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Abstract: Emotion recognition, a rapidly evolving domain in digital health, has witnessed significant
transformations with the advent of personalized approaches and advanced machine learning (ML)
techniques. These advancements have shifted the focus from traditional, generalized models to
more individual-centric methodologies, underscoring the importance of understanding and catering
to the unique emotional expressions of individuals. Our study delves into the concept of model
personalization in emotion recognition, moving away from the one-size-fits-all approach. We con-
ducted a series of experiments using the Emognition dataset, comprising physiological and video
data of human subjects expressing various emotions, to investigate this personalized approach to
affective computing. For the 10 individuals in the dataset with a sufficient representation of at least
two ground truth emotion labels, we trained a personalized version of three classical ML models
(k-nearest neighbors, random forests, and a dense neural network) on a set of 51 features extracted
from each video frame. We ensured that all the frames used to train the models occurred earlier
in the video than the frames used to test the model. We measured the importance of each facial
feature for all the personalized models and observed differing ranked lists of the top features across
the subjects, highlighting the need for model personalization. We then compared the personalized
models against a generalized model trained using data from all 10 subjects. The mean F1 scores for
the personalized models, specifically for the k-nearest neighbors, random forest, and dense neural
network, were 90.48%, 92.66%, and 86.40%, respectively. In contrast, the mean F1 scores for the
generic models, using the same ML techniques, were 88.55%, 91.78% and 80.42%, respectively, when
trained on data from various human subjects and evaluated using the same test set. The personalized
models outperformed the generalized models for 7 out of the 10 subjects. The PCA analyses on the
remaining three subjects revealed relatively little facial configuration differences across the emotion
labels within each subject, suggesting that personalized ML will fail when the variation among data
points within a subject’s data is too low. This preliminary feasibility study demonstrates the potential
as well as the ongoing challenges with implementing personalized models which predict highly
subjective outcomes like emotion.

Keywords: personalized ML; affective computing; ASD; digital phenotyping; emotion; generic

1. Introduction

Emotion, a dynamic state influenced by cognitive and physiological factors, arises
from stimuli such as experiences, thoughts, or social interactions. It encompasses personal
experience, thought processes, behavioral impacts, physical reactions, and communication.
Emotion recognition is vital in fields like marketing, human–robot interaction, health-
care, mental health monitoring, and security [1]. In healthcare, affective computing is
crucial for understanding various neurological disorders, including sleep disorders [2],
schizophrenia [3], sleep quality assessment [4], autism spectrum disorder [5,6], and Parkin-
son’s disease [7–9]. Emotions are also significant in identifying physiological states like
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fatigue, drowsiness, depression, and pain [10–12]. Emotions may be conveyed through a
combination of facial expressions, vocalizations, gestures, and body movements [13–15].
This multifaceted nature of emotional expression underlines the complexity in accurately
capturing and interpreting emotions through technology. Many existing works in this
area rely on a one-size-fits-all emotion recognition computer vision model. However, this
approach may overlook individual variations in emotional expressions and could result
in less accurate assessments for certain individuals. Additionally, factors such as cultural
disparities, age, and personal characteristics can influence emotional expression, posing
further challenges to the effectiveness of the generic model.

Personalized models, or the creation of a separate AI model per person, offer the
advantage of tailoring the emotional assessment and therapy process to each individual’s
unique facial dynamics. By primarily considering the specific emotional nuances of the in-
dividual, these personalized models enhance the accuracy of emotion recognition, resulting
in more effective outcomes for digital therapeutics and digital phenotyping. Prior work has
demonstrated that personalization can enhance the performance of emotion recognition
systems [16–18]. Personalized ML techniques have the potential to unlock more precise
and context-aware emotion recognition capabilities compared to the traditional paradigm
of using generic models.

Here, we study the personalization of emotion recognition models using a video
dataset called Emognition. As a stride towards making our models explainable, we focus
in this paper on the feature extraction of interpretable facial features fed into classical
ML models rather than using convolutional neural networks (CNNs) to automatically
learn complex features. We train separate models per human subject and evaluate on that
individual’s data, ensuring that all data in the training set occur earlier temporally than
the evaluation set. Our findings demonstrate that the personalized models consistently
outperform their baseline counterparts, which rely on data from other subjects within the
dataset. This suggests the potential advantages of model personalization in optimizing the
performance of applications requiring intricate and potentially subjective automated assess-
ments for end-users. The implications of our study extend to domains where nuanced and
individualized predictions play a crucial role in enhancing user experience and outcomes.

The code we used to train and evaluate our personalized and generalized models
is available at Supplementary Materials part: https://github.com/aliknd/Personalized_
Affective_Models_AMP_Paper (accessed on 2 December 2023).

2. Prior Work and Background

In the expansive realm of digital health, facial emotion recognition has emerged as a
focal point of research, presenting an array of applications across various health domains.
This dynamic field faces significant challenges rooted in the inherent subjectivity of observer
perception, influenced by factors such as gender, age, and ethnicity. The intricate task of
accurately interpreting the diverse spectrum of human facial expressions adds complexity
to this endeavor [19–21].

Within this multifaceted landscape, the application of facial emotion recognition
holds particular relevance in understanding and addressing health challenges faced by
diverse populations. One noteworthy area is autism spectrum disorder (ASD), where
individuals often encounter difficulties in recognizing and interpreting facial expressions.
This unique challenge intersects with the broader complexities in facial emotion recognition,
underscoring the need for nuanced approaches to cater to the diverse needs of individuals
on the autism spectrum.

One family of approaches to building affective computing models involves the ex-
traction of domain-specific features which are fed as input into classical ML models. For
example, the local binary pattern (LBP) method transforms an image into a configuration of
micro-patterns [22,23]. In 2009, Shan et al. [24] evaluated the effectiveness of LBP features in
recognizing expressions. The results of the experiment confirmed that LBP features possess
a certain level of efficiency. However, despite their usefulness, facial expression recognition
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methods based on LBP also suffer from challenges including low accuracy in recognition
and vulnerability to interference [25]. Another feature extraction approach involves the
use of Histogram of Oriented Gradients (HoG) features to recognize facial expressions. In
Dahmane et al.’s study, a combination of feature extractors, such as LBP, PCA, and HoG,
was used together with a SVM classifier to categorize static face images into six distinct
emotions [26]. In a study conducted in 2012, Satiyan et al. [27] used Haar wavelet features
along with multiscale analysis and statistical analysis to recognize facial expressions. How-
ever, the use of Haar-based facial expression recognition presents challenges, including a
high rate of false recognition and the incomplete extraction of facial expression information.
Another method called scale-invariant feature transform (SIFT) was used by Soyel et al. [28]
in 2011 to describe face pose and achieve expression recognition through the extraction of
principal component information using singular value decomposition (SVD). Nevertheless,
using the SIFT-based method for expression recognition faces obstacles such as limited
computational efficiency and vulnerability to dimensionality problems.

An alternative strategy for recognizing facial expressions involves deep learning. In
2006, Hinton introduced the layer-by-layer training approach to tackle the complex task
of training neural networks with multiple layers [29]. As a result, robust open-source
learning frameworks such as Torch, Caffe, Deep Learn Toolbox, and Cxxnet were created,
supported by substantial contributions from researchers and institutions. Deep learning
has the capability to approximate high-dimensional data spaces, making it well suited for
learning intricate functions and extracting high-dimensional feature representations from
images. While initially used for object image classification, deep learning has gradually
found applications in face recognition as well [15,30,31].

In 2016, Zhang and colleagues presented a new method for recognizing facial expres-
sions that are invariant to attitude. Their approach involved combining deep learning
techniques, a principal component analysis network, and CNN. Through extensive experi-
ments on two publicly available databases, they demonstrated substantial enhancements
in their method compared to traditional techniques used for expression recognition [32]. In
2017, Zhang [33] introduced in their study an algorithm for extracting facial expressions
using deep learning. They conducted an analysis of the existing approaches in this field
and compared different methods. The findings revealed that deep learning techniques excel
at extracting hierarchical features and leveraging them for image classification based on
expressions. Consequently, these methods significantly improve the recognition accuracy
when compared to conventional approaches [34–36].

Several research studies rely on facial images as a primary focus. For instance, Wells
et al. [37] used transfer learning for emotion recognition with a MobileNet model. The
experimental outcomes demonstrated an accuracy of 89% and an F1 score of 87%. Similarly
in 2022, Ahmed et al. [38] used three pre-trained models, including MobileNet, Xception,
and Inception V3, to detect ASD based on facial features. The accuracies were 95%, 94%,
and 89% for MobileNet, Xception, and Inception, respectively. Another study by Akter et al.
in 2021 [39] enhanced MobileNet V1 by adding layers to improve performance, achieving a
classification accuracy of 90.67%.

Various studies have also analyzed the facial images of autistic children for diverse
purposes. For example, in 2021, Banire et al. [40] developed a deep learning (DL) model to
recognize attention from facial analysis, achieving an 88.89% accuracy and 53.1% in terms
of the ACC and AUC, respectively. Washington et al. [41] conducted a study on automated
emotion classification for children using a gamified approach with the GuessWhat smart-
phone game. The resulting extensive pediatric emotion-centric database facilitated the
training of a CNN classifier, achieving a balanced accuracy of 66.9% and an F1 score of 67.4%
on the entire dataset (CAFE). Notably, in a subset with at least 60% human agreement, the
classifier achieved a 79.1% balanced accuracy and a 78.0% F1 score, showcasing significant
improvements over previous classifiers. Kalantarian et al. [42] conducted a study evalu-
ating the suitability of off-the-shelf emotion classifiers from Microsoft, Amazon, Google,
and Sighthound for pediatric populations, specifically children with parent-reported ASD.
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Using the Guess What? mobile game, 21 children with ASD engaged in social interac-
tions, producing 2602 emotive frames for evaluation. The study revealed that while these
classifiers performed well for happy emotions, their accuracy was notably poor for other
emotions, indicating a need for improved training data before integrating them into AI-
enabled social therapy for ASD treatment. In the context of children with ASD, several
other studies use DL and CNN for diagnosis based on facial analysis. In 2020, Beary
et al. [43] introduced a DL model to classify children as normal or potentially autistic,
achieving an accuracy of 94.6% using the pre-trained MobileNet model. In 2021, Nagy
et al. [44] compared the accuracy of responses to six emotions (neutral, sad, disgust, anger,
fear, and surprise) in normal and autistic children under non-timed and timed conditions.
The results indicated that children with autism are less accurate in identifying surprise
and anger compared to their normal counterparts. For more comprehensive insights into
emotion recognition among individuals with ASD, more expansive review papers, such as
that by Rashidan et al. [45], provide detailed information.

Researchers have advocated diverse architectural modifications to CNNs, such as by
incorporating the integration of attention mechanisms [46]. The visual attention mech-
anism enables models to concentrate on specific image regions, enhancing the overall
performance. Taking inspiration from the triumph of transformer networks in natural
language processing (NLP), vision transformers have been introduced. Prominent among
these large transformer-based models are ViT [47], Swin [48], MobileViT [49], BiT [50],
and ConvNeXt [51]. Vision transformers use attention mechanisms to encompass global
context and extract intricate features from image patches. Consequently, they emerge as a
promising alternative to CNNs, surmounting their challenges in feature position encoding.

Some research endeavors have harnessed transfer learning with contemporary pre-
trained vision and brain transformers for ASD diagnosis. Pioneering developments in this
realm involve the utilization of VGG [52–54] and ResNet [55,56] for ASD diagnosis.

The DEAP database [57], compiled by researchers including Koelstra from various
universities, serves as a valuable resource for studying human emotional states through
multi-channel data. This publicly available database contains recordings of EEG signals and
physiological signals (PPS) from 32 subjects. Researchers frequently use DEAP to explore
and analyze the intricate aspects of human emotions. Tang et al. [58] and Yin et al. [59] are
two additional studies that used a multimodal approach to emotion recognition. Both stud-
ies used deep neural networks in conjunction with the DEAP dataset, which encompasses
various modalities of data such as EEG signals and physiological signals. By leveraging
these multimodal data sources, Tang et al. and Yin et al. aimed to enhance the accuracy
and robustness of their emotion recognition systems. The eNTERFACE’05 dataset [60] is
a widely used benchmark dataset in the field of facial expression analysis and emotion
recognition. The dataset consists of synchronized video recordings of facial expressions
along with corresponding emotion labels. It includes expressions of basic emotions such
as happiness, sadness, anger, surprise, fear, and disgust. The dataset is valuable for devel-
oping and evaluating algorithms and models for facial expression analysis, as it provides
a diverse range of facial expressions and emotions in different individuals and scenarios.
Zhang et al. [61] and Nguyen et al. [62] are two notable studies that focused on the task of
using the eNTERFACE’05 dataset for their respective investigations. In their work, Zhang
et al. and Nguyen et al. recognized the potential of the eNTERFACE’05 dataset as a valuable
resource for their study on a specific topic. By leveraging the diverse and comprehensive
nature of the eNTERFACE’05 dataset, they were able to conduct in-depth analyses and
draw meaningful conclusions. These studies contribute to the growing body of knowledge
surrounding the eNTERFACE’05 dataset and its applicability in various domains.

Building on the foundations laid by previous research in emotion recognition, our
study introduces a novel approach by focusing on the personalization of video analysis
using classical ML models based on PCA features. This strategy diverges from conventional
deep learning methods, presenting a distinct advantage by requiring less training data.
This creates a more feasible option in scenarios with limited data availability. Moreover,
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PCA-based models, characterized by their reduced parameter count, are ideally suited
for integration into compact health monitoring devices such as those used for digital
interventions for ASD. Such an approach not only ensures computational efficiency but also
enhances the interpretability of models, a key aspect of human-centered AI for healthcare.

3. Methods

In our study, we developed personalized emotion recognition models, as depicted in
Figure 1, targeting a specific subset of subjects from the Emognition dataset.

Figure 1. Personalized vs. generic model workflow. In addition to training a traditional one-size-
fits-all model, we propose the development of a single model per individual. While we evaluate this
procedure for affective computing, this paradigm can be applied to precision health more broadly.

We trained three distinct ML models: k-nearest neighbors (KNN), random forest
(RF), and a dense neural network (DNN). Each of these models was applied to analyze
51 extracted facial features from each video frame, ensuring a comprehensive approach
to interpreting facial expressions. The facial features were carefully chosen for their inter-
pretability and relevance in conveying emotional states. These features include key facial
landmarks, expressions, and orientations, which are pivotal in differentiating between
various emotions.

3.1. Emognition Dataset

The Emognition dataset [63] encompasses data from 43 subjects aged between 19 and
29, including 21 females, who were exposed to emotionally stimulating film clips specifi-
cally designed to evoke nine distinct emotions (Table 1). The short film clips were chosen
from databases with established reliability and validity for eliciting targeted emotions. The
duration of each clip is typically short, often ranging from a few seconds to a few minutes,
to maintain participant engagement and ensure a focused emotional response. These selec-
tions were made based on prior research indicating their effectiveness in evoking specific
emotional responses. Facial features were automatically extracted using the OpenFace
toolkit [64] (version 2.2.0, default parameters) and Quantum Sense software (Research Edi-
tion 2017, Quantum CX, Poland). The OpenFace library provides essential facial landmark
points and Action Units’ values while the Quantum Sense software identifies fundamental
emotions including neutral, anger, disgust, happiness, sadness, surprise (Table 1), and head
pose. The ground truth for emotions was determined through participant self-selection
from a pool of nine emotions: amusement, anger, awe, disgust, enthusiasm, fear, liking,
sadness, and surprise, alongside assessments of valence, arousal, and motivation.
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Table 1. The discrepancy between the emotions evoked (actual) for one demonstrative subject vs. the
emotional stimulus provided (prompt). We use the emotions evoked for our ground truth labels.

Actual
Prompt

Amusement Anger Awe Disgust Enthusiasm Fear Liking Neutral Sadness Surprise

Anger 0 0 0 0 0 3 0 0 0 0
Disgust 0 0 0 0 0 0 0 0 0 0
Sadness 398 213 135 227 87 111 128 1812 9 159
Neutral 6766 6752 6822 3339 7036 6993 6541 5468 7126 966
Surprise 0 37 0 0 0 116 1 0 0 0

Happiness 40 198 0 495 29 0 6 0 0 1832

We initially considered all 43 subjects from the Emognition dataset. However, a
critical challenge we faced was the uneven distribution and scarcity of emotion labels
across different subjects. A significant number of subjects predominantly displayed neutral
expressions, leading to an inadequate representation of diverse emotions necessary even for
binary classification. To address this, we established specific selection criteria, prioritizing
subjects with a balanced and sufficient number of emotion labels. This process led us to
focus on 10 subjects whose data not only met our criteria for label balance but also offered
a fair representation of at least two distinct emotions. This decision was pivotal in ensuring
the effectiveness and accuracy of our emotion recognition analysis, albeit at the cost of
reducing our sample size. The selection of these 10 subjects was imperative for maintaining
the integrity of our classification task, as it provided a more reliable and representative
dataset for recognizing and differentiating emotional states. Because the ≥2 emotions
available in the dataset varied across these 10 subjects, we performed different classification
tasks based on the label population for each emotion, ranging from binary classification to
the classification of all six emotion labels.

3.2. Data Preprocessing and Arrangement

We observed varying elicited emotional expressions across subjects. For example,
some individuals had no labels for certain emotion stimulus videos (e.g., no anger labels
for anger video, no surprise label for surprise video, etc.), indicating insufficient facial
expression stimulation. This disparity in label counts suggests that the threshold and
manner of eliciting each emotion differ between individuals. The distribution of labels for
each emotion across 9 stimulus videos and a neutral video for one demonstrative subject
(no. 22) is shown in Table 1.

Notably, there were no labels for anger, surprise, and disgust emotions in subject 22′s
respective video stimulus experiments. Additionally, the dataset contained only a few labels
for anger and no labels for disgust at all, presenting challenges in achieving a balanced
dataset for training and classification. To address this challenge, we created separate models
for specific recognition tasks. To overcome the label imbalance, we collected all emotion
labels specific to each discrete emotion from several video stimulus experiments into a
single dataset for training each subject’s model. To mitigate the impact of imbalanced label
distribution, we carefully curated emotions with a substantial number of labels for accurate
and unbiased classification results. For example, for subject no. 22, we trained a model
to only recognize sadness, neutral, and happiness, which were the only well-represented
labels for this subject. To ensure a robust analysis, we sampled a reduced balanced subset
of 1600 instances for each of the emotions for ML model training.

In contrast, for generic models, we consolidated data across all subjects, creating a
“one-size-fits-all” dataset. This dataset was used to train generalized models that served as
a baseline for comparison against the personalized models. The models were trained on
combinations of emotions that were adequately represented across the dataset, providing
a holistic view of emotion recognition across a varied population. We trained a separate
model for each combination of emotions sufficiently represented by a subject (e.g., a one-
size-fits-all model for happy vs. sad vs. neutral, a one-size-fits-all model for happy vs.
neutral, etc.).
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We refer to these approaches as the “personalized dataset” method, where datasets
are tailored to individual emotional profiles, and the “generic dataset” method, where
data from multiple subjects are aggregated. This distinction is crucial for our study, as it
highlights the differences in model training and effectiveness between personalized and
generalized emotion recognition approaches.

3.3. Feature Extraction and Selection

As a stride towards the development of interpretable models, we identified eye gaze,
eye landmarks, pose landmarks, and Action Unit (AU) features which displayed the most
predictive saliency. Eye gaze and landmarks consist of x, y, and z components. We ag-
gregated features by calculating the mean values of each feature within each positional
direction, resulting in a single combined feature value. To normalize the data, we imple-
mented z-score standardization.

We explored the relationships between each feature and the target variable. The scat-
terplots for all feature combinations revealed intricate patterns, correlations, and trends,
providing valuable insights for feature selection and modeling. A pairwise feature corre-
lation matrix for a demonstrative user (Figure 2) uncovered complex data relationships,
including noticeable linear and nonlinear associations between various pairs of variables,
such as the average y-axis coordination values of pose and eye landmarks.

Figure 2. Pairwise feature correlation matrix for a demonstrative subject. We plot each feature against
value against every other feature to observe correlations between features.

We applied principal component analysis (PCA) to the features and color-coded each
data point (i.e., video frame) based on the corresponding emotion (Figure 3 displays a
demonstrative example for 2 subjects. When comparing the plots for both the personalized
dataset (one individual) and the generic dataset (all ten individuals), we observed a clear
difference in the separation of data points relevant to each emotion class. We observe that
the personalized dataset consistently yielded a better cluster visualization compared to
the generic model, suggesting the potential of the downstream ML models to result in
superior performance.
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Figure 3. PCA visualizations of the personalized dataset for two subjects (a,c) as well as the corre-
sponding generalized dataset (b,d).

3.4. Model Selection and Evaluation

We performed a nested cross-validation procedure to simultaneously optimize hy-
perparameters and assess each classifier’s performance. We performed hyperparameter
tuning using grid search with an inner cross-validation of 5 folds. The best model for each
classifier was selected based on evaluating different sets of hyperparameters, and its per-
formance was evaluated on the test data using 10-fold outer cross-validation. This process
ensured rigorous optimization of the classifier and complete assessment of its classification
performance. We used both AUC—ROC and F1 score as our primary evaluation metrics in
a one-vs-rest multiclass approach.
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4. Results

We conducted a comprehensive evaluation of the models, including the KNN classifier,
RF, and DNN, using a rigorous procedure involving component setup, cross-validation,
and performance assessment. In the personalized experiment, the KNN model achieved an
average F1 score of 0.904, while in the generic experiment, it attained an average F1 score
of 0.885. Similarly, the RF yielded average F1 scores of 0.926 and 0.917 in the personalized
and generic experiments, respectively, while the MLP classifier obtained average F1 scores
of 0.864 and 0.804 for the personalized and generic experiments, respectively.

We directly compare the F1 score of the personalized vs. generic models for all
10 subjects (Table 2). The personalized ML approach outperformed the general-purpose
models for emotion recognition in 7 out of the 10 individuals.

Table 2. Overall performance (F1 score) of the models in both personalized and generic approaches
on the same evaluation task. Subjects whose performance in the personalized model was lower than
for the generic model are highlighted in red.

Subject
F1 Score (Personalized Models) F1 Score (Generic Models)

KNN RF DNN KNN RF DNN

No. 22 93.1% 95.3% 88.2% 86.9% 91.4% 76.7%

No. 25 89.3% 91.5% 83.4% 88.0% 92.0% 81.2%

No. 28 96.6% 97.8% 93.7% 88.5% 92.7% 82.9%

No. 29 83.6% 86.3% 78.6% 90.0% 92.0% 84.4%

No. 32 93.4% 95.1% 91.8% 92.6% 95.0% 88.0%

No. 39 87.2% 90.0% 83.8% 92.1% 94.0% 87.0%

No. 40 99.6% 99.9% 97.2% 88.3% 91.0% 78.4%

No. 42 93.2% 94.7% 89.9% 87.2% 91.6% 78.0%

No. 45 82.5% 86.3% 73.3% 82.2% 87.1% 63.9%

No. 48 86.3% 89.7% 84.1% 89.7% 91.0% 83.7%

Analyzing the ROC curves and confusion matrices for a demonstrative subject (no. 22)
provides insights into the personalized models’ classification capabilities (Figure 4). Retain-
ing the best hyperparameter combinations aided in identifying the optimal settings and
understanding the model’s behavior.

In certain instances, the performance of the personalized models did not surpass that
of the generic models (Table 2). To investigate this discrepancy, we analyzed the PCA
plots for these individuals. The PCA plots revealed that the data points representing the
emotional states did not form distinct clusters for these subjects, especially with respect to
the separation of the generalized dataset containing data from all 10 subjects (e.g., Figure 5).
Consequently, it is foreseeable that personalized models might encounter difficulty in
accurately discerning individual emotional states compared to generic models in cases
where the individual makes relatively little variation in their facial movement across
emotions. The enhanced performance of generalized models in cases where subjects show
little variation in emotional expressions can be attributed to their training on a more diverse
range of data, which helps in better recognizing subtle emotional differences. Personalized
models may struggle with these subtleties due to overfitting to specific, non-distinct features.
Additionally, generalized models, being less sensitive to individual variability and noise in
the data, can more effectively handle such minimal expression differences.
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Figure 4. Confusion matrices and ROC curves for 3 separate models, (a) KNN, (b) RF, and (c) DNN,
each trained and evaluated on a demonstrative subject, no. 22.

Figure 5. PCA plot for subject no. 39, contrasting the results in a personalized dataset (a) with
those in a generalized dataset (b). In (a), the PCA scatter plot shows a blend of data points for
“happy” and “neutral” emotional states, indicating a significant overlap and lack of clear separability
in the personalized dataset. Conversely, (b) demonstrates a clearer distinction between the two
emotional states in the generalized dataset. This comparison underlines the reason for the observed
lack of performance improvement in emotion classification for this subject when using a personalized
approach as opposed to a generalized one.
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To explore the most salient features contributing to precise emotion classification, we
computed the impurity-based importance of each feature of the RF model. This feature
ranking approach inherently accounts for the correlations and complex nonlinear relation-
ships between features. We plot the impurity-based importance of each feature in Figure 6
for a demonstrative set of three users whose ML models were all trained to predict happy
vs. neutral. We observe that the top-ranked features across subjects vastly differ, further
supporting the need for model personalization in affective computing.

Figure 6. Impurity-based importance of each facial feature according to the RF model for 3 subjects’
personalized models. The model for all 3 subjects is predicting happy vs. neutral. (a) The signifi-cance
of features for participant 32 demonstrates that specific facial action units (AU12, AU14, AU06 etc.),
specific pose parameters, eye landmarks, and gaze angles are of utmost importance for distin-guishing
between the two emotional states (happy vs. neutral). (b) Participant number 39 demon-strates that
AU06, certain pose and eye landmarks, among other factors, hold significant importance. (c) Similarly,
participant number 40 highlights the significance of specific eye and pose landmarks, along with
particular action units such as AU06 and AU09, in distinguishing between the target emotions.
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In a further analysis, our personalized and generic ML models, using three distinct
approaches, surpassed previous general-purpose models in emotion recognition. Table 3
offers a detailed comparison, showcasing the superior performance of our methods over
past approaches.

Table 3. Overall performance of the generic/personalized models using in this paper and previous
general model on the same task (emotion recognition).

Model Data Type Dataset Metric Value

Ours-Generic
Pose/Facial
Landmarks

Emognition F1 score

KNN 88.50%
RF 91.78%
DNN 80.42%

Ours-Personalized
KNN 90.48%
RF 92.66%
DNN 86.40%

In our comparative analysis of emotion recognition approaches, we examined a range
of studies across different datasets to contextualize our findings. Koelstra’s study achieved
a 61.5% accuracy on the DEAP dataset using EEG and physiological signals (PPS), em-
ploying traditional signal processing techniques. Tang and Yin’s work, also on the DEAP
dataset, attained an 83.5% accuracy using deep learning models that integrated EEG and
PPS data, highlighting the efficacy of multimodal deep learning approaches. Nguyen’s
study achieved a notable 90.85% accuracy on the eNTER-FACE’05 dataset, utilizing a combi-
nation of speech data and facial images, thereby demonstrating the potential of integrating
auditory and visual cues. Zhang, using a similar dataset, achieved an accuracy of 85.97%
with a focus on advanced facial expression analysis techniques. In contrast, our work with
the Emognition dataset, primarily using Pose/Facial Landmarks data, yielded accuracies of
88.50% (KNN), 91.78% (RF), and 80.42% (DNN) for the generic models. Our personalized
models further improved these figures to 90.48%, 92.66%, and 86.40%, respectively. These
results not only underscore the effectiveness of personalized ML models in emotion recog-
nition but also demonstrate their competitive edge in achieving high accuracy compared
to generalized approaches. Our study’s reliance on Pose/Facial Landmarks data, distinct
from the multimodal data used in the aforementioned studies, suggests a unique pathway
in emotion recognition, relying less on physiological signals and more on visual cues.

5. Discussion

In most cases, the personalized ML approach demonstrated a slightly stronger ability
to distinguish the nuances of each subject’s emotion expressions compared to the general-
purpose models. In cases where an improved performance was not observed for a subject,
the PCA revealed a lack of sufficient data separation for the subject’s expressions with
respect to the general-purpose models. These results support the effectiveness of the
personalized ML approach in classifying emotions and highlight its potential for further
advancements in the field of emotion recognition. While our examination focused on model
personalization within the field of affective computing, this approach can be extended
to various precision health tasks where a specific characteristic (e.g., predicting stress
levels [9,15,65,66]) needs to be recurrently predicted for an individual user.

In addressing the concerns of overfitting in our emotion recognition models, we used
rigorous methodologies, including cross-validation, regularization, and advanced feature
engineering and selection. These steps were crucial to mitigate the traditional risks of
overfitting. However, it is pertinent to note that any residual model specificity, which
might be perceived as overfitting in a generic context, is actually advantageous in our
personalized framework. This specificity enhances the model’s ability to accurately capture
and interpret the unique emotional patterns of an individual, a critical factor in the success
of personalized applications. The superior performance of our personalized models, as
demonstrated by higher F1 scores compared to the generalized models, underscores the
effectiveness of this approach in individual-focused emotion recognition.
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Although convolutional neural networks and vision transformers offer the possibility
of better performance gains, we deliberately opted to use classical ML methods to pri-
oritize the interpretability of our ML models. While these state-of-the-art models have
demonstrated remarkable success in image recognition, their complex architecture often
renders them as “black-box” models, making it challenging to interpret and understand
the learned features influencing their predictions. By contrast, the automatic feature ex-
traction we performed enabled us to inspect and comprehend the specific facial features
that contribute to emotion recognition between subjects. Notably, we learned that the top
facial features in the personalized models differed across subjects, highlighting the need for
personalized ML.

Our study, while demonstrating promise for the personalized learning of relatively
subjective tasks like affective computing, contains several limitations and can therefore
only be considered as a feasibility study. We evaluated our method on only 10 subjects.
While this experimental paradigm can be viewed as 10 independent N = 1 studies, we hope
to expand this set of experiments in future work to more and larger datasets.

Both the evocation and understanding of emotional expressions play a crucial role
in detecting certain types of developmental disorders. For instance, ASD affects almost
1 in 44 people in America [67], and it is the fastest-growing developmental disorder in
the United States [68,69]. ASD is a multifaceted neuropsychiatric disorder that appears
in diverse phenotypic forms. Children with autism tend to evoke emotions differently
to their neurotypical peers, and they find it challenging to identify facial expressions
conveyed by other individuals [70–72]. To improve the social communication of children
with ASD, a variety of AI-powered mobile digital therapeutics have been developed which
target emotion expression in particular [73–75]. These digital health innovations consist
of smartphone apps and wearable devices that enable families to provide therapy in the
comfort of their home setting with the ability to customize the intervention structure to
suit their child’s needs [76–79]. For example, Superpower Glass [76,77] is an artificial-
intelligence (AI)-powered digital therapeutic designed to aid children in understanding
emotion evocations by conversation partners by providing real-time feedback from a facial
expression recognition model. The therapeutic operates on a Google Glass connected to a
smartphone and provides real-time social cues to children with ASD. “Guess What” [75]
is another digital therapy encouraging, among other therapeutic behaviors, increased
emotion expression using a Charades-style mobile game. Although considerable progress
has been made in providing sensitive and specific emotion expression feedback to children
using such digital health therapeutics, there remain several technical challenges that must
be addressed to facilitate near-perfect performance.

Importantly, this study serves as a preliminary feasibility study, laying the ground-
work for future work where we aim to apply these methodologies to a dataset collected
from individuals with ASD. The success of our approach with the current non-ASD dataset
bolsters our plan to replicate this experiment with a similar quality dataset from ASD
individuals, thereby extending our study into more specialized and clinically relevant do-
mains. An especially promising avenue of future work is the exploration of self-supervised
pre-training to enhance the personalization capabilities of deep learning models. By pre-
training deep learning models on large and diverse datasets using self-supervised learning,
each personalized model can learn the baseline dynamics of each individual’s face without
any training labels. These pre-trained models can then be fine-tuned with relatively few
labeled examples. We note that this self-supervised learning paradigm would only be
possible with a deep learning model rather than the classical ML approaches we present.
There is a clear tradeoff between interpretability and performance.

The scalability and generalizability of personalized emotion recognition models to
larger datasets and diverse populations is a crucial aspect in assessing their robustness and
practical applicability. Personalized models, while highly effective in tailored scenarios,
face challenges in scalability due to their inherent design for specific individuals’ emo-
tional patterns. Generalizing these models to broader populations involves addressing
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variations in emotional expression across different demographics and cultures. Studies
have shown that factors like cultural background and individual differences significantly
impact emotional expressions and recognition [80,81]. This variability poses a challenge
for personalized models when applied to a more heterogeneous group. Furthermore,
scalability in terms of the dataset size can affect the model’s performance, as training on
larger datasets might introduce a higher degree of variability and potential noise [82]. It is
essential to consider these factors when expanding the scope of personalized models to
ensure their effectiveness and reliability in diverse real-world applications.

The integration of real-time emotion recognition models in mobile health (mHealth)
applications poses significant challenges, necessitating advancements in processing speed,
energy efficiency, and system compatibility. Baltrušaitis et al. [83] emphasize the impor-
tance of rapid processing for real-time interaction, a critical aspect for responsive healthcare
applications. Concurrently, energy efficiency, as explored by Kumar et al. [84], is paramount
in mobile contexts to mitigate power consumption constraints. Furthermore, seamless inte-
gration with existing mHealth platforms, as discussed by Luxton [85], raises considerations
around compatibility, data privacy, and user experience. Addressing these challenges is
essential for the effective deployment of emotion recognition technologies in real-world
mHealth scenarios.

The ethical implications and potential biases inherent in personalized emotion recogni-
tion models are critical areas for consideration in our research. As outlined in Mohammad’s
Ethics Sheet [86] for Automatic Emotion Recognition and Sentiment Analysis, a compre-
hensive understanding of the ethical landscape is essential for researchers and practitioners
in this field. This includes acknowledging the complexity and sensitivity of emotion data,
and the potential risks of bias and misuse in various applications. Moreover, Katirai’s
review in AI and Ethics highlights the need for ethical scrutiny in the development and
application of these technologies, underscoring the importance of maintaining privacy and
addressing biases that may arise from the data or algorithms used. Additionally, the work
of Boyd et al. [87] on Automated Emotion Recognition in the Workplace sheds light on the
specific challenges and ethical considerations of deploying these technologies in high-stakes
environments like the workplace, where issues of bias, validity, and privacy are especially
pronounced. These references collectively underscore the necessity for a proactive and
informed approach to ethical considerations in the development and application of emotion
recognition technologies, ensuring they are used responsibly and equitably.

6. Conclusions

The reliability of personalized models stems from their ability to continuously learn
and adapt to the evolving emotional expression patterns of the individual user. They are
often dynamic, incorporating feedback and new data over time to refine their predictions.
This ongoing adaptation makes them particularly effective in applications where long-term
monitoring or interaction with a specific individual is involved. In contrast, general models,
while robust in diverse scenarios, may not offer the same level of ongoing customization
and therefore might not be as reliable in capturing the subtle changes in an individual’s
emotional expressions over time. This study marks a stride in emotion recognition research,
primarily through the development and validation of personalized models within the
Emognition dataset framework. Our innovative dual-dataset approach, which adeptly
navigates the intricacies of individual emotional patterns, sets a new benchmark in the
accuracy and applicability of emotion recognition systems. As we extend our study to
encompass ASD patient datasets, our focus will intensify on the unique emotional expres-
sion characteristics and the nuanced communication challenges commonly encountered in
individuals with autism. ASD is often associated with atypical nonverbal communication,
including divergences in facial expressions and emotional responses. Acknowledging these
unique aspects, our future work will involve the careful integration of these specialized
needs into the design and optimization of our emotion recognition models. This tailor-
ing will not only enhance the applicability and effectiveness of our methods in clinical
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and professional settings but also promises to advance our understanding of emotional
processing in ASD. By refining our models to be sensitive to the subtleties of emotional
expressions in autistic individuals, we aim to contribute towards more empathetic and
effective clinical tools. These tools will be instrumental in facilitating better communication
and understanding between healthcare providers and individuals with ASD, ultimately
leading to improved therapeutic outcomes and quality of life.
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com/aliknd/Personalized_Affective_Models_AMP_Paper, accessed on 2 December 2023.

Author Contributions: Conceptualization, A.K. and P.W.; methodology, A.K. and P.W.; validation,
A.K. and P.W.; formal analysis, A.K.; investigation, A.K. and P.W.; resources, A.K. and P.W.; data cura-
tion, A.K.; writing—original draft, A.K.; writing—review and editing, A.K. and M.K.; visualization,
A.K.; supervision, M.K. and P.W.; project administration, P.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by National Institute of General Medical Sciences (NIGMS) grant
number U54GM138062 and Medical Research Award fund of the Hawai‘i Community Foundation
grant number MedRes_2023_00002689.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study as results are openly available in
https://github.com/aliknd/Personalized_Affective_Models_AMP_Paper, accessed on 2 December
2023. The dataset used for this study can be accessed at: https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/R9WAF4. This dataset, known as Emognition, constitutes a
valuable resource for the evaluation of methodologies in emo-tion recognition (ER) derived from
physiological responses and facial expressions. It encompasses data obtained from a cohort of 43
participants who were exposed to brief film clips meticulously designed to elicit nine distinct emotions:
amusement, awe, enthusiasm, liking, surprise, anger, dis-gust, fear, and sadness. Physiological
recordings were conducted using three wearable devices, en-abling the capture of EEG, BVP (2x), HR,
EDA, SKT, ACC (3x), and GYRO (2x) data, in conjunction with recordings of upper-body movements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kamble, K.; Sengupta, J. A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals.

Multimed. Tools Appl. 2023, 82, 27269–27304. [CrossRef]
2. Li, M.; Ma, C.; Wu, C. Facial Emotion Recognition in Sleep Deprivation: A Systematic Review and Meta-Analysis. Int. Rev. Soc.

Psychol. 2023, 36, 9. [CrossRef]
3. Pena-Garijo, J.; Lacruz, M.; Masanet, M.J.; Palop-Grau, A.; Plaza, R.; Hernandez-Merino, A.; Edo-Villamon, S.; Valllina, O.

Specific facial emotion recognition deficits across the course of psychosis: A comparison of individuals with low-risk, high-risk,
first-episode psychosis and multi-episode schizophrenia-spectrum disorders. Psychiatry Res. 2023, 320, 115029. [CrossRef]

4. Huang, Y.; Du, J.; Guo, X.; Li, Y.; Wang, H.; Xu, J.; Xu, S.; Wang, Y.; Zhang, R.; Xiao, L. Insomnia and impacts on facial expression
recognition accuracy, intensity and speed: A meta-analysis. J. Psychiatr. Res. 2023, 160, 248–257. [CrossRef]

5. Pavez, R.; Diaz, J.; Arango-Lopez, J.; Ahumada, D.; Mendez-Sandoval, C.; Moreira, F. Emo-mirror: A proposal to support emotion
recognition in children with autism spectrum disorders. Neural Comput. Appl. 2023, 35, 7913–7924. [CrossRef]

6. Washington, P.; Wall, D.P. A Review of and Roadmap for Data Science and Machine Learning for the Neuropsychiatric Phenotype
of Autism. Annu. Rev. Biomed. Data Sci. 2023, 6, 211–228. [CrossRef]

7. Belyaev, M.; Murugappan, M.; Velichko, A.; Korzun, D. Entropy-Based Machine Learning Model for Fast Diagnosis and
Monitoring of Parkinson’s Disease. Sensors 2023, 23, 8609. [CrossRef]

8. Hazelton, J.L.; Fittipaldi, S.; Fraile-Vazquez, M.; Sourty, M.; Legaz, A.; Hudson, A.L.; Cordero, I.G.; Salamone, P.C.; Yoris, A.;
Ibañez, A. Thinking versus feeling: How interoception and cognition influence emotion recognition in behavioural-variant
frontotemporal dementia, Alzheimer’s disease, and Parkinson’s disease. Cortex 2023, 163, 66–79. [CrossRef]

9. Kargarandehkordi, A.; Washington, P. Personalized Prediction of Stress-Induced Blood Pressure Spikes in Real Time from FitBit
Data using Artificial Intelligence: A Research Protocol. medRxiv 2023. [CrossRef]

10. Othmani, A.; Sabri, A.Q.M.; Aslan, S.; Chaieb, F.; Rameh, H.; Alfred, R.; Cohen, D. EEG-based neural networks approaches for
fatigue and drowsiness detection: A survey. Neurocomputing 2023, 557, 126709. [CrossRef]

https://github.com/aliknd/Personalized_Affective_Models_AMP_Paper
https://github.com/aliknd/Personalized_Affective_Models_AMP_Paper
https://github.com/aliknd/Personalized_Affective_Models_AMP_Paper
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/R9WAF4
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/R9WAF4
https://doi.org/10.1007/s11042-023-14489-9
https://doi.org/10.5334/irsp.679
https://doi.org/10.1016/j.psychres.2022.115029
https://doi.org/10.1016/j.jpsychires.2023.02.001
https://doi.org/10.1007/s00521-021-06592-5
https://doi.org/10.1146/annurev-biodatasci-020722-125454
https://doi.org/10.3390/s23208609
https://doi.org/10.1016/j.cortex.2023.02.009
https://doi.org/10.1101/2023.12.18.23300060
https://doi.org/10.1016/j.neucom.2023.126709


Appl. Sci. 2024, 14, 1337 16 of 18

11. Vehlen, A.; Kellner, A.; Normann, C.; Heinrichs, M.; Domes, G. Reduced eye gaze during facial emotion recognition in chronic
depression: Effects of intranasal oxytocin. J. Psychiatr. Res. 2023, 159, 50–56. [CrossRef]

12. Dildine, T.C.; Amir, C.M.; Parsons, J.; Atlas, L.Y. How Pain-Related Facial Expressions Are Evaluated in Relation to Gender, Race,
and Emotion. Affect. Sci. 2023, 4, 350–369. [CrossRef]

13. Clynes, M. Sentics: The Touch of Emotions; Anchor Press: New York, NY, USA, 1977.
14. Heraz, A.; Clynes, M. Recognition of emotions conveyed by touch through force-sensitive screens: Observational study of

humans and machine learning techniques. JMIR Ment. Health 2018, 5, e10104. [CrossRef]
15. Kargarandehkordi, A.; Washington, P. Computer Vision Estimation of Stress and Anxiety Using a Gamified Mobile-based

Ecological Momentary Assessment and Deep Learning: Research Protocol. medRxiv 2023. [CrossRef]
16. Shah, R.V.; Grennan, G.; Zafar-Khan, M.; Alim, F.; Dey, S.; Ramanathan, D.; Mishra, J. Personalized machine learning of depressed

mood using wearables. Transl. Psychiatry 2021, 11, 338. [CrossRef]
17. Ripoli, A.; Sozio, E.; Sbrana, F.; Bertolino, G.; Pallotto, C.; Cardinali, G.; Meini, S.; Pieralli, F.; Azzini, A.M.; Concia, E. Personalized

machine learning approach to predict candidemia in medical wards. Infection 2020, 48, 749–759. [CrossRef] [PubMed]
18. De Leeuw, A.-W.; van der Zwaard, S.; van Baar, R.; Knobbe, A. Personalized machine learning approach to injury monitoring in

elite volleyball players. Eur. J. Sport Sci. 2022, 22, 511–520. [CrossRef] [PubMed]
19. Lalitharatne, T.D.; Tan, Y.; Leong, F.; He, L.; Van Zalk, N.; De Lusignan, S.; Iida, F.; Nanayakkara, T. Facial expression rendering in

medical training simulators: Current status and future directions. IEEE Access 2020, 8, 215874–215891. [CrossRef]
20. Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000.
21. Picard, R.W. Affective computing: Challenges. Int. J. Hum.-Comput. Stud. 2003, 59, 55–64. [CrossRef]
22. Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef] [PubMed]
23. Ghimire, D.; Jeong, S.; Lee, J.; Park, S.H. Facial expression recognition based on local region specific features and support vector

machines. Multimed. Tools Appl. 2017, 76, 7803–7821. [CrossRef]
24. Shan, C.; Gong, S.; McOwan, P.W. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis.

Comput. 2009, 27, 803–816. [CrossRef]
25. An, F.; Liu, Z. Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM. Vis. Comput.

2020, 36, 483–498. [CrossRef]
26. Dahmane, M.; Meunier, J. Emotion recognition using dynamic grid-based HoG features. In Proceedings of the 2011 IEEE International

Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara, CA, USA, 21–25 March 2011; pp. 884–888.
27. Satiyan, M.; Hariharan, M.; Nagarajan, R. Recognition of facial expression using Haar wavelet transform. J. Electr. Electron. Syst.

Res. JEESR 2010, 3, 89–96.
28. Soyel, H.; Demirel, H. Improved SIFT matching for pose robust facial expression recognition. In Proceedings of the 2011 IEEE

International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara, CA, USA, 21–25 March 2011; pp. 585–590.
29. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef]
30. Banerjee, A.; Mutlu, O.C.; Kline, A.; Surabhi, S.; Washington, P.; Wall, D.P. Training and profiling a pediatric facial expression

classifier for children on mobile devices: Machine learning study. JMIR Form. Res. 2023, 7, e39917. [CrossRef] [PubMed]
31. Qian, Y.; Kargarandehkordi, A.; Mutlu, O.C.; Surabhi, S.; Honarmand, M.; Wall, D.P.; Washington, P. Computer Vision Estimation

of Emotion Reaction Intensity in the Wild. arXiv 2023, arXiv:2303.10741.
32. Zhang, F.; Yu, Y.; Mao, Q.; Gou, J.; Zhan, Y. Pose-robust feature learning for facial expression recognition. Front. Comput. Sci. 2016,

10, 832–844. [CrossRef]
33. Zhang, T. Facial expression recognition based on deep learning: A survey. In Advances in Intelligent Systems and Interactive

Applications, Proceedings of the 2nd International Conference on Intelligent and Interactive Systems and Applications (IISA2017), Beijing,
China, 17–18 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 345–352.

34. Zhang, K.; Huang, Y.; Du, Y.; Wang, L. Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE
Trans. Image Process. 2017, 26, 4193–4203. [CrossRef]

35. Zhao, X.; Liang, X.; Liu, L.; Li, T.; Han, Y.; Vasconcelos, N.; Yan, S. Peak-piloted deep network for facial expression recognition. In
Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 425–442.

36. Cao, C.; Weng, Y.; Zhou, S.; Tong, Y.; Zhou, K. Facewarehouse: A 3D facial expression database for visual computing. IEEE Trans.
Vis. Comput. Graph. 2013, 20, 413–425.

37. Wells, L.J.; Gillespie, S.M.; Rotshtein, P. Identification of emotional facial expressions: Effects of expression, intensity, and sex on
eye gaze. PLoS ONE 2016, 11, e0168307. [CrossRef]

38. Ahmed, Z.A.; Aldhyani, T.H.; Jadhav, M.E.; Alzahrani, M.Y.; Alzahrani, M.E.; Althobaiti, M.M.; Alassery, F.; Alshaflut, A.;
Alzahrani, N.M.; Al-Madani, A.M. Facial features detection system to identify children with autism spectrum disorder: Deep
learning models. Comput. Math. Methods Med. 2022, 2022, 3941049. [CrossRef]

39. Akter, T.; Ali, M.H.; Khan, M.I.; Satu, M.S.; Uddin, M.J.; Alyami, S.A.; Ali, S.; Azad, A.; Moni, M.A. Improved transfer-
learning-based facial recognition framework to detect autistic children at an early stage. Brain Sci. 2021, 11, 734. [CrossRef]
[PubMed]

https://doi.org/10.1016/j.jpsychires.2023.01.016
https://doi.org/10.1007/s42761-023-00181-6
https://doi.org/10.2196/10104
https://doi.org/10.1101/2023.04.28.23289168
https://doi.org/10.1038/s41398-021-01445-0
https://doi.org/10.1007/s15010-020-01488-3
https://www.ncbi.nlm.nih.gov/pubmed/32740866
https://doi.org/10.1080/17461391.2021.1887369
https://www.ncbi.nlm.nih.gov/pubmed/33568023
https://doi.org/10.1109/ACCESS.2020.3041173
https://doi.org/10.1016/S1071-5819(03)00052-1
https://doi.org/10.1109/TPAMI.2006.244
https://www.ncbi.nlm.nih.gov/pubmed/17108377
https://doi.org/10.1007/s11042-016-3418-y
https://doi.org/10.1016/j.imavis.2008.08.005
https://doi.org/10.1007/s00371-019-01635-4
https://doi.org/10.1126/science.1127647
https://doi.org/10.2196/39917
https://www.ncbi.nlm.nih.gov/pubmed/35962462
https://doi.org/10.1007/s11704-015-5323-3
https://doi.org/10.1109/TIP.2017.2689999
https://doi.org/10.1371/journal.pone.0168307
https://doi.org/10.1155/2022/3941049
https://doi.org/10.3390/brainsci11060734
https://www.ncbi.nlm.nih.gov/pubmed/34073085


Appl. Sci. 2024, 14, 1337 17 of 18

40. Banire, B.; Al Thani, D.; Qaraqe, M.; Mansoor, B. Face-based attention recognition model for children with autism spectrum
disorder. J. Healthc. Inform. Res. 2021, 5, 420–445. [CrossRef] [PubMed]

41. Washington, P.; Kalantarian, H.; Kent, J.; Husic, A.; Kline, A.; Leblanc, E.; Hou, C.; Mutlu, C.; Dunlap, K.; Penev, Y. Improved
Digital Therapy for Developmental Pediatrics Using Domain-Specific Artificial Intelligence: Machine Learning Study. JMIR
Pediatr Parent 2022, 5, e26760. [CrossRef] [PubMed]

42. Kalantarian, H.; Jedoui, K.; Dunlap, K.; Schwartz, J.; Washington, P.; Husic, A.; Tariq, Q.; Ning, M.; Kline, A.; Wall, D.P. The
performance of emotion classifiers for children with parent-reported autism: Quantitative feasibility study. JMIR Ment. Health
2020, 7, e13174. [CrossRef]

43. Beary, M.; Hadsell, A.; Messersmith, R.; Hosseini, M.-P. Diagnosis of autism in children using facial analysis and deep learning.
arXiv 2020, arXiv:2008.02890.

44. Nagy, E.; Prentice, L.; Wakeling, T. Atypical facial emotion recognition in children with autism spectrum disorders: Exploratory
analysis on the role of task demands. Perception 2021, 50, 819–833. [CrossRef]

45. Rashidan, M.A.; Na’im Sidek, S.; Yusof, H.M.; Khalid, M.; Dzulkarnain, A.A.A.; Ghazali, A.S.; Zabidi, S.A.M.; Sidique, F.A.A.
Technology-assisted emotion recognition for autism spectrum disorder (ASD) children: A systematic literature review. IEEE
Access 2021, 9, 33638–33653. [CrossRef]

46. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 6000–6010.

47. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

48. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

49. Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021,
arXiv:2110.02178.

50. Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung, J.; Gelly, S.; Houlsby, N. Big transfer (bit): General visual representation
learning. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020;
pp. 491–507.

51. Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.

52. Sharif, H.; Khan, R.A. A novel machine learning based framework for detection of autism spectrum disorder (ASD). Appl. Artif.
Intell. 2022, 36, 2004655. [CrossRef]

53. Ahmed, M.R.; Zhang, Y.; Liu, Y.; Liao, H. Single volume image generator and deep learning-based ASD classification. IEEE J.
Biomed. Health Inform. 2020, 24, 3044–3054. [CrossRef]

54. Yang, M.; Cao, M.; Chen, Y.; Chen, Y.; Fan, G.; Li, C.; Wang, J.; Liu, T. Large-scale brain functional network integration for
discrimination of autism using a 3-D deep learning model. Front. Hum. Neurosci. 2021, 15, 687288. [CrossRef]

55. Gao, J.; Chen, M.; Li, Y.; Gao, Y.; Li, Y.; Cai, S.; Wang, J. Multisite autism spectrum disorder classification using convolutional
neural network classifier and individual morphological brain networks. Front. Neurosci. 2021, 14, 629630. [CrossRef]

56. Tang, M.; Kumar, P.; Chen, H.; Shrivastava, A. Deep multimodal learning for the diagnosis of autism spectrum disorder. J. Imaging
2020, 6, 47. [CrossRef]

57. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for
emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [CrossRef]

58. Tang, H.; Liu, W.; Zheng, W.-L.; Lu, B.-L. Multimodal emotion recognition using deep neural networks. In Proceedings of
the Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017;
pp. 811–819.

59. Yin, Z.; Zhao, M.; Wang, Y.; Yang, J.; Zhang, J. Recognition of emotions using multimodal physiological signals and an ensemble
deep learning model. Comput. Methods Programs Biomed. 2017, 140, 93–110. [CrossRef] [PubMed]

60. Martin, O.; Kotsia, I.; Macq, B.; Pitas, I. The eNTERFACE’05 audio-visual emotion database. In Proceedings of the 22nd
International Conference on Data Engineering Workshops (ICDEW’06), Atlanta, GA, USA, 3–7 April 2006; p. 8.

61. Zhang, S.; Zhang, S.; Huang, T.; Gao, W.; Tian, Q. Learning affective features with a hybrid deep model for audio–visual emotion
recognition. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 3030–3043. [CrossRef]

62. Nguyen, D.; Nguyen, K.; Sridharan, S.; Dean, D.; Fookes, C. Deep spatio-temporal feature fusion with compact bilinear pooling
for multimodal emotion recognition. Comput. Vis. Image Underst. 2018, 174, 33–42. [CrossRef]
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