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Abstract: Object detection is a key task in automatic driving, and the poor performance of small
object detection is a challenge that needs to be overcome. Previously, object detection networks could
detect large-scale objects in ideal environments, but detecting small objects was very difficult. To
address this problem, we propose a multi-layer fusion 3D object detection network. First, a dense
fusion (D-fusion) method is proposed, which is different from the traditional fusion method. By
fusing the feature maps of each layer, more semantic information of the fusion network can be
preserved. Secondly, in order to preserve small objects at the feature map level, we designed a feature
extractor with an adaptive fusion module (AFM), which reduces the impact of the background on
small objects by weighting and fusing different feature layers. Finally, an attention mechanism was
added to the feature extractor to accelerate the training efficiency and convergence speed of the
network by suppressing information that is irrelevant to the task. The experimental results show that
our proposed approach greatly improves the baseline and outperforms most state-of-the-art methods
on KITTI object detection benchmarks.

Keywords: 3D object detection; multi-layer fusion; adaptive fusion; KITTI

1. Introduction

Object detection is a fundamental and crucial task in computer vision, which is aimed
at identifying and locating specific classes of objects within the environment (e.g., cars,
people). It has wide-ranging applications, particularly in the field of autonomous driving.
Autonomous driving has requirements in many aspects: 3D detection, fast detection
speeds, low costs, and so on. In response to the demand for 3D detection, cameras and
Lidar have been installed in vehicles. With the development of deep learning, using neural
network methods to detect objects has become a current trend. This paper focuses on object
detection technology. High-performance object detection technology is of great significance
in improving the safety of automatic driving. To achieve greater autonomous driving safety,
more tasks and sensors will need to work together, and the technology in this paper is one
of the many key technologies in autonomous driving systems.

At present, 3D object detection methods are divided into three kinds: image-based,
point cloud-based and fusion-based. Images can provide vivid color and scale information
and are the most commonly used data form in traditional object detection networks. Images
have many advantages, such as containing continuous information, occupying small mem-
ory, having a low cost, and being easy to process. However, images are two-dimensional
and cannot provide complete three-dimensional information. Lidar can provide accurate
three-dimensional point cloud data, can directly obtain the spatial information of objects,
can capture the details and shape of objects, and can replace the estimation of depth. It has
relatively little impact on occlusion, viewing angle changes and lighting conditions and is
suitable for accurate object detection in complex environments. However, the amount of
Lidar data is large, the requirements for computing resources are high, and a large amount
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of point cloud data needs to be processed and stored. In order to make comprehensive use
of the advantages of these two kinds of data, the object detection method based on fusion
has become a research hotspot in recent years. In this paper, an object detection network
based on multi-sensor fusion is given priority, which is the inevitable direction of object
detection in the field of autonomous driving.

Most fusion networks choose to fuse after extracting features from the image and point
cloud data, respectively, which places higher requirements on the network; that is, it needs
to retain more object information. With the deepening of the backbone network, the pixels
of small objects in the feature map are decreased in number or even lost. Feature pyramid
networks (FPN) [1] preserve small objects by fusing multi-scale features, but even simple
additions can cause small objects” features to be overridden by large objects. Therefore,
we believe that reasonable ways to guide the method of fusion are needed to preserve
small object information. The reference to ‘small objects’ in this article refers specifically to
situations in autonomous driving images and Lidar data that occupy fewer pixels or points
in image or point cloud data due to the relative distance between the object and the sensor.
Although these objects are small in size in terms of data, they are of great importance in
ensuring road safety.

Aiming at the problem that the detection performance of small objects in automatic
driving scenes is poor, affecting the detection accuracy of 3D objects, a multi-layer fusion 3D
object detection network combining Lidar point cloud data and RGB images is proposed
in this paper. This system is developed for use in autonomous vehicles to detect cars,
pedestrians and cyclists. Compared with the method of using only RGB images, this
method can use point cloud information to estimate the position and direction of objects
more accurately, especially under poor lighting conditions. Compared with the method
of using only Lidar, this method can make use of the texture and color information of the
RGB images to achieve more accurate object recognition. In addition, in order to prevent
the loss of small object information, either adding an adaptive fusion module (AFM) to the
feature extraction network or using multi-layer fusion methods such as D-fusion in the
fusion network has produced positive results. The main contributions of this paper are
as follows:

(1) A novel fusion method, D-fusion, is proposed, which can preserve the information of
each layer of the fusion network to solve the problem of semantic loss and improve
fusion performance.

(2) We designed an adaptive fusion module (AFM) and applied it after using the feature
extraction network, which effectively solves the problem of small-scale object loss in
detection tasks.

(3) An attention mechanism was introduced to optimize the efficiency of the feature
extraction network.

(4) We conducted comparative experiments on the challenging KITTI data set, and the
results show that our network achieves satisfactory performance.

In this paper, Section 2 introduces related 3D object detection works, Section 3 in-
troduces the overall framework of the network, Section 4 describes the experimental
requirements, ablation experiments and analysis of the results, and Section 5 summarizes
the work and looks at future directions.

2. Related Works
2.1. Image-Based 3D Object Detection

Image-based detection methods can be divided into monocular vision image and
binocular vision image methods. Three-dimensional object detection networks based on
monocular visual images mainly adopt the ideas of depth estimation [2,3], detecting key
points [4] and using CAD prior information [5]. A monocular image is a two-dimensional
projection of an eye cone in a three-dimensional world, with information such as depth
missing. In order to obtain more accurate 3D information, such as depth features, some
researchers are also studying 3D object detection networks based on binocular vision
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images. Chen et al. proposed 3DOP [6] to estimate point clouds from binocular images. Xu
and Chen proposed MLF [7] to estimate parallax maps from binocular images and reverse-
project them into depth maps and point clouds. Li et al. proposed that CGStereo [8],
combined with additional semantic segmentation supervision, significantly improves the
accuracy of foreground depth estimation in images. Chen et al. proposed pseudo-stereo [9]
to estimate depth maps from binocular images. Peng et al.’s study proposed to generate
pseudo radar and target level depth estimation based on the SIDE [10] of two branch
networks, respectively. It is difficult for image-based methods to obtain accurate 3D
information, so the accuracy of detection is difficult to improve.

2.2. Point Cloud-Based 3D Object Detection

Point cloud-based object detection networks can be divided into three types. (1) A
method based on the original point cloud. This method can retain the position information
of objects in three-dimensional space to the maximum extent, such as 3DSSD [11]. (2) A
method based on the projection of a point cloud. This method projects the point cloud
into two-dimensional views from different angles and then uses a mature two-dimensional
object detection network to achieve 3D object detection, such as RangeDet [12]. (3) A
method based on point cloud voxelization. Disordered point cloud data are organized
into ordered voxel expressive forms, and a 3D convolutional network is applied to extract
the voxel features to achieve 3D object detection, such as SE-SSD [13]. Although this kind
of network can accurately obtain the location information of the object, the information
contained in the network is relatively sparse, resulting in heavy computation and loss of
the object in the distance.

2.3. Fusion-Based 3D Object Detection

The method based on visual images can provide texture information but lacks depth
information. The method based on point cloud provides spatial geometry information
but lacks texture information. Texture information is helpful for object detection and
classification, while depth information is helpful for object spatial location estimation. At
present, it is a research direction of 3D object detection methods to improve the overall
performance by using image and point cloud data at the same time. The methods based on
fusion can be classified into three types: early fusion network, medium fusion network and
late fusion network.

Early fusion refers to the fusion of information at the original pixel level. Pointpaint-
ing [14] and PI-RCNN [15] will color the point cloud by splicing the color information
of each pixel of the image with the corresponding point cloud features and then use the
existing detection network (such as PointRCNN [16], PointPillars [17], etc.) for the object
detection of the colored point cloud. MVX-Net [18] uses two simple and effective early
fusion methods, PointFusion and VoxelFusion, to integrate visual texture information
and point cloud spatial geometry information to achieve high-precision object detection.
This kind of network improves the effect well, but increases the amount of computation,
and there is a problem that causes difficulty to align pixels. F-PointNet [19], proposed
by Charles et al., Faraway-frustum [20], proposed by Zhang et al. and F-ConvNet [21],
proposed by Wang et al., etc., generate high-quality two-dimensional candidate boxes
using image data; they then map them to the three-dimensional space of the original point
cloud. Three-dimensional candidate boxes were generated by extracting regional point
cloud features. Unfortunately, such practices are largely limited by 2D detection results.

Medium fusion refers to the fusion of information at the feature map level or Rol
(Regions of Interest) level. The MV3D [22] method proposed by Chen et al. uses the point
cloud to generate the corresponding front view (FV) and bird’s eye view (BEV), which,
together with RGB images, serve as the input of the three feature extraction networks,
respectively, and realizes the task of 3D object classifications and boundary box regression
through deep fusion. Different from the MV3D, AVOD [23], proposed by Ku et al., only
uses the BEV generated by the image data and point cloud data coding as the network
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input and realizes the 3D object detection and classification and boundary box regression
tasks through early fusion. SCANet [24], proposed by Lu and Chen, aims to effectively
integrate multi-scale and global context information and, at the same time, generate at-
tention from space and channels to select discriminant features. ContFuse [25] projects
the image in a BEV to supplement the sparse BEV information. Crossfusion [26] realizes
the cross-projection and fusion of an image and BEV on the basis of ContFuse. The cross-
modality 3D object detection model [27] proposed by Zhu et al. not only realizes interactive
fusion at the feature level but also combines 2D and 3D candidate boxes to optimize the
results. RolFusion [28], proposed by Chen et al., saves a lot of computation by integrating
3D Rol with 2D Rol. Medium fusion will not be very computation-intensive. However,
in the process of fusion, the problem of information degradation still exists because of
insufficient integration.

Late fusion refers to the fusion optimization of the detection results. A typical example
is the CLOCs [29] proposed by Pang et al. The network first obtains 2D detection results
and 3D detection results from the image and point cloud, respectively, and then filters the
final 3D frame and adjusts the scale according to the geometric and semantic consistency of
the 2D and 3D frames. This kind of network is difficult to apply because of the difficulty of
training and real-time problems, so there are few related follow-up studies.

Based on the problem, the medium fusion network is not sufficient in the fusion
stage. In this paper, the medium fusion network structure is adopted to fuse the point
cloud and image at the ROI level, and the D-fusion method is designed to reduce semantic
information degradation in the fusion network.

2.4. Detection of Small Objects

Small objects occupy very few pixels in the original image and will become very small
in the feature map after convolution, which puts forward higher performance require-
ments on the network. In the current research, the method of feature fusion is basically
adopted; that is, the shallow feature map and the deep feature map are fused together.
Feature pyramid networks for object detection [1] are a typical example of this approach,
which uses a pyramid structure to integrate the features of different layers. Dssd [30]
deconvolves the deep feature map with the original dot product for feature fusion. Small
object detection using context and attention [31] combines context information with an
attention mechanism to comprehensively determine the object’s category and location by
understanding the object’s background and paying attention to useful information. The
main idea of augmentation for small object detection [32] is to over-sample small object
samples so as to improve the performance of small object detection. In this paper, we use
an attention mechanism to learn the information of the foreground and background and
weigh the feature layers of different scales to reduce the loss of small object information.

3. The Proposed Approach

In this section, we describe the structure and implementation of a multi-layer fusion
3D object detection network. The proposed network architecture is shown in Figure 1. The
network architecture consists of three main parts: feature extraction network, regional
suggestion network (RPN) and fusion network. Using RGB images and the bird’s eye view
(BEV) as inputs, the feature extraction network processes them to obtain the corresponding
feature maps. In this paper, VGG [33] is used as a backbone network. In addition, 100 K
anchors are preset as the initial input to the RPN in 3D space. The RPN network filters
these anchor boxes to obtain the Rol. Then, the feature maps are combined with the Rols
generated by RPN, and the corresponding feature region is cut out and sent to the fusion
network for the final parameter regression. In the fusion network, we adopt a novel
multi-layer fusion method, D-fusion, which can effectively combine features from different
perspectives and retain the semantic information of each layer of the network so as to
achieve 3D bounding box regression. Finally, the fusion network outputs classification and
regression results. Both the feature extraction and fusion methods of the network adopt the
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multi-layer fusion approach to achieve richer feature expression and more efficient data
processing.
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Figure 1. Overall frame of multi-layer fusion 3D object detection structure.

3.1. Inputs

The multi-layer fusion 3D object detection network has two types of input data: the
RGB image and the Lidar point cloud. The camera is a typical representative of passive
sensors. Images have rich color and texture information, which can help us intuitively
understand the traffic scene and identify the object. Moreover, the image occupies very
little memory. Therefore, we use the image as an input. However, this method lacks
depth information, which is essential for accurate position estimation in the real 3D world.
Using images as a standalone visual system is far from sufficient, as the brightness of the
camera can easily degrade its accuracy at night or in rainy weather conditions. Lidar is a
representative of active sensors. Lidar can not only acquire depth information but is less
affected by external lighting conditions (i.e., at night) because it emits its own light pulses.
Therefore, the Lidar system has higher accuracy and reliability than the camera system. We
use the Lidar point cloud and RGB image input at the same time, which can complement
their advantages and greatly improve the applicability of detection.

The point cloud data of the KITTI [34] dataset were collected using the Velodyne
HDL-64E Lidar. Each collected point cloud file contains hundreds of thousands of points.
Each point represents three-dimensional position and intensity information in a three-
dimensional space and is distributed irregularly. Point cloud data are usually stored in
the form of x, y, z and intensity, with the four values representing the 3D coordinates and
reflectance of a point. Due to the uneven distribution of point cloud data and the large
number of points, direct processing of point cloud data will take up a large amount of
computing. Therefore, we use the BEV representation to represent the point cloud while
preserving the information of the point cloud. Since all objects are not covered in the vertical
direction of the road, the size and shape information of the object will be retained. The
BEV includes the height map and density map of the point cloud obtained by encoding the
height information and density information of the point cloud. The height map discretized
the point cloud according to a certain resolution, projected the voxel onto the ground plane
to generate a BEV, and took the highest height of the point in each voxel as the height
feature. The slices are evenly divided over a certain height range so that the BEV contains
more height features. The height feature map was calculated within each slice. The density
map represents the number of points in each voxel. Considering the camera’s viewing
range, we selected the point cloud range of [-40,40] x [0,70] meters.

We discretized the projected point cloud into a two-dimensional grid with a resolution
of 0.1 m. For each grid, the height feature is calculated as the maximum height of a point
in the cell. To encode more detailed height information, the point cloud is evenly divided
into five slices. By calculating a height plot for each slice, we obtain five distinct height
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features. Point cloud density represents the number of points in each cell. To standardize
the feature, it is calculated as min (1.0, log(N + 1)log(64)), where N is the number of points
in the cell. Note that the density feature is calculated for the entire point cloud, while the
height feature is calculated for five slices, so the BEV is coded as a six-channel feature.

3.2. Feature Extractor

The multi-layer fusion 3D object detection network comprises two feature extraction
networks, each dedicated to processing either the image or BEV input data. The structure
of both feature extraction networks is the same. We designed the adaptive fusion module
(AFM) and combined it with the attention mechanism to design the overall structure of the
feature extractor. The network structure is shown in Figure 2.

Encoder Decoder AFM

B /\ ‘ A (‘Predict

Input

Figure 2. Feature extractor structure.

Adaptive Fusion Module. The features of each layer of the decoder are fused in the
spatial dimension. Different from the previous methods of integrating multi-layer features
using elements-wise sum or concatenation, the key idea of this method is to learn the
spatial weights of the feature map fusion on each scale adaptively. It consists of two steps:
feature map uniformity and adaptive fusion.

Feature map uniformity: As shown in Figure 2, feature maps with three different
resolutions are represented as Fy, F; and F3. We need to pre-process three feature maps with
different resolutions into feature maps with the same dimensions. Since the dimension of
F5 was directly used in the final prediction, we adopted different upsampling strategies for
the F; and F, feature maps, respectively, so that each dimension of F; and F, was consistent
with that of F3. For F; upsampling, we first use a 1 X 1 convolution layer to compress
the number of channels of the feature to the number of channels of F3, and then raise the
resolution to be consistent with F3 by nearest neighbor interpolation.

Adaptive fusion: we define Ry3 and Rps3, respectively, to represent the feature maps
obtained after the consistency of the feature maps for F; and F,, and R33 and F; are the same
feature. a(i,f), B(i,j) and (i, j) represent the weights of the (i, j) vectors corresponding
to Ry3, Rp3 and R33, respectively. Note that a(i, ), B(i,j) and (i, j) are shared across all
channels. Then, the fused feature can be expressed as:

Y(l,]) = DC(Z,]) X R13 =+ IB(Z,]) X R23 + ’)’(l,]) X R33 (1)

The weight parameters a;;, B;; and ;; are obtained by a 1 x 1 convolution of the three
feature maps after uniformization. And the parameters a;;, B;; and 7;; are concatenated
through the softmax function so that their range is in [0, 1] and the sum is 1. Therefore,
a(i,j), B(i,j) and (i, j) are obtained by the following calculation:

CoN 2ij

) = g
SN Lii

ﬁ(ll]) - i + eﬁij +67’7 (2)
.. Vi

v, j) =

i+ Pl 4 il
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In this way, we obtain the Y (i, j) for the image and point cloud; they are combined
with the RPN network by the fusion network and fulfill classification and regression.

Attention Mechanism. Through the attention mechanism, the network can learn to
selectively emphasize the informative features using global information and suppress the
less useful features. In this network, we adopt SENet [35], a type of channel attention
mechanism designed to enhance the network’s representation ability by enabling it to
perform dynamic channel feature recalibration.

We choose to add the SENet module to the decoder of the feature extraction network.
The SENet module consists of two operations, squeeze and excitation, and is composed
of a pooling layer, a convolutional layer and an activation layer. As shown in Figure 3,
the original feature map X is first globally average-pooled to obtain S, with the dimension
changing from H x W x C to 1 x 1 x C, corresponding to the squeeze operation. Then,
S is processed by the convolutional layer and activation layer to obtain the weighted
information E, corresponding to the excitation operation. Finally, E is multiplied by the
original feature map X on a channel-wise basis to obtain the final X*. The purpose of
the squeeze operation is to enhance the correlation of channel data. The purpose of the
excitation operation is to obtain the weight coefficients for each feature map on the channel
dimension, thus making the channel features of the feature map more capable of extracting
features, amplifying effective features, and reducing ineffective feature information. In
short, the channel attention mechanism SENet is designed to allow the network to use
more effective channels and suppress relatively ineffective ones.

X
HxWxC .
X
Squeeze >
Ix1xC
Excitation
1x1xC

Figure 3. Structure of attention mechanism SENet.

3.3. RPN

We have adopted the same RPN network as the AVOD network and do not claim
novelty here.

The representation of each anchor box is defined by six parameters, namely (cx, Cy, Cz L, w, h),
where (Cx, Cy, CZ> represents the centroid coordinates of the anchor box, and (I, w, h) spec-
ifies the dimensions of the box. In this work, we leverage the benefits of BEV images to
generate anchor boxes that are invariant to occlusion and preserve the object sizes. Specif-
ically, we sample the anchor boxes at 0.5 m intervals along the BEV plane, with (Cx, cy)
serving as the center. The vertical coordinate c; is determined by the height of the Lidar
sensor from the ground. We use the K-means clustering method to cluster the labels in the
training set to determine the initial size of the anchor. Due to the sparsity of the BEV, many
anchor boxes may not contain any point clouds. To eliminate such empty anchor boxes, we
utilize an integral image to calculate the point occupancy map.

The anchor boxes are projected onto two feature maps obtained from the BEV and RGB
images, resulting in a 7 x 7 feature crop for each box. These crops are down-sampled via
a1 x 1 convolution kernel to reduce the number of parameters in subsequent operations.
The resulting feature crops undergo the element-wise mean operation and are then input to
a fully connected block that outputs the region proposal parameters, including the object’s
confidence and offset. A 2D non-maximum suppression (NMS) algorithm is applied to
remove overlapping proposals and retain up to a maximum of 1024 proposals. The fully
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connected block consists of three fully connected layers with a size of 2048, which output
the bounding box regression, direction estimation and object classification.

3.4. D-Fusion

We designed a fusion approach—dense fusion (D-fusion). Compared with the previous
early fusion, late fusion and deep fusion, it can not only combine the features from multiple
views but also effectively combine the semantic information of each layer in the network to
carry out three-dimensional box regression. The network structure is shown in Figure 4d.

| |
Input  Intermediate Output I

| layers
I O

IConcatenation  Element-wise
(e) ~\ Mean

Figure 4. Different types of fusion: (a) represents the early fusion method, (b) represents the
late fusion method, (c) represents the deep fusion method, and (d) represents the dense fusion
(D-fusion) method.

Since features of different views often have different resolutions, we use Rol pooling
for each view to obtain feature vectors of the same length. For the generated 3D suggestions,
we are able to project them into any view in the 3D space. In our example, we project them
onto two views, the BEV and the RGB Image.

In order to combine information on different features, the previous work usually
adopted early fusion, late fusion or deep fusion. Inspired by DenseNet, we adopted the
dense fusion method to fuse every layer of the network densely. A comparison of the
architecture of our D-fusion network and the early/late/deep fusion network is shown in
Figure 4. For networks with P-layers, early fusion combines Fgry and Frgp from multiple
views at the input stage:

Fp = Hp(Hp_1(- - - H(Fsev @ FrGa))) 3)

{Hp, p=1,...,P} is the feature transformation function. H, refers to the feature
map obtained at the P-layer. @ is a join operation (such as concatenation and sum).

In contrast, late fusion uses separate subnetworks to independently learn feature
transforms and combine their outputs in the prediction stage:

Fp = (Hp(Hp-1(--- H1(Fgev)))) ® (Hp(Hp-1(- - - H1(FrgB)))) 4)

In early and late fusion, the operation @ is implemented using the concatenation
method. Deep fusion enables more interaction between the middle features from different
aspects:

Fo = Fpev © Frgp

5
Ep = (HEEY (Fp_y) & (HEGB(Fp_y),¥p = 1,2,--- P (5)

The operation @ in deep fusion uses the method of element-wise mean.
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To further improve the flow of information between layers, we propose a different
fusion mode. It works by connecting directly from any layer to all subsequent layers:

Fo = Fgey @ Frop
Fy = Hy(Fgev @ Frga)
Fp = ap_l(ap,z(- ay(mEF @) - S Fp_p) @ Fp_l),
Vp=23,--,P

(6)

The operation @& in the D-fusion uses the weighted summation method between
concatenation and element-wise mean. Where 4y, ...... Ap—2,0p-1, respectively, represent
the weights given after the feature fusion of each layer. The network adopts a three-layer
network structure with the default settings a1 = 1/2, 4 = 1/2 and a3 = 1. We also use the
dropout mechanism to mitigate the occurrence of overfitting and achieve a regularization
effect to some extent. It also saves computing overhead.

3.5. Training

We trained two separate networks, one for the car class and the other for the pedestrian
and cyclist classes. The RPN and detection networks were jointly trained in an end-to-end
approach using mini-batches that contained one image with 512 and 1024 Rols, respectively.
The ADAM optimizer was used with an initial learning rate of 0.0001, which decayed
exponentially every 30 K iterations with a decay factor of 0.8. The network was trained for
120 K iterations.

4. Experiment and Results

We tested the performance of the multi-layer fusion 3D object detection network for
proposal generation and object detection tasks on three classes of the KITTI object detection
benchmark. According to the 7481 training frames provided by the KITTI dataset, we
divided the training set and testing set into a ratio of about 1:1. For the evaluation, we
followed KITTI's easy, moderate and hard difficulty levels. We evaluated and compared the
four versions we implemented as follows: the first version using early fusion, the second
version using late fusion, the third version using deep fusion and the fourth version using
our D-fusion.

The training and testing of the network was run on an NVIDIA GeForce GTX 1080
Ti GPU (NVDIA, Santa Clara, CA, USA) with 11GB of memory. This network includes
feature extraction networks based on AFM and SENet, as well as fusion networks based on
D-fusion. Figure 5 shows the final output result. The comparison of small object detection
results is shown in Figure 6. We only take the car class for demonstration because the
small object problem and occlusion are more common and prominent in the car class. As
can be seen in Figure 6, both small-size objects and occluded small-size objects can be
effectively detected.

The training results of detection accuracy are shown in Figure 7. As the number of
iterations increases, the accuracy of object detection continues to improve. We use three
indicators to evaluate the performance of the network, namely AP,p, AP3p and APggy.
Figure 7 shows the performance of the network on the car class. The performance of the
network for pedestrian and cyclist classes is shown in Figure 7. As the number of training
epochs increases, the accuracy also continues to improve. For cars, the accuracy of a 2D
prediction box is close to 90%, while the accuracy of a 3D prediction box is about 85%.
The accuracy of 2D and 3D prediction boxes on the pedestrian class is close to 60%. The
accuracy of the cyclist class is close to 65%. As shown in Figure 7, the detection accuracy
of cars is much higher than that of pedestrians and cyclists. This is because the sample
number of cars is relatively large and abundant.
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(b) (©)

Figure 5. Test result diagram. Car, pedestrian and cyclist represent three object classes, with the

predicted car represented by a green box in (a), pedestrian represented by a turquoise box in (b), and
cyclist represented by a yellow box in (c). The red boxes represent the true value of GroundTruth. The
first score represents the confidence score of the 3D prediction box, and the second score represents
the intersection over union (IoU) of the 3D prediction box and the GroundTruth.

(b)

Figure 6. Comparison of small object detection results. (a) represents the network AVOD, and

(b) represents the network in this paper. The red boxes represent the GroundTruth. The green boxes
represent the predicted results.

4.1. 3D Detection

For the final 3D detection results, we used two metrics to measure the accuracy of 3D
positioning and 3D anchor box detection. For 3D positioning, we projected the 3D box to
the ground plane to obtain the BEV anchor frame. We calculated the average accuracy of
the BEV anchor frame (APpgy). For the 3D bounding box, we used the average precision
(AP3p) metric to evaluate the complete 3D anchor box.

When using AP3p and APpgy for evaluation, we set an IoU threshold of 0.7 for the
car class and 0.5 for the pedestrian and bicycle classes. We compared the detection results
with the state-of-the-art network publicly available on the validation set. On the validation
set, as shown in Table 1, our architecture performs optimally in both car and pedestrian
detection. It is worth mentioning that in the comparison of car and pedestrian detection,
our architecture is, on average, 3.19% and 5.55% higher than AVOD-FPN on AP3p and the
APggy, respectively.
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Figure 7. The testing accuracy of the object detection. The following three indicators measure
the test results of the car, cyclist and pedestrian. Where object_detection, object_detection_3D and
car_detection_BEV represent the AP, where an object represents the car, cyclist or pedestrian.

Table 1. Average precision of 3D anchor boxes on the KITTI validation set (AP3p) (represented by
%) and average precision of BEV anchor boxes (APgpgy) (represented by %). The best scores are

highlighted in bold.
AP3p (%) APggy (%)
Method Class

Easy Moderate Hard Easy Moderate Hard
MV3D 71.09 62.35 55.12 86.02 76.90 68.49
AVOD 73.59 65.78 58.38 86.80 85.44 77.73
AVOD-FPN 81.94 71.88 66.38 88.53 83.79 77.90
F-PointNet 81.20 70.39 62.19 88.70 84.00 75.33

SCANet Car 83.63 74.47 67.78 - - -
MVX-Net 83.20 72.70 65.20 89.20 85.90 78.10
ContFuse 82.54 66.22 64.04 88.81 85.83 77.33
CrossFusion 83.20 74.50 67.01 88.39 86.17 78.23
Ours 85.58 75.37 68.83 89.59 86.62 79.52
MV3D 39.48 33.69 31.51 46.13 40.74 38.11
AVOD 38.28 31.51 26.98 42.52 35.24 33.97
AVOD-FPN Ped 50.80 42.81 40.88 58.75 51.05 47.54
F-PointNet 51.21 44.89 40.23 58.09 50.22 47.20

Ours 53.87 51.27 45.99 62.00 56.19 49.97
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Table 1. Cont.
AP;3p (%) APggv (%)
Method Class
Easy Moderate Hard Easy Moderate Hard
MV3D 61.22 48.36 44.37 66.70 54.76 50.55
AVOD 60.11 4490 38.80 63.66 47.74 46.55
AVOD-FPN Cyc 64.00 52.18 46.61 68.09 57.48 50.77
F-PointNet 71.96 56.77 50.39 75.38 61.96 54.68
Ours 68.66 42.23 41.71 68.28 46.48 40.64
4.2. The Effect of D-Fusion
To analyze the effectiveness of different fusion methods, we tested four types of fusion
methods. They are early fusion, late fusion, deep fusion and the D-fusion we designed.
From Table 2, it can be clearly seen that in the case where only the fusion method is
different, D-fusion basically exhibits optimal performance in detection tasks of different
types of objects or different difficulty levels. Compared with early fusion, late fusion and
deep fusion of AP3p, the network with D-fusion increased by 8.35%, 8.33% and 9.75%,
respectively. In comparison with APggy, the network with D-fusion increased by 8.94%,
5.94% and 8.35%, respectively.
Table 2. Average precision comparison of different fusions on the KITTI validation set. The best
scores are highlighted in bold.
AP3p (%) APggv (%)
Method Class
Easy Moderate Hard Easy Moderate Hard
Early fusion 82.12 73.87 67.70 88.50 86.07 79.03
Late fusion C 70.28 56.48 55.85 86.47 77.17 70.03
Deep fusion ar 82.86 73.42 67.30 89.07 85.91 78.99
D-fusion (Ours) 85.58 75.37 68.83 89.59 86.62 79.52
Early fusion 45.60 40.75 35.07 48.71 43.42 37.23
Late fusion Ped 48.77 43.75 37.20 52.64 46.55 45.16
Deep fusion € 47.16 40.85 35.21 54.43 47.69 41.83
D-fusion (Ours) 53.87 51.27 45.99 62.00 56.19 49.97
Early fusion 49.62 32.1 31.57 50.09 32.49 31.89
Late fusion Cve 65.19 40.71 40.32 65.72 41.35 40.73
Deep fusion y 46.22 29.07 23.66 47.16 29.66 29.37
D-fusion (Ours) 68.66 42.23 41.71 68.28 46.48 40.64

4.3. The Effect of AFM and SENet

For the feature extractors, we compared three scenarios: traditional convolution with
FPN, traditional convolution with AFM and traditional convolution with AFM and SENet,
as shown in Table 3. For the car class, traditional convolution with AFM and SENet
has a certain effect on APsp, but on the APggy, the difference is very small compared
to traditional convolution with AFM, indicating that the attention mechanism does not
play a significant role in the BEV. For the pedestrian categories, traditional convolution
with AFM and SENet is significantly better than traditional convolution with FPN, but it
is also significantly worse than traditional convolution with AFM. We analyzed that the
reason for this result is that there are many small object pedestrian samples, and factors
such as human posture cause significant sample differences. For the cyclist class, the
results of traditional convolution with AFM and SENet are significantly better than those of
traditional convolution with FPN and also better than traditional convolution with AFM. It
is worth noting that compared to traditional convolution with FPN, traditional convolution
with AFM and SENet is about 20% higher at the easy level, at least 10% higher at the
moderate level and about 16% higher at the hard level.
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Table 3. Average precision comparison of different feature extractors on the KITTI validation set. The

best scores are highlighted in bold.

AP;3p (%) APggy (%)
Method Class

Easy Moderate Hard Easy Moderate Hard

FPN 83.25 74.55 67.46 89.24 86.57 78.81

AFM Car 84.71 74.79 68.17 89.77 86.84 79.34
AFM and SENet 85.12 75.65 68.78 89.74 86.66 79.39
FPN 47.33 41.23 35.29 55.40 48.57 42.27

AFM Ped 61.32 54.47 47.62 59.30 52.60 46.17
AFM and SENet 50.69 45.17 39.88 57.01 50.37 44.09
FPN 48.48 31.25 25.66 49.16 31.75 25.92

AFM Cyc 66.65 40.97 40.46 67.21 40.80 40.51
AFM and SENet 68.03 41.88 41.45 69.20 42.71 41.74

4.4. Ablation Experiment

In order to investigate the contribution of various improvement methods to the net-
work, we conducted ablation experiments on three class detection tasks. From the data in
Table 4, it can be seen that D-fusion, AFM and SENet have all improved network perfor-
mances. Moreover, in the car detection tasks, the combination of the three can achieve the
best overall results. In the detection task of pedestrians and cyclists, the three together failed
to achieve the optimal effect on each task, which is due to a certain degree of overfitting
caused by the deepening of the network. Pay attention to network complexity as well as
performance improvement. Table 5 shows the number of parameters in each part of the
network. Thus, the introduction of the SENet and AFM modules increases the number of
parameters by a relatively small amount.

Table 4. Ablation study. The best scores are highlighted in bold.

AP3p (%) APggy (%)

Method Class
Easy Moderate Hard Easy Moderate Hard
D-fusion 83.99 74.93 68.08 89.41 80.12 79.21
AFM 84.52 74.60 68.00 89.33 86.37 79.32
SENet 82.90 73.40 66.98 88.59 85.73 78.65
D-fusion and AFM Car 85.11 75.70 68.64 89.19 86.56 79.29
D-fusion and SENet 84.45 74.80 67.64 89.53 80.13 79.05
AFM and SENet 85.12 75.65 68.78 89.74 86.66 79.39
D-fusion and AFM and SENet 85.58 75.37 68.83 89.59 86.72 79.52
D-fusion 53.98 48.44 41.90 57.95 51.97 45.09
AFM 59.27 52.56 46.14 61.35 54.54 47.64
SENet 47.33 41.23 35.29 55.40 48.57 42.27
D-fusion and AFM Ped 53.98 48.78 42.87 57.13 51.41 45.09
D-fusion and SENet 53.84 50.65 45.14 58.79 53.42 47.65
AFM and SENet 54.02 43.79 41.83 54.83 49.23 43.23
D-fusion and AFM and SENet 53.87 51.27 45.99 62.00 56.19 49.97
D-fusion 68.07 41.84 41.22 58.61 40.46 39.90
AFM 66.65 40.97 40.46 67.21 40.80 40.51
SENet 48.48 31.25 25.66 49.16 31.75 25.92
D-fusion and AFM Cyc 69.11 43.42 42.40 69.72 43.95 42.95
D-fusion and SENet 61.19 41.38 34.57 61.70 41.67 34.81
AFM and SENet 67.93 4211 41.07 68.53 42.31 41.92
D-fusion and AFM and SENet 68.66 42.23 41.71 68.28 46.48 40.64
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Table 5. Network parameters.

Architecture Number of Parameters
Base Model 26,265,899
Backbone (Image and Lidar) 9,366,336 & 9,366,336
AFM 64,515
SENet 717,440
D-fusion 12,589,056
Total 38,854,955

5. Conclusions

This paper presents a 3D object detection network that leverages LiDAR point clouds
and RGB images, with its effectiveness validated through experiments on the KITTI dataset.
Firstly, we propose a new D-fusion method based on the existing three fusion methods,
which solves the problem of semantic loss in the fusion network. Secondly, we have
improved the feature extraction network by adding AFM and attention mechanism to
the traditional convolutional network, which improves the detection accuracy. At the
same time, the network also performs well in small object detection tasks. By comparing
with existing fusion networks of the same type, our network achieved the overall best
performance on the KITTI benchmark.

According to the analysis of the poor experimental results, a large portion of detection
errors is attributed to the similarity between the background and the object in a complex
environment. Afterward, we will introduce data augmentation and instance segmentation
to enhance the network’s ability to cope with complex environments. In addition, the
running speed of the network has not yet met the requirements for processing video stream
data. We will improve the detection speed by streamlining the network structure.
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