a heuristic composite sampling strat-
egy in which we apply the tiling mechanism, heuristic sampling, and a complicated sample
mining mechanism. This module specifically targeted sports scenes and small objects that
can balance samples and improve the detection effect of small ball objects. Secondly, we
designed a new backbone network, MNet, which, based on the anchor-free detection model,
can effectively improve the detection effect of balls under occlusion and motion blur. We
also designed a tracking module based on multilevel collaborative matching and automatic
trajectory correction, which can effectively improve the continuity of the ball trajectory.
We also manually annotated a ball-tracking data set named SportsTrack containing three
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sports scenes: basketball, soccer, and volleyball. Finally, we studied detailed comparison
and ablation experiments on SportsTrack, and the results demonstrate the advancement of
our proposed HMMATrack.
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