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Abstract: This paper proposes a theoretical model to discuss the capacity of heterogeneous saturated
flow. A crucial indicator, platooning intensity, which represents the willingness of connected and
autonomous vehicles to form platoons, is taken into consideration. The relationship between pla-
tooning intensity and the penetration rate of connected and autonomous vehicles is also evaluated.
Numerical analysis is conducted based on relevant parameters, which further improves the proposed
theoretical model. Finally, a microscopic simulation is used to verify the accuracy of the proposed
model. The results indicate that both the speed and the market penetration rate have a significant
impact on capacity; however, the impact is not linear. The slope of the speed-affected curve gradually
decreases, whereas the slope of the market penetration rate-affected curve gradually increases. The
impact of market penetration rate on theoretical capacity intensifies with the increase in speed. As
the number of vehicles within a fleet increase, the weighted average of platooning intensity gradually
tends towards the market penetration rate. The formulation offers important insights into traffic
performance with heterogeneous flow.

Keywords: platooning intensity; heterogeneous traffic; automated vehicles; microscopic traffic flow
modeling; market penetration rate

1. Introduction

Compared to human-driven vehicles (HVs), connected and autonomous vehicles
(CAVs) are considered to improve traffic capacity due to their superiority, with short
headway, quick reaction time, lower error rate, etc. Rapid progress in computing, robotics,
and artificial intelligence has made it possible to develop vehicles that are almost ready
for road usage. As a result, significant endeavors have been made in the regulatory,
legal, and insurance sectors to address the implications of integrating such vehicles into
everyday life. However, accurately predicting and understanding the potential impacts
of these advancements on transportation supply, mobility, and the demand for these
services over time has proven to be a challenging task, making it difficult to develop
precise planning tools [1]. On the other hand, the energy drive form is also important. The
driving efficiency of electric-driven vehicles is indeed generally higher than that of gas or
oil fuel-driven vehicles. However, it is important to note that the production efficiency
of electric traction is typically lower compared to gas or oil fuels [2]. When considering
the popularity of CAVs, energy consumption and environmental factors should also be
taken into consideration. Advances in material and immaterial technologies, such as
CAV technology, are enabling the implementation of the Mobility as a Service paradigm,
which offers an opportunity to address the mobility challenges related to sustainability [3].
Microscopic simulation is widely used in most studies to investigate the impact of CAV
technology on traffic capacity [4–11]. For example, Ref. [9] proposed an agent-based
microscopic simulation model to estimate the impacts of AVs on the capacity of a multi-
lane highway system. Ref. [12] examined the effect on highway capacity of varying AV
market penetrations using microscopic simulation methods. Little theoretical research has
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been conducted to provide a systematic formulation in a macroscopic way. Refs. [13–15]
propose a general methodology that combines both empirical experiments and theoretical
models to construct a fundamental diagram to reflect the full spectrum of traffic flow
characteristics. Investigating the extent to which the network fundamental diagram profile
changes based on the control strategy is of significant importance [16]. Ref. [15] also
derives the fundamental diagram for mixed HV and CAV traffic, considering the stochastic
headway. A few field tests have been conducted recently, providing practical support
for theoretical research [17]. The majority of the existing studies conclude that CAVs are
beneficial for traffic [5,10,18–21]. According to research conducted by [5], the capacity of
the pipeline undergoes a 90% increase under an all-CAVs scenario compared to an all-HVs
scenario. Additionally, Ref. [10] demonstrated that increasing the market penetration rate
(MPR) can lead to a reduction in both mean spacing variance and mean speed variance,
resulting in decreased congestion duration and improved traffic throughput. However, it is
important to note that the increase in road capacity is not always guaranteed with the rise
of CAVs. Research by Ref. [22] indicates that in heterogeneous traffic flow, the impact on
road capacity is not significant at low penetration rates of CAVs. Refs. [23,24] also show
that the increase in delay in the network with the rise in the penetration rate of CAVs
can lead to an unstable pattern. As CAVs and HVs are likely to coexist for a significant
period, the problem caused by the heterogeneous traffic may be more complex compared
to the all-CAVs or all-HVs situations. Therefore, understanding the complexities of this
heterogeneous traffic scenario is critical.

The improvement of road traffic capacity with the maturation of CAV technology and
increasing penetration rate is a key issue in autonomous vehicle discussions. How road
traffic capacity will be improved with the maturity of CAV technology and the gradual in-
crease in penetration rate represent the most important issues when discussing autonomous
vehicles. The introduction of information derived or processed by emerging technologies
like CAV implies new specifications and the calibration of classical transport user’s be-
havioral models [25]. A few analytical models and formulations have been developed to
study the impacts of the rise in the penetration rate of CAVs on the performance of traffic
flow [9,13,23,26,27]. For example, Ref. [13] provides a general theoretical framework to
show how traffic operational capacity will change with the introduction of CAVs, where
the CAV penetration rate is taken into account as a major factor. The majority of those
studies believe that a growth in MPR is beneficial. The longitudinal control models for
CAVs have frequently been examined by researchers [8,17,21,24,28–33]. The modeling
of CAV behaviors often relies on the Intelligent Driver Model (IDM) and its variations.
In a study by [8], a modeling framework was proposed that integrates three different
car-following models to simulate interactions between vehicles, with the IDM specifically
used for CAVs. Furthermore, Ref. [28] utilized the IDM and its modified versions to create
a platform for evaluating CAV performance. Longitudinal movements of CAVs are also
commonly depicted using Adaptive Cruise Control (ACC) and Cooperative Adaptive
Cruise Control (CACC). However, the suitability of the IDM for accurately representing
CACC capabilities has been a topic of debate, as discussed by [17]. To address this, the
authors developed a CACC vehicle behavior model based on empirical data that accurately
represents real-world CACC platoons. Most of the existing studies mainly focus on the
influence of the headway settings, MPRs, and car-following models, which are regarded as
the most crucial factors to improve road capacity when considering CAVs. Beyond these
factors, how CAVs and HVs are clustered or distributed also has a significant impact on
the roadway capacity [27,34,35]. Consequently, another crucial factor, platoon intensity,
which is not widely discussed, should not be ignored. A few studies focus on this point;
Ref. [27] defined the concept of platoon intensity and quantified it with certain calibration
formulae. However, in most studies, the factor of platoon intensity is regarded as an inde-
pendent variable that is not affected by other factors. This paper takes this crucial factor
together with the MPR into consideration when modeling heterogeneous traffic. Not only
the influence of platoon intensity, but also the relationship between platooning intensity
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and MPR, is evaluated through both numerical analysis and experimental validation. The
main contribution of this study is that it reveals the intrinsic relationship between MPR
and platooning intensity, which has always been ignored by other studies. On this basis,
an improved formula is proposed to calculate the maximum theoretical capacity of mixed
flows, taking into account the platooning intensity of CAVs.

The remaining sections of this paper are structured as follows. Section 2 presents the
proposed theoretical model, providing a detailed explanation of its underlying principles
and framework. In Section 3, a numerical analysis is conducted to assess the validity of
the proposed theoretical model. The obtained results are compared with findings from the
existing literature to evaluate the model’s accuracy. Additionally, this section explores the
potential relationship between MPR and platooning intensity. Section 4 introduces a case
study designed to further validate the numerical analysis results. This case study utilizes
a SUMO (version1.10.0) simulation-based approach to examine the maximum theoretical
capacity under various CAV penetration rates and speeds. Finally, the paper concludes in
the last section (Section 5), summarizing the key findings and contributions of the study.

2. Conceptual Framework
2.1. Basic Capacity Model

The maximum throughput or capacity Q can be represented by the average of gross
headway, as in Equation (1),

Q =
1
ht

(1)

As there are different headways in heterogeneous flow, the average of all the gross
headways ht can be represented as Equation (2), where m represents the total number of
types of different time headways, htj represents the time headway of the j set of vehicles,
and Pj represents the percentage of the j set of vehicles.

ht = ∑m
j=1 Pjhtj (2)

Hence, Equation (1) can be rewritten as in Equation (3),

Q =
1
ht

=
1

∑m
j=1 Pjhtj

(3)

2.2. Headway Consideration

The time headway can be formulated as in Equation (4), where hd represents the
distance headway and v represents the speed limit in an equilibrious traffic flow.

ht =
hd
v

(4)

In line with previous research [4], to ensure safety, the distance headway of a set of
vehicles (j) can be determined using Equation (5), taking into account various factors. These
factors include the speed of the leading vehicle vlead, the speed of the following vehicle
v f ollow, the deceleration of the leading vehicle blead, the deceleration of the following vehicle
b f ollow, the length of the leading vehicle hlead, the measurement error of position herror,
the safety buffer distance that the driver maintains from the leading vehicle after braking
hbu f f er, and the reaction time of the j set of vehicles τj. When considering these parameters,
Equation (5) formulates the appropriate distance headway for ensuring safety between
vehicles in the j set.

hdj =
v2

f ollow

2b f ollow
+ v f ollowτj −

v2
lead

2blead
+ hbu f f er + herror + hlead (5)
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Equation (5) seeks to show the relative safety condition according to which the braking
distance of the following vehicle does not exceed the distance from the rear of the leading
vehicle after braking.

2.3. Platooning Intensity with Market Penetration Rate

Due to the presence of heterogeneous traffic flow, different car-following behaviors can
occur. To simplify this problem, we consider two specific types of vehicles: CAVs and HVs.
In this scenario, there are four types of potential car-following behaviors corresponding
to four types of time headways, hCC, hCH , hHC, and hHH , as illustrated in Figure 1, where
hCC represents a CAV following another CAV; hCH represents a CAV following an HV; hHC
represents an HV following a CAV, and hHH represents an HV following another HV.
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Here, N represents the total number of vehicles on the road, NC represents the total
number of CAVs on the road, and NH represents the total number of HVs on the road. The
MPR is represented by Equation (6),

PC =
NC
N

(6)

Another crucial indicator, platooning intensity, PCC, is proposed to represent the
willingness of CAVs to form platoons [36], where NCC represents the number of CAVs
following another CAV.

PCC =
NCC
NC

(7)

From all the possibilities of car-following behaviors, we derive three weights: PCPCC,
PC(1 − PCC), and (1 − PC). These weights represent the probability of a CAV following
another CAV, a CAV following another HV, and HVs following another vehicle regardless
of the type, respectively. These weights can be combined into Equation (8).

∑ P = PC + (1 − PC) = PCPCC + PC(1 − PCC) + (1 − PC) = 1 (8)

The term N(NCC) is proposed to reflect the number of all possible scenarios for each
NCC that may occur, and is formulated in Equation (9). It is mainly obtained through the
permutation and combination method. It should be mentioned that all the scenarios that
may occur are assumed to show equal probability.

N(NCC) = CNC−NCC
NH+1 × CNCC

NC−1 (9)

Given a certain MPR and n, we derive NCC(NCC ∈ [0, NC − 1], NCC ∈ N), which
occurs with possibility P(NCC), as formulated in Equation (10), where NCC ≥ NC − NH
due to the inherent relationship between PCC and PC. Here, n is the number of vehicles in
the fleet.

P(NCC) = F(Pc, n) =
N(NCC)

∑ N
(10)

The weighted average of platoon intensity PCC can be formulated by the sum of each
PCC times its possibility P(NCC).



Appl. Sci. 2024, 14, 1362 5 of 17

When NC ≤ NH ,
PCC = ∑NC−1

0 PCC × P(NCC) (11)

1 − PCC = ∑NC−1
0 (1 − P CC)× P(NCC) (12)

when NC > NH ,
PCC = ∑NC−1

NC−Nh
PCC × P(NCC) (13)

1 − PCC = ∑NC−1
NC−Nh

(1 − P CC)× P(NCC) (14)

2.4. Theoretical Capacity with Mixed Flow

By integrating Equations (4) and (5) into Equation (3), we derive:

Q = 1
ht

= 1

∑m
j Pj

hdj
vj

=

1

∑m
j Pj

v2
f ollow

2b f ollow
+v f ollowτj−

v2
f ollow

2b f ollow
+hbu f f er+herror+hlead

vj

(15)

As mentioned before, there are four types of car-following behaviors in the mixed
flow, which leads to four sets of hdj and Pj. Since HVs cannot receive information from
the leading CAV, and in most previous studies the values selected for τHC and τHH are the
same, we assume that hH = hHC = hHH . Considering Equation (8), Equation (15) can be
rewritten as in Equation (16).

Q =
1

τCCPcPcc + τCH Pc(1 − P cc) + τH(1 − P c) +
hbu f f er+herror+hlead

v

(16)

For a given PC, by integrating Equations (11)–(14) into Equation (16), we derive
Equation (17),

Q =
1

τCCPc∑m
i=0 Pcc × P(Ncc) + τCH Pc∑m

i=0 (1 − Pcc)× P(Ncc) + τH(1 − P c) +
hbu f f er+herror+hlead

v

(17)

Consequently, Equation (17) is used to calculate the maximum theoretical capacity of
mixed flow, which takes the CAV platooning intensity into consideration.

3. Numerical Analysis
3.1. Literature Review of Reaction Time Selection

Research has emphasized the faster reaction time and shorter time headway of CAVs as
a significant factor in increasing highway capacity. In accordance with [18], it is suggested
that with the advancement of CAV technologies, it becomes feasible to achieve a time gap
of 0.5 s between vehicles. This reduced time gap has the potential to significantly reduce
network delays, as demonstrated in simulation studies. However, there are opposing
opinions, with some studies suggesting that CAVs should maintain a greater distance
to ensure safety [7]. The latest experiment conducted at the California PATH showed
that vehicles in platoons can maintain a time gap as small as 0.6 s, compared to 1.5 s for
conventional non-automated vehicles [17]. In contrast, the 0.6 s time gap is generally
associated with aggressive driving behavior, as opposed to the average 1.5 s time gap
observed among human drivers. This implies that human drivers tend to maintain a
greater time gap between vehicles for safety purposes, whereas the smaller 0.6 s time
gap is more commonly seen during aggressive driving maneuvers. Aside from value
selection, headway distribution is also widely studied [20,35,37]. For example, Ref. [20]
reviewed the typical headway distributions resulting from different car-following types
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within heterogeneous traffic. CAVs can effectively increase traffic capacity due to their
shorter time headway. In summary, the method and related reaction time parameters cited
in the previous studies are summarized in Table 1. It also demonstrates the most common
modes of utilizing simulation methodologies when investigating mixed traffic scenarios.

Table 1. Reaction time selection of different studies.

References Type of
Vehicle Method τHH (s) τHC (s) τCH (s) τCC (s)

[7] CAV Simulation with
PTV Vissim 11 0.9 0.9 2.0/2.5 0.6

[21] CACC
Simulation with

simulation model
MIXIC 1.3

1.4 1.4 1.4 0.5

[35] CACC/ACC Simulation with
PTV Vissim 5.3 / / 1.4 0.5

[27] CAV Numerical
analysis 0.8–2.2 0.8–2.2 0.7–1.5 0.6–1.1

[38] CACC/ACC Numerical
simulations / / 0.8–2.2 /

[39] AV Simulations with
Aimsun 20.0.1 1.8 1.8 1.2 0.9

[40] AV Simulations with
SUMO 1.0.0 0.9 0.9 0.6 0.6

[41] AV
Simulations with

self-developed
simulator

1.69 1.69 0.1–3.0 0.1–3.0

[42] CAV Simulations with
PTV Vissim 11 1.2 1.2 0.9 0.9

[43] CACC Simulations / / 0.9–1.5 0.9–1.5

[44] CACC Simulations with
ITS Modeler / / / 0.3–1.4

[45] ACC Qualitative
questionnaire / / 1.0–2.6 /

[46] CACC/ACC Field test / / 0.6–2.0 0.6–2.0

[47] CAV Simulations with
MATLAB R2014a / / 0.5–2.0 /

3.2. Parameters for CAVs and HVs

In general, parameters need to be calibrated using real data. However, due to the
current situation, it is not possible to calibrate the parameters required for experiments
based on actual traffic conditions. Consequently, several parameters are derived from
previous studies to simulate the real vehicle situation. The dynamic performances of CAVs
and HVs are assumed to be the same in this study, and the main difference lies in the
reaction time. The study assumes that the CAVs are equipped with 100% fully connected
communication devices, allowing seamless communication between vehicles. This enables
the CAVs to cruise with constant headways, ensuring string stability. Additionally, the study
assumes ideal communication conditions, without any packet drops or communication
delays. Furthermore, the analysis considers a level terrain and excludes the presence of
heavy vehicles. All vehicles are assumed to maintain the same size, with a length of 4.5 m.
The parameters used in the numerical analysis are listed in Table 2.
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Table 2. Parameters used in the study.

Parameters Value

hbu f f er 0.9 m
herror 0.1 m
hlead 4.5 m
τCC 0.8 s
τCH 1.2 s
τHC 1.5 s

length 4.5 m

3.3. Numerical Analysis of Mixed Flow

Using Equation (17) and the identified parameters, the maximum theoretical capacity
of mixed flow with different degrees of platooning intensity can be further calculated, as
shown in Figure 2a–e. It can be seen from Figure 2a that the maximum capacity is positively
correlated with MPR, speed, and platooning intensity. The capacity reaches its highest
value when both MPR and speed are at their maximum. This trend becomes even more
pronounced in Figure 2b–e. It should be pointed out that the platooning intensity PCC
is assumed to have a fixed value in each situation. The different colors of mesh surfaces
represent the changes in the theoretical capacity. Under the same MPR, the higher the
platooning intensity, the higher the achievable capacity. Mesh surfaces with different values
of PCC shrink with the reduction in this value. This is because of the inherent relationship
between PCC and PC. When the MPR is less than 50%, PCC can take any value in the range
[0, 1] because any CAV can always find a CAV or HV to follow when there are fewer
CAVs than HVs in a fleet. However, when the MPR exceeds 50%, the value of PCC should
be larger than 2 − 1/PC because there are not enough HVs for all the CAVs to choose to
follow in this condition, indicating a minimum threshold for PCC. In Figure 2e, it can
be observed that the theoretical capacity of mixed flow can reach 3673 veh/h when the
market penetration rate reaches 100% and the speed reaches 110 km/h. This condition is
considered the most favorable.

The increase in capacity between the maximum PCC and minimum PCC is shown in
Figure 3a; the percentage increment is also shown in Figure 3b. It can be seen that PCC has
a significant impact on capacity, especially when the MPR is approximately 50%. When the
speed reaches its maximum value and the MPR is around 50%, the increment percentage
reaches its peak at 7.52%. Consequently, the capacity reaches its theoretical maximum value
when MPR approaches 100%. However, the capacity increment reaches its maximum value
when the MPR approaches 50%. It should be mentioned that the numerical variation is not
linear in Figure 3a, which is also reflected in Figure 3b. This is because of the insufficient
precision of the selection of values. However, this error can be corrected by applying
finer precision.

As proven above, for a given PC, the desired value of PCC can be calculated using
Equation (10), and P(NCC) is a function of PC and n. We try to determine the relationship
between PC, PCC, and n through numerical analysis.

Table 3 shows the value of the weighted average of platoon intensity ∑ PCC × P(NCC)
with different values of MPR and n. It can be seen that as n increases, the weighted
average of platoon intensity ∑ PCC × P(NCC) gradually approaches PC and the term
∑ (1 − P CC)× P(NCC) gradually approaches 1 − PC. Consequently, Equation (17) can
be reformulated as Equation (18) when n is relatively large. Equation (18) can also be
rewritten as Equation (19). It should be pointed out that n, which represents the total
number of vehicles in the fleet, is only analyzed here as a theoretical value. Due to the
complexity of the calculation, n is only calculated up to a value of 150. The value of n
cannot be too large in real scenarios due to technical and personnel reasons.



Appl. Sci. 2024, 14, 1362 8 of 17

Q =
1

PcPchCC + Pc(1 − P c)hCH + (1 − P c)hH
(18)

Q =
1

τCCPCPC + τCH PC(1 − PC) + τH(1 − PC) +
hbu f f er+herror+hlead

v
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increment between the maximum theoretical capacity and minimum theoretical capacity.

Table 3. Value of the weighted average of platoon intensity with different MPR and n values.

n
PC = 25% PC = 50% PC = 75%

∑ PCCP(NCC) ∑ (1−PCC)P(NCC) ∑ PCCP(NCC) ∑ (1−PCC)P(NCC) ∑ PCCP(NCC) ∑ (1−PCC)P(NCC)

20 20.00% 80.00% 45.00% 55.00% 71.48% 28.52%
32 21.88% 78.13% 46.67% 53.33% 72.33% 27.67%
40 22.50% 77.50% 47.50% 52.50% 72.72% 27.28%
52 23.08% 76.92% 48.00% 52.00% 73.15% 26.85%

100 24.00% 76.00% 49.00% 51.00% 74.00% 26.00%
150 24.67% 75.33% 49.33% 50.67% 74.34% 25.66%

Consequently, the theoretical capacity achieved with different MPR values and speeds
can be calculated and is shown in Figure 4. It can be seen that both speed and MPR have
a significant impact on capacity. The impact of MPR on theoretical capacity intensifies
with increasing speed. For example, when the speed limit is 110 km/h, the incremental
percentage of capacity from 0%MPR to 100%MPR is 71.4%, while when the speed limit is
10, the incremental percentage of capacity reduces to only 25.2%. Similarly, the impact of
speed on theoretical capacity also intensifies with the increasing MPR. When the MPR is
100%, the incremental percentage of capacity from 10 km/h to 110 km/h is 184%, while
when the MPR is 0, the incremental percentage of capacity reduces to 107%. However, both
the impacts are not linear. Similar to the results shown in Section 3.3, the slope of the speed-
affected curve gradually decreases, whereas the slope of the MPR-affected curve gradually
increases, revealing the different effects of speed and MPR on capacity. Compared with
speed, MPR has a more profound impact on capacity in the manner theorized.
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4. Case Study

SUMO simulation is used to verify the accuracy of the model proposed in Section 3.

4.1. Overview of Simulation

A simulation scenario has been developed for a single-lane road, which consists of
a warm section, main body, and a finishing section as shown in Figure 5. The simulated
road section is an idealized single-lane straight section with a length of 2000 m, including
a warm section of 200 m and a finishing section of 100 m. The simulated vehicles will be
generated at the very beginning of the warm section, go through the main body, and finally
leave the road at the end of the finishing section. When the flow is saturated, the demand
is equal or slightly larger than the supply. In this research, demand is set as 4000, which is
slightly higher than the maximum theoretical capacity under beat condition, 3673 veh/h.
As previously discussed, the theoretical capacity of the road significantly increases with
changes in the MPR, while the free-flow speed also plays a crucial role in determining the
theoretical capacity. Therefore, in order to verify the rationality of the proposed theoretical
model, both the MPR and the free-flow speed are considered in this evaluation. The MPR
ranges from 0% to 100% with a 10% interval, while the speed ranges from 10 km/h to
110 km/h with a 10 km/h interval. The variable speed is set as the limit speed in this model
and each vehicle is allowed to travel at the expected maximum speed. By combining these
two variables, the capacity of the single-lane road will be assessed.
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4.2. Simulation Framework and the Selection of Parameters

“Simulation of Urban Mobility” (SUMO) is an open-source, portable, and comprehen-
sive traffic simulation package specifically designed for handling large-scale networks. It
operates at a microscopic level, meaning it considers individual vehicles and their inter-
actions in great detail. SUMO is capable of simulating various modes of transportation,
including pedestrians, and provides a wide range of tools for creating complex scenarios.
Its flexibility and extensive feature set make it an invaluable tool for researchers and practi-
tioners involved in urban mobility simulations. SUMO has been used in this study because
it runs fast and it is portable. The software can be run from the command line, which
increases the execution speed by leaving out slow visualization. Also, it allows the use of
faster data structures, each adjusted to the current purpose, instead of using complicated
and ballast-loaded ones.

In this simulation framework, the choice of proper vehicle-following models for CAVs
and HVs is one of the most important elements. The variations in car-following models
play a significant role in the diverse outcomes predicted in previous studies regarding the
impact of CAVs on traffic flow. The behavior of CAVs in car-following models is an area
that is still undergoing development and refinement, and as a result, these models are not
yet fully mature. The ongoing advancements and research in this field aim to improve the
accuracy and reliability of car-following models for CAVs, which will ultimately lead to a
better understanding of their effects on traffic flow. Most studies only simulate CAV by
reducing the reaction time of the car-following models, regardless of the other properties of
CAVs. Accurate models of the dynamic responses of these systems are needed to produce
realistic predictions of their effects on capacity and traffic flow dynamics. Cooperative
Adaptive Cruise Control (CACC) car-following models are always used to model the
longitudinal control systems of CAV. A state-of-the-art model that has been calibrated on
real experimental data was chosen to simulate CAVs in this study [14], and the default
Krauss model is used as the car-following model of HVs.

4.3. Simulation Result

The simulation result is shown in Figure 6. The capacity of mixed flow reaches the
highest value, 3376 veh/h, when both MPR and speed reach their maximum. The impact of
MPR on capacity intensifies with the increase in speed. When the speed limit is 110 km/h,
the incremental percentage of capacity from 0%MPR to 100%MPR is 57.4%, while when the
speed limit is 10, the capacity is slightly decreased. This is mostly because of the vehicle
parameter settings of the simulation and the random uncertainties. For example, some
vehicles are not always configured with minimum following distances and may undergo
randomized slowdowns to improve the authenticity of the simulation. Another possible
reason is the influence of the car-following model, which will be verified in the next section.
Similarly, the impact of speed on capacity also intensifies with the increase in MPR. When
the MPR is 100%, the incremental percentage of capacity from 10 km/h to 110 km/h is
245%, while when the MPR is 0, the incremental percentage of capacity reduces to 108%.
Similar to the result of the numerical analysis, both the impacts are not linear. The slope
of the speed-affected curve gradually decreases, whereas the slope of the MPR-affected
curve gradually increases, revealing the different effects of speed and MPR on capacity.
This can also be observed from the capacity in Equation (19). By deriving the derivatives
of velocity and MPR separately, it can be seen that capacity is a concave function with
respect to velocity and a convex function with respect to MPR. Consequently, MPR has the
dominant impact on capacity compared to speed.



Appl. Sci. 2024, 14, 1362 12 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 17 
 

 

Figure 6. (a) Change trends of capacity simulation results with different MPR and speed values. (b) 

Exact values of capacity simulation results with different MPR and speed values. 

The capacity simulation results, together with the formulated theoretical results, are 

shown in Figure 7. The red mesh represents the formulated theoretical capacity, whereas 

the green mesh represents the simulated results for capacity. The simulated result basi-

cally reflects the changes in the formulated theoretical capacity, although there are some 

discrepancies. The percentage of differences are also shown in Figure 7b. Except for very 

few spots, the majority of the grid has percentage differences below 10%. Samples with 

errors of less than 10% account for over 89.2% of the data, while samples with errors be-

tween 10% and 25% account for 8.3%. There are only three special values with larger er-

rors, namely 24.4%, 35.56%, and 38.11%. The likely reason for the spots with larger errors 

is the influence of the selected car-following models. The simple car-following model used 

in this study was derived from a previous experiment conducted to represent the produc-

tion ACC and the new CACC in microscopic simulations of their impacts on traffic flow 

dynamics. Its calculated value at low speed with a high penetration rate may have errors. 

Regarding small errors over large areas, the main reason for the error lies in the vehicle 

parameter settings of the simulation and the random uncertainties mentioned earlier. The 

theoretical model assumes perfect conditions, while the simulator considers the errors 

present in real situations, resulting in slightly lower values compared to the theoretical 

predictions. Considering the factors mentioned before, the simulated results are basically 

consistent with the theoretical values, which proves the rationality of the proposed theo-

retical model. 

  

Figure 6. (a) Change trends of capacity simulation results with different MPR and speed values.
(b) Exact values of capacity simulation results with different MPR and speed values.

The capacity simulation results, together with the formulated theoretical results, are
shown in Figure 7. The red mesh represents the formulated theoretical capacity, whereas
the green mesh represents the simulated results for capacity. The simulated result basically
reflects the changes in the formulated theoretical capacity, although there are some dis-
crepancies. The percentage of differences are also shown in Figure 7b. Except for very few
spots, the majority of the grid has percentage differences below 10%. Samples with errors
of less than 10% account for over 89.2% of the data, while samples with errors between 10%
and 25% account for 8.3%. There are only three special values with larger errors, namely
24.4%, 35.56%, and 38.11%. The likely reason for the spots with larger errors is the influence
of the selected car-following models. The simple car-following model used in this study
was derived from a previous experiment conducted to represent the production ACC and
the new CACC in microscopic simulations of their impacts on traffic flow dynamics. Its
calculated value at low speed with a high penetration rate may have errors. Regarding
small errors over large areas, the main reason for the error lies in the vehicle parameter
settings of the simulation and the random uncertainties mentioned earlier. The theoretical
model assumes perfect conditions, while the simulator considers the errors present in
real situations, resulting in slightly lower values compared to the theoretical predictions.
Considering the factors mentioned before, the simulated results are basically consistent
with the theoretical values, which proves the rationality of the proposed theoretical model.
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4.4. Simulation Validation

In order to validate the simulation result, the traffic data generated by the simulation
were compared to the data taken from previous research and the latest version of the
Highway Capacity Manual as shown in Table 4.

Table 4. Summary and comparison with other research data.

References Speed Limit
(km/h) MPR Capacity in

Reference (veh/h)
Capacity in

This Study (veh/h)

[14] 45 0 2000 1847

[19] 104 0 1621 2125

[9] 96 0 2106 2100

[44]
108 0 2090 2140
108 100 3200 3376

[12]
105 0 2018 2130
105 60 2500 2548
105 100 3970 3351

[36]
/ 0 1805 2145
/ 67 2700 2660
/ 100 3600 3376

[4]
50 0 1620 1893
50 50 1734 2102
50 100 2044 2757

[48]
60 0 1746 1965
80 0 1994 2059
100 0 2200 2116

[5]

110 0 2133 2145
110 20 2230 2232
110 40 2366 2354
110 60 2643 2584
110 80 3170 2872
110 100 3873 3376

Most studies have implemented speed limit conditions, except for Ref. [36], which
solely focuses on analyzing theoretical capacity based on headway without setting speed
limits. Furthermore, this particular study solely conducted numerical analyses without
incorporating any simulations. As for the scenarios, one lane is designated as a regular
lane, while the other lane is exclusively dedicated to CAVs, which may result in significant
differences in traffic under different MPRs. Consequently, when MPR is relatively large or
small, the errors in the results are relatively significant.

In the simulation scenario of Ref. [19], two out of four lanes are closed due to an inci-
dent at the downstream section, resulting in a large number of lane changes. Consequently,
their flow calculation result is much smaller than our result.

According to the HCM, at a speed limit of 80 km/h, 90 km/h, and 100 km/h, the
average flow rate for a single lane is around 1994 veh/h, 2119 veh/h, and 2200 veh/h,
respectively. The results align closely with our simulated values, with an error margin of
less than 6%.

In general, the scenarios in previous studies differ from each other and may not be
directly comparable to our research. However, regardless of the involvement of CAVs, the
disparity between our simulated values and the results obtained in other studies is minimal
and falls within a reasonable range. This observation further substantiates the validity of
our data.
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5. Conclusions

This paper proposes a theoretical model to discuss the capacity of heterogeneous
saturated flow. The platooning intensity, which represents the willingness of connected and
autonomous vehicles to form platoons, has been taken into consideration. The relationship
between platooning intensity and CAVs penetration rate was evaluated by considering
the number of vehicles in the fleet. Numerical analysis was conducted, which further
improved the proposed theoretical model. Finally, microscopic simulation has been used to
verify the accuracy of the proposed model. The simulated outcomes closely align with the
theoretical predictions, providing compelling evidence for the soundness of the proposed
theoretical model.

The primary contribution of this study is that it reveals the intrinsic relationship
between MPR and platooning intensity. On this basis, an improved formula has been given
that enables the calculation of the maximum theoretical capacity of mixed flow, accounting
for the platooning intensity of CAVs. An additional interesting finding has emerged,
showing that as the number of vehicles within a fleet increased, the weighted average of
the platoon intensity gradually converged towards the market penetration rate (MPR). The
formulation has provided valuable insights into traffic performance within a heterogeneous
flow context. Both speed and MPR have exhibited significant impacts on capacity; however,
these impacts were non-linear. Specifically, the slope of the speed-affected curve gradually
decreased, while the slope of the MPR-affected curve gradually increased. Moreover, the
influence of MPR on theoretical capacity intensified with increasing speed.

In our study, we primarily focus on the impact of connected and autonomous vehicles
(CAVs) on platooning behavior and capacity. However, we acknowledge that user behavior,
including drivers of traditional vehicles, plays a significant role in maintaining appropriate
headway. Respecting the desired headway for users driving traditional vehicles relies
on a combination of factors, including traffic regulations, driver awareness, and individ-
ual driving habits. While our methodology assumes a certain level of compliance with
headway requirements, it is important to note that actual user behavior may vary. To
address this aspect, it is better to emphasize the need to consider user behavior and its
potential influence on headway compliance. Furthermore, it would be useful to discuss
the importance of traffic education, enforcement of traffic regulations, and public aware-
ness campaigns to encourage responsible driving practices that promote safe and efficient
headway management.

Policy implications derived from this study provide valuable guidance to decision
makers and transport providers. These include incorporating infrastructure elements for
CAVs, implementing adaptive traffic management systems, establishing comprehensive
regulatory frameworks, prioritizing public engagement and education, fostering collabo-
ration among stakeholders, and developing robust data management practices. Decision
makers should consider these implications to create efficient, sustainable, and safe trans-
portation systems that leverage the potential of CAV technology. This involves integrating
dedicated lanes and communication infrastructure, optimizing signal timings and lane
assignments, addressing safety and privacy through regulations, raising public aware-
ness and trust, promoting collaboration, and implementing responsible data collection
and usage practices. By considering these policy implications, decision makers can drive
innovation and make informed choices to enhance transportation networks.

Traffic capacity has been analyzed from both macroscopic and microscopic perspec-
tives in this study. The findings presented in this paper significantly contribute to the
comprehension of the effects of CAV maneuvers on traffic flow. However, there are several
areas of potential expansion that should be considered in future research. Firstly, the evalu-
ation of the relationship between the platooning intensity and CAV market penetration rate
does not take into account the maximum platoon size. Although this theoretical analysis
allows for a potentially large platoon size, it is crucial to consider the upper platoon size
limitation under real-world conditions. Secondly, the research focuses on examining the
impact of CAV technology on traffic flow and capacity under stable flow conditions, while
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ignoring the situation under unstable flow conditions. The methodology used in the study
did not explicitly analyze stable and unstable traffic flow conditions separately, which
should be improved in the future. Additionally, this study primarily focuses on the lon-
gitudinal behaviors of heterogeneous traffic and examines CAV operations on a one-lane
freeway, neglecting lateral interactions between vehicles. Moreover, specific details of
the platooning process, such as merging or splitting, which may necessitate additional
spacing, are not incorporated. Therefore, it is worth further investigating the inclusion
of a lane-change model, alongside the merging and splitting processes. Furthermore, the
model employed for the two types of vehicles in this research has been used without
calibration due to limitations in terms of both capability and qualification under current
conditions. Another crucial point is to consider other power sources for CAV or transport
vehicle configurations and alternative configurations of transport vehicles. This will open
up opportunities for exploring the performance, efficiency, and environmental impact of
these alternative options. Addressing these limitations in future research is essential to
draw more accurate conclusions.
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