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Abstract: According to modern structural codes, a design is considered to be adequate if the limit
states are not exceeded. For the ultimate limit state, the design value of action effect Ed is required
to be less or equal than the design value of ultimate resistance Rd. This ensures, according to the
Eurocode, a sufficiently low probability of failure expressed as the target reliability index β. Conse-
quently, the distributions of action effect and of resistance need to satisfy the following conditions:
P(E > Ed) ≤ Φ(+αEβ) and P(R ≤ Rd) ≤ Φ(−αRβ), where αE and αR, with |α| ≤ 1, are the values
of the FORM sensitivity factors. The values of the sensitivity factors αE and αR are suggested, accord-
ing to EN1990, as −0.7 and 0.8, respectively; for the accompanying actions, the sensitivity factor is
recommended as 0.28. In this paper, the dependence of the sensitivity factors for traffic live load, dead
load, and resistance on the ratio of traffic load to dead load is studied (which is directly proportional
to the maximum span of the bridge). Significantly different sensitivity factors for resistance, dead
load, and traffic load, other than proposed by the Eurocode, has been calculated for typical ratio of
traffic to dead load. It further showed that, if it is assumed that Ed = Rd and the Eurocode partial
safety factors are used, a different design point than the starting point, i.e., Ed = Rd, is obtained.

Keywords: sensitivity factor; partial factor calibration; traffic load; existing bridges assessment

1. Introduction

According to the modern structural codes such as the Eurocode [1] and Swiss Code [2],
a design is considered to be adequate if the limit states are not exceeded. For the ultimate
limit state, the design value of action effect Ed is required to be less than or equal to the
design value of ultimate resistance Rd. This ensures, according to the Eurocode, sufficiently
low probability of failure expressed as the reliability index β. In order to check whether
this requirement holds, one needs to obtain distribution of both action effect and resistance.
Using one of the reliability methods, e.g., FORM (First Order Reliability Method, the most
common technique of structural reliability analysis) one can evaluate the reliability index
β, most likely the failure point and also sensitivity factors αE and αR. Consequently, the
distributions of action effect and of resistance need to satisfy the following conditions
P(E > Ed) ≤ Φ(+αEβ) and P(R ≤ Rd) ≤ Φ(−αRβ) where αE and αR, with |α| ≤ 1, are
the values of the FORM sensitivity factors.

In this paper, the dependence of the sensitivity factors for traffic live load, dead load,
and resistance on the ratio of traffic load to dead load is studied. Further, the ratio of traffic
load to dead load effects is proportional to the maximum span of the bridge. Changing
the sensitivity factors, and keeping the same probability distribution for random variables,
indicates the most likely failure points are changing. Equalizing the most likely failure
point with the design value of the action affect and ultimate resistance, one can obtain
partial factors. Taking into account the dependence of the sensitivity factor on the ratio
between traffic load and dead load, the correct partial factors for new or existing bridges
can be calibrated in defining the load models and satisfying the target safety index (and
consequently, the probability of failure).
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Sensitivity factors may be interpreted as factors giving the relative importance of the
individual random variable for the reliability index β, i.e., the probability of failure, as
shown graphically in Figure 1. The sensitivity factors αE and αR may be taken according
to EN1990 as −0.7 and 0.8, respectively. For the accompanying actions, the design values
may be defined by P(E > Ed) = Φ(−0.4 × 0.7 × β) = Φ(−0.28β). The condition for these
expressions are that 0.16 < σE/σR < 7.16, where σE and σR are standard deviations for the
action effect and for resistance, respectively. Otherwise, α = ±1.0 should be used for the
variable with the larger standard deviation, and α = ±0.4 for the variable with the smaller
standard deviation. These values of the sensitivity factors are based on the study where
the deviation from the target reliability index for different values of the ratio between the
standard deviation of the random variable R and E was minimized [3].
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The fib Bulletin 80 [4] proposes two methodologies devoted to the redefinition of the
partial safety factors for the assessment of existing structures: the design value method
(DVM) and the adjusted partial factor method (APFM). The DVM allows for recalculation of
the partial safety factors for both resistances and actions by means of consistent probabilistic
models derived by the prior knowledge, test results, and observations related to the existing
structure under investigation. The APFM, which can be considered the simpler approach,
allows for the update of the partial safety factors defined by the Eurocode for new structures
by means of “adjustment coefficients” accounting for the prior knowledge, test results,
and observations related to the existing structure. However, in both of these methods,
the FORM sensitivity factors αR and αE, which are direct parameters used in calculation,
are set equal to 0.8 and −0.7 for dominant variables, respectively, and are equal to 0.32
and −0.28 for nondominant variables. A resistance variable is considered dominant if its
sensitivity factor calculated as αXi = COVXi/

√
∑j COV2

Xj, (where COV is coefficient of
variation and summation is undertaken over all basic resistance variables) exceeds that
of the other resistance variables. The same procedure is performed for determining the
dominant load variable. This approach, suggested by [4], has been applied, for example,
in [5] for the assessment of the existing sample bridge by recalculating the partial factors.
Further, a recalibration of the partial factors, with the corresponding use of sensitivity
factors, is often of interest, for example, for the reassessment of the traffic load model [6] or
for the assessment of railway bridge reliability [7].

The goal of this paper is to provide a guideline for the correct calculation of the
sensitivity factors, and to show that correct values differ significantly from the proposed
values from the Eurocode. Without having the accurate sensitivity factors, a proper partial
factor calibration is not possible. Taking into account the dependence of the sensitivity
factor on the ratio between traffic load and dead load, the correct partial factors for new or
existing bridges can be calibrated in defining the load models, satisfying the target safety
index (and consequently the probability of failure).
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2. Methodology

In the parametric study performed herein, for the dependence of the sensitivity factors
on the ratio of traffic load to dead load, a linear limit state function has been assumed
in the following form: g = R-Q-G, where R represents the resistance of the structure, Q
represents the traffic live load, and G represent dead load (self-weight of all components of
the bridge, structural and nonstructural). Normal distributions have been assumed for all
three random variables (R, Q, and G).

The reliability index for the considered limit state function can be calculated as:

β =
µR − µs√

(COVR × µR)
2 + (COVG × ν × µs)

2 +
(
COVQ × (1 − ν)× µS

)2
(1)

where µR and µS are the expected values for resistance and total load, respectively, and
COVG, COVQ, and COVR are coefficient of variation for dead load, traffic live load, and
resistance, respectively. The percentage of dead load to total load (equal to sum of dead
and traffic load) is defined as ν.

At the same time, the sensitivity factor for traffic load, dead load, and resistance,
respectively, can be expressed as:

αQ =
COVQ × (1 − ν)× µS√

(COVR × µR)
2 + (COVG × ν × µs)

2 +
(
COVQ × (1 − ν)× µS

)2
(2)

αG =
COVG × ν × µs√

(COVR × µR)
2 + (COVG × ν × µs)

2 +
(
COVQ × (1 − ν)× µS

)2
(3)

αR =
COVR × µR√

(COVR × µR)
2 + (COVG × ν × µs)

2 +
(
COVQ × (1 − ν)× µS

)2
(4)

It is clear that the calculation of sensitivity factors strongly depends on the choice of
the coefficient of variation (COV) for resistance, dead load, and traffic load. A literature
review of the coefficient of variation for dead load (COVG), traffic live load (COVQ), and
resistance (COVR) is performed in the next chapter.

3. Review of Coefficient of Variation for Resistance and for Loads

Typical resistance uncertainties are geometrical, material, and model uncertainties.
In the following, only main material uncertainties are reviewed with regards to their
variability. Regarding the load uncertainties, permanent and traffic loads are discussed to
estimate its variation.

3.1. Resistance—Compressive Strength of Concrete

Reference property of concrete is the compressive strength fco of the standard test
specimen tested, according to standard conditions and at a standard age of 28 days. The in
situ compressive strength, fc, can be related to fco as [8]:

fc = α(t, τ) f λ
co [MPa] (5)

where λ is a factor, taking into account the difference between the compressive strength of
the concrete as measured in situ, and the strength according to standard tests on concrete
cylinders; α(t,τ) is a deterministic function, which takes into account the concrete age at
the loading time, t [days] and the duration of loading, τ [days]. The concrete compressive
strength can be assumed to be lognormal distributed. As it has been found that λ varies
only insignificantly, the in situ concrete compressive strength is proposed in the literature
to be lognormal, distributed with a COV equal to 0.15 [9].
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Dragojevic et al. [10] tested 6845 samples of concrete cubes for concrete compressive
strength. The COV that was calculated for all of these samples was between 0.06 and 0.19,
depending on the concrete class—the higher the class, the smaller the COV.

One of the basis for US design codes provides the value of COV for concrete compres-
sive strength from 0.15-0.18, again depending on the concrete class [11]. The values of the
coefficient of variation, based on many test results for cast “on-site” concrete test cylinders
and cubes varies between 0.1 and 0.2 depending on the quality control, according to [12].
These values are appropriate for between batch variation (i.e., considering concretes from
all sources). The coefficients of variation are roughly halved for within batch variation
(i.e., for concrete from one source).

Although the statistical distribution of concrete compressive strength has been of
interest for a long time, it often has a much smaller influence on structural strength and
behavior than do reinforcement properties. This is entirely due to the conventional design
philosophy of attempting to achieve ductility in the structure. Nevertheless, it is important
for estimating reliability of reinforced columns and for serviceability investigations [12].

3.2. Resistance—Reinforcing Steel

A probabilistic model for the reinforcement yield strength is suggested as [8]:

fs = X1 + X2 + X3 (6)

where X1 is the normal distributed random variable representing the variation in the mean
of different mills, X2 is the normal distributed zero mean random variable, which takes into
account the variation between batches, and X3 is the normal distributed zero mean random
variable, which takes into account the variation within a batch. The mean value of X1 has
been found to exhibit a significant dependence on the diameter of the bar. Probabilistic
models for X1, X2, X3 and area of the bar (A) is shown in Table 1. Anom is the nominal
cross-sectional area, and µ can be taken as the nominal steel grade plus two standard
deviations of X1. Taking into account the coefficient of variation of the bar cross-section
area leads to a COV for reinforcement yield strength equal to 0.057 [8,9].

Table 1. Probabilistic model for the reinforcement yield strength [8].

Variable Type E[X] σx COV
[MPa]

X1 Normal µ 19 -
X2 Normal 0 22 -
X3 Normal 0 8 -
A - Anom - 0.02

Ellingwood et al. [11] provide the COV for reinforcement yield strength equal to
0.098–0.116, while Mirza et al. suggest that COV for reinforcement yield strength is likely
to be around 4–7% [13].

3.3. Resistance—Structural Steel

A multi-variate lognormal distribution is proposed for probabilistic modelling of the
material properties of rolled structural steel sections by [8]. Regarding yield stress, the
lognormal distribution is proposed with the COV as 0.07, while for ultimate stress, the
lognormal distribution with the COV equal to 0.04 is proposed. The model is appropriate
for structural steel, with yield stresses up to 380 MPa. The COV values refer to total steel
production, and are based primarily on European studies from 1970 onwards. In the US
and Canada, higher COVs have been used (on average, about 50% higher) [11,14–18].



Appl. Sci. 2024, 14, 985 5 of 12

3.4. Permanent Loads

The permanent loads acting on a structure consists of the self-weight of structural
and nonstructural members. The name permanent load indicates that the load is varying
insignificantly over time; however, its intensity is uncertain. Following JCSS [8], the
uncertainty associated with the self-weight of steel components is predominantly due to
the uncertainty in the cross-sectional area. Both the density and the length dimensions
of structural members made of steel may be assumed to be deterministic. For structural
components made of concrete, the uncertainty associated with the density is dominating,
while geometry should play a minor role. The self-weight of nonstructural components
may be made of a material that is different to the structural components. Hence, the
uncertainty associated with the permanent load of steel structures could increase due
to possible nonstructural member weight contributions, and vice versa in the case of
concrete structural components. Due to these different effects, a coefficient of variation
for the total permanent load equal to 0.10 is proposed in the literature [8,9]. Because
individual permanent loadings are additive, the variability of the total permanent load
is less than that of the individual items; it also suggests that the central limit theorem
applies. Hence, permanent loads are commonly assumed to be closely approximated by
the normal distribution, typically with a mean equal to the nominal load, and a COV of
0.05–0.10. Nominal loads can be simply defined as volume, with dimensions as shown on
the plans, multiplied by density. Variability in the total permanent load often appears to be
due mainly to non-structural components rather than the variability of the load-bearing
materials themselves [12]. Nowak [16] suggests the COV for permanent loads for bridges
in the range of 0.08–0.1. Further, it was suggested in [16] that because of the different
degrees of variation in different structural and nonstructural elements, it is convenient to
break up the total dead loads into two components: the weight of factory-made elements
(steel, precast concrete members) and the weight of cast-in-place concrete members. In
addition, for bridges, a third component of the dead load is the weight of the wearing
surface (asphalt).

3.5. Traffic Loads

For the 75-year moment extreme value, Nowak et al. proposed the coefficient of
variation of truck load as 0.12 [19]. Two week extreme values have been calculated, from
bridge weigh-in-motion (B-WIM) records on 17 locations in Serbia, by structurally analyzing
the load from B-WIM reconstructed traffic on a set of bridges, with coefficient of variation
equal to 0.138 [20].

4. Results
4.1. Parametric Study of the Sensitivity Factor

Using the expression for calculation of the reliability index for the considered limit
state function (1), and expression for sensitivity factor for resistance (4), the parametric
study is performed by setting COVQ and COVG as 0.10, and varying the percentage of
dead load to total load (dead load and traffic load), ν. The graphical representation of
dependence of the sensitivity factor for resistance, ratio ν, and COVR is shown in Figure 2,
as a three-dimensional diagram. These values of coefficient of variations for traffic load,
dead load, and resistance proved reasonable in the above literature review.

If the percentage of dead load to total load, ν, is set as 0.65 (which is a realistic value
as shown in the following chapter), the sensitivity factor for traffic load, dead load, and
resistance, respectively, is calculated as αQ = 0.0828, αG = 0.1537, αR = 0.9846 for the case
with COVR as 0.15. These values differ significantly from the values proposed by the
Eurocode as 0.7 and 0.28 for leading and accompanying actions, and 0.8 for resistance.
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4.2. Dependence of Maximum Span of the Bridge to the Ratio of Traffic and Dead Load

The actual bridges in whose design the first author was involved (Table 2) was investi-
gated, and the ratio of dead load to the sum of the traffic and dead load was calculated for
each bridge (Figure 3). These bridges included the following prestressed concrete bridge
types (shown in Figure 4), with the range of maximum span between 7 m and 60 m:

• slab girder bridge,
• ribbed section,
• box girder, and
• precast girders.

In addition, besides the prestressed concrete bridges, one reinforced concrete culvert
is included. The ratio is obtained by comparing the bending moment at support, bending
moments at midspan, and shear, and taking the average of these values (weighing equally
the bending moment and shear). The national load multiplier, α, for the Eurocode LM 1,
used in the design of the bridges shown in Table 2, are provided in the last column of
the table. As required by the National Annex used in the design of these bridges, a
different set of national load multipliers, α, has been used for bridges on different routes
(motorway vs more local roads). However, larger traffic loads in general ask for a larger
dead load of structural components to resist the increased load, keeping the G/(G + Q)
ratio relatively constant.
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Table 2. Bridge considered for dependence of ratio of traffic to dead load and maximum span.

Max Span All Spans Type Bridge Width
(m) Ratio ν

α

(LM1 Multiplier)(m) (m)

60 45, 60, 45 Box girder 14.8 0.775 0.8
42 32, 4 × 42, 32 Box girder 11.3 0.675 1
54 40, 3 × 54, 40 Box girder 11.3 0.703 1

38 30, 38, 38, 38, 38, 30 Ribbed section 10.5 0.674 0.8
23 18, 23, 23, 23, 23, 23, 18 Ribbed section 9.4 0.578 0.8
25 20, 25, 25, 25, 25, 25, 20 Ribbed section 9.4 0.597 0.8
31 22, 31, 31, 31, 22 Ribbed section 9.4 0.622 0.8

25 20, 5 × 25, 20 Slab girder 14.8 0.736 0.8
26 18, 26, 26, 26, 26 Slab girder 7.8 0.604 1
28 28, 28 Slab girder 10.5 0.719 0.8
16 16 Slab girder 11.3 0.648 0.8
25 25, 25 Slab girder 10.5 0.699 0.8

22 3 × 22 Precast girders 11.2 0.563 1
20 17, 20, 20, 17 Precast girders 8 0.406 1
35 35 Precast girders 11.2 0.593 0.8
24 24, 24 Precast girders 10.5 0.524 0.8
7 7 Precast girders 14.75 0.453 1
15 15 Precast girders 14.75 0.376 1
11 11 Precast girders 14.75 0.413 1

7 7 Culvert 14.75 0.440 1
Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 12 
 

 
Figure 3. Ratio of dead load to total load vs maximum span. 

  

  

Figure 4. Bridge types used (ribbed section top left, box girder top right, slab girder bottom left, 
precast girder bottom right). 

As can be seen from Figure 3, the ratio of dead to total load, i.e., ν, depends on the 
following factors: 
• Span—the longer the span, the larger the ratio, as the influence of the Tandem System 

(TS) part of the Eurocode Load Model 1 (LM1) decreases when compared with the 
uniform dead load; 

• Width of the bridge—the wider the bridge, the larger the ratio, since the wider bridge 
means that third lane and remaining area will be added, which are the lighter parts 
of the Eurocode LM1, while the dead load should increase significantly with the 
bridge width increase; 

• Type of the section—the slab bridge has a larger ratio ν due to disadvantageous cross-
section optimization compared with the ribbed section, box section, and precast gird-
ers. 
It can be concluded that the typical range of ratio ν is 0.40-0.75 for the concrete bridge. 

For steel bridges, ν is expected to be lower.  
  

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 10 20 30 40 50 60 70

G
/ (

G+
Q

)

Max. span (m)

Box girder

Ribbed section

Slab girder

Precast girder

Culvert

Figure 3. Ratio of dead load to total load vs maximum span.



Appl. Sci. 2024, 14, 985 8 of 12

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 12 
 

 
Figure 3. Ratio of dead load to total load vs maximum span. 

  

  

Figure 4. Bridge types used (ribbed section top left, box girder top right, slab girder bottom left, 
precast girder bottom right). 

As can be seen from Figure 3, the ratio of dead to total load, i.e., ν, depends on the 
following factors: 
• Span—the longer the span, the larger the ratio, as the influence of the Tandem System 

(TS) part of the Eurocode Load Model 1 (LM1) decreases when compared with the 
uniform dead load; 

• Width of the bridge—the wider the bridge, the larger the ratio, since the wider bridge 
means that third lane and remaining area will be added, which are the lighter parts 
of the Eurocode LM1, while the dead load should increase significantly with the 
bridge width increase; 

• Type of the section—the slab bridge has a larger ratio ν due to disadvantageous cross-
section optimization compared with the ribbed section, box section, and precast gird-
ers. 
It can be concluded that the typical range of ratio ν is 0.40-0.75 for the concrete bridge. 

For steel bridges, ν is expected to be lower.  
  

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 10 20 30 40 50 60 70

G
/ (

G+
Q

)

Max. span (m)

Box girder

Ribbed section

Slab girder

Precast girder

Culvert

Figure 4. Bridge types used (ribbed section (top left), box girder (top right), slab girder (bottom left),
precast girder (bottom right)).

As can be seen from Figure 3, the ratio of dead to total load, i.e., ν, depends on the
following factors:

• Span—the longer the span, the larger the ratio, as the influence of the Tandem System
(TS) part of the Eurocode Load Model 1 (LM1) decreases when compared with the
uniform dead load;

• Width of the bridge—the wider the bridge, the larger the ratio, since the wider bridge
means that third lane and remaining area will be added, which are the lighter parts of
the Eurocode LM1, while the dead load should increase significantly with the bridge
width increase;

• Type of the section—the slab bridge has a larger ratio ν due to disadvantageous
cross-section optimization compared with the ribbed section, box section, and pre-
cast girders.

It can be concluded that the typical range of ratio ν is 0.40–0.75 for the concrete bridge.
For steel bridges, ν is expected to be lower.

5. Discussion

Using fixed sensitivity factors αE and αR as −0.7 and 0.8, respectively, according to
EN1990, strongly affects the probability of exceedance of the design value and calibration
process of the partial factors. In the partial factor method, the partial factors are obtained
by the following expression:

γQ =
xd
xc

(7)

where xd is the design value (the most probably failure points), and xc is the characteristic
value (in general, an arbitrary value). The design value can be calculated as:

xd = µ + β × α × σ (8)

It is clear that the sensitivity factor is a critical input for the calculation of the partial
factor. It is actually irrelevant which characteristic value one would like to choose to
calibrate the load model—indeed, it can be any value—but the partial safety factor has to
be calibrated accordingly. Using a safety index to calibrate the load model, and keeping the
constant sensitivity factor of 0.7 gives a false impression that this choice indeed ensures a
sufficient target safety index, in particular as traffic loading is not the only loading—there
is a self-weight as well.

Two sets of values of the sensitivity factors are suggested for concrete bridges as
a result of this study in Table 3: (a) one for bridges with the longest span between 5 m
and 25 m, and (b) the other for bridges with the longest span between 25 m and 80 m.
The coefficient of variation for resistance COVR of 0.10 is chosen; for the dead load and
traffic load coefficient of variation, COVG and COVQ, the value of 0.10 is proposed for
this purpose. For bridges with the longest span between 5 m and 25 m, ν, i.e., the ratio
of dead load to total load, an equal to 0.5 has been suggested. For bridges with spans
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between 25 m and 80 m, ν, i.e., the ratio of dead load to total load, an equal to 0.7 has
been proposed. The value of sensitivity factors for traffic loads equal to approximately
0.26 for bridges with spans between 5 m and 25 m, and 0.18 for bridges with spans
between 25 and 80 m, are much smaller than the values usually used as 0.7, suggested
by the Eurocode and [4,5].

Table 3. Proposal for sensitivity factors for concrete bridges.

Span Range Ratio of Dead Sensitivity Factor
(m) to Total Load αQ (traffic) αG (dead load) αR (resistance)

5–25 0.5 0.2561 0.2561 0.9321
25–80 0.7 0.1511 0.3525 0.9235

In order to illustrate that the Eurocode proposed values for sensitivity factors
are not appropriate, the following sample situation has been discussed. The design
resistance and design load has been set to 1000, with the ratio of dead load to the sum
of dead load and traffic load equal to 0.7. The corresponding characteristic values
of resistance, dead load and traffic load can be then calculated as 1150, 519, and 222,
respectively, by applying the Eurocode partial safety factor of 1.15 for resistance, and
1.35 for loads. Assuming normal distribution for all three random variables (resistance,
dead load, and traffic load), lower 5% fractile for resistance characteristic value, nominal
(expected) value for dead load characteristic value, and upper 0.1% for traffic load
characteristic value, distributions for each random variable can be computed (two
unknown parameters from the set of two equations for each distribution). Coefficient
of variations has been assumed as 0.1 for all three variables, resistance, dead load, and
traffic load. Once the distributions are determined, sensitivity factors for resistance,
dead load, and traffic load are calculated using Equations (2)–(4) as 0.930, 0.350, and
0.115, respectively; using Equation (1), the reliability index is computed as 4.65. The
design point, i.e., the most likely failure point, can be calculated as 781.7, which differs
significantly from the starting point, Ed = Rd = 1000.

Further, a more refined parametric study to illustrate inconsistency of sensitivity fac-
tors proposed by the Eurocode was performed with the distributions usually encountered
in practice—lognormal for resistance, normal for dead load, and Gumbel for traffic load.
Again, the same design point Ed = Rd, the same characteristic values, the same coefficient
of variations for dead load and traffic load, and the ratio of dead load to traffic load was
used, as in the previous example. Distributions for each random variable was computed
with the Rackwitz–Feissler algorithm (by defining a function that approximates the arbi-
trary distribution with the normal distribution at the most likely design point [21]). The
coefficient of variation for resistance was varied and analyzed in the applicability domain
of the Eurocode proposal for sensitivity factors, i.e., 0.16 < σE/σR < 7.16. Plots for depen-
dence of sensitivity factors, design point, partial safety factors, and reliability index on the
ratio between standard deviation of load and resistance were plotted in Figures 5–8. It
can be concluded that sensitivity factors proposed by the Eurocode can be seen only as a
rough approximation.

It is also interesting to note how partial safety factors significantly change, as the dead
load coefficient of variation decreases—dead load coefficient of variation was varied as
0.07 and 0.1 in Figure 9. Generally, dead load coefficient of variation is easy to update in
practice, by measuring the actual measurements of the structure on-site.
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6. Conclusions

This paper shows a principle of how to accurately calculate sensitivity factors necessary
for the calibration of the load model and partial safety factors—these sensitivity factors for
each random variable depend on the ratio of traffic live load to dead load. The ratio of traffic
live load to dead load strongly depends on the maximum center span of the bridge. It has
been concluded that the calculated values of the sensitivity factor for resistance, dead load,
and traffic load differ significantly from the Eurocode proposed values, which strongly
influence the target safety index (and consequently, the probability of failure). It has been
shown that the actual design point (i.e., the most likely failure point) with the use of the
Eurocode partial safety factors differs significantly from the starting design resistance and
design load; the corresponding sensitivity factors also differ from the Eurocode proposed
values, which can be seen only as a rough approximation. The approach provided in this
paper can be used for calculation of the sensitivity factors during the recalibration of the
partial factors for new and existing bridges. Future research could include the study of
typical ratios of dead load to total load for steel bridges, as this paper studied only concrete
bridges in regards to this issue, although it studied the influence of this ratio to sensitivity
factor in general.
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