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Abstract: Metalenses, with their unique modulation of light, are in great demand for many potential
applications. As a proof-of-principle demonstration, we focus on designing SiO2 metalenses that
operate in the deep ultraviolet region, specifically around 193 nm. Based on the deep ultraviolet
metalens proposed in this paper, an integrated deep ultraviolet doublet metalens is further offered.
When the incident light is a plane wave with a wavelength of 193 nm, the integrated doublet
metalens can reduce the beam size by a factor of 4:1, and the emitted light is flat. The integrated
doublet metalens can project the reticle image proportionally, making the projection image clear. The
integrated doublet metalens has the best imaging effect at the propagation distance of 2 µm and
can tolerate ±3 degrees of incident angle deviation. Our findings establish general and systematic
strategies to guide the design of traditional optical lens arrays with excellent integrated doublet
metalenses and pave the way for enhanced optical performance in the application of large-relative-
aperture deep ultraviolet detection, deep ultraviolet microscope systems, laser beam combining
systems, deep ultraviolet lithography systems, etc.

Keywords: metalens; deep ultraviolet; projection imaging

1. Introduction

In recent years, the study of metasurfaces has become a major topic due to the
unique electromagnetic modulation properties of the sub-wavelength micro-nano struc-
ture in micro-nano optics [1–6]. There are many research directions regarding metasur-
faces, including holograms [7–9], beam shaping [10–12], sensing [13,14], polarization
control [15–17], absorbers [18–22], biosensing [23,24], and metalenses [25–33]. Lenses
are crucial optical components in various applications, including security, automotives,
lasers, digital cameras, and optical instruments. Metalenses represent a popular research
direction as they can control light waves through arrays of micro-nano structures. They
have the advantages of being ultra-light, ultra-thin, easy to integrate, etc., and are ex-
pected to open up a new path for micro and micro-nano optical imaging and optoelectronic
equipment. The study of metalenses in the visible [26] and near-infrared [27] regions has
developed well, and single-wavelength [28,29], multi-wavelength [30], and achromatic
metalenses [31–33] in visible wavelengths have been realized. However, studies on met-
alenses [34–36] in the deep UV band are still scarce. Recently, high-bandgap materials
such as HfO2 [37] and TiO2 [38] have been introduced as compelling material platforms
for UV-range applications. There are also many excellent research results on multilayer
metasurfaces [39,40].

There are many application scenarios for deep ultraviolet systems [41–43], such as
large-relative-aperture deep ultraviolet detection [43–45], deep ultraviolet microscope
systems [41,46,47], laser beam combining systems [48,49], deep ultraviolet lithography
systems [50], etc. Among them, the deep ultraviolet large-relative-aperture warning optical

Appl. Sci. 2024, 14, 1316. https://doi.org/10.3390/app14031316 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031316
https://doi.org/10.3390/app14031316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14031316
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031316?type=check_update&version=1


Appl. Sci. 2024, 14, 1316 2 of 13

system [43–45] requires the optical system to have a large field of view, large relative
aperture, simple structure, and small light energy loss. This requires a combination of
spherical mirrors, diffractive elements, and aspheric mirrors, and the system is difficult
and costly to handle. The laser beam combining system [48,49] achieves laser output
with high power and power density while maintaining high beam quality. By spatially
rearranging the output beam of each light-emitting unit or refracting and reflecting the
optical path, the output beam of each light-emitting unit can be combined into a beam
close to a single light-emitting unit, improving the beam quality and output density. The
projection lithography objective lens [50] is also an essential deep ultraviolet system; it is
the core component of the projection lithography machine. Its performance determines
the image transfer capability of the deep ultraviolet lithography machine. The projection
objective lens group often requires a complex lens combination of nearly 30 lenses and
more than a dozen movable lenses with sub-nanometer machining accuracy. The deep
ultraviolet metalens based on the metasurface has a powerful wavefront control capability.
It can use as few lens combinations as possible to achieve the functions of a traditional
lens group.

In this paper, we propose an integrated deep ultraviolet all-dielectric doublet metalens
to solve the problem of the complex structure of the existing traditional deep ultraviolet
system. This can be used in a projection deep ultraviolet lithography machine system, laser
beam combining systems, and deep ultraviolet detection. Two metalenses are designed on
two parallel surfaces on the SiO2 substrate, respectively, with the same numerical aperture
and focal length ratio of 4:1. The centers of the two metalenses are aligned and spaced at
the sum of the two focal lengths. The beam reduction of the parallel deep ultraviolet light
is realized through the design optimization of each metalens. We analyze the efficiency of
the integrated doublet metalens, and the light intensity per unit area of the emitted light is
7.39 times the intensity of the incident light unit area. Projection imaging is realized for the
reticle placed in the integrated doublet metalens under the incidence of parallel light. The
doublet metalens realizes the function of projection imaging through an integrated array.
We can adjust the size and focal length of the two metalenses according to the required
imaging ratio to obtain a pattern consistent with the corresponding ratio of the propagation
distance. It has the advantages of being ultra-light, ultra-thin, and easy to integrate and
opens up a new path for deep ultraviolet lithography, micro-nano optical imaging, and
optoelectronic equipment. Compared with the traditional deep ultraviolet lens group, this
design has the advantages of a small volume, simple system structure, stable system, etc.

2. Materials and Methods

The principle of the metalens is shown in Figure 1. The propagation phase structure
is used to design a deep ultraviolet all-dielectric metalens. The unit structure of the SiO2
cylinder is placed on the SiO2 substrate. SiO2 [51] has higher transmission efficiency and
lower absorption in the deep ultraviolet band, which can improve the performance of the
metalens. It is common for a cylinder [52–55] to be used as the unit structure for a metalens.
By adjusting the geometric parameters, such as the radius and height of the cylinder, phase
coverage of 2π can be obtained to achieve the arbitrary control of the wavefront.

The finite difference time domain (FDTD) method is used to simulate the phase control
element and the phase and intensity of the metalens. Theoretical simulations are conducted
on the transmittance and phase of the phase-regulating unit, as well as on the transmittance
and projection intensity of the metalens and doublet metalens. The simulation of the
element structure uses periodic boundary conditions along the x and y axes and a perfect
matching layer along the z axis. The refractive index of SiO2 comes from the Palik manual,
emitting plane waves from the bottom of the metasurface.

The parameters of the unit structure are shown in Figure 2. By adjusting the geometric
parameters such as the unit size and height, 2π phase coverage can be obtained, and
arbitrary control of the light field can be achieved. To realize the phase control under the
design wavelength λ = 193 nm, we choose the SiO2 material with high transmittance as
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the substrate and unit structure pillar. We select the cylindrical structure to adjust and
scan its radius and height. Based on observations, it can be seen that within a radius of
20–70 nm, the ability to adjust the phase becomes more robust with an increase in height.
Therefore, selecting a height that offers higher transmittance overall is advisable. After
careful consideration, choosing a height of 550 nm and a radius between 20 and 65 nm is
recommended. The phase delay covers a 2π interval, the overall transmittance is above 84%,
and the average transmittance reaches 92%. In the design of ultraviolet metalenses [56–59],
the element structure’s amplitude and phase control results are quite acceptable. The
full-wave simulations (E, H, and P) of meta-units with different radii (30, 40, 50, and 60 nm)
are shown in Figure 2C.
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Figure 1. (A) A schematic illustration of a deep ultraviolet integrated doublet metalens. (B) Side view
of deep ultraviolet integrated doublet metalens. (C) Side view, top view, and three-dimensional view
of the unit structure, respectively. The height of the cylinder is h, the radius is r, and the unit structure
period is D. (D) The relationship between the phase control of the unit structure and the radius.

In this paper, the propagation phase is controlled by changing the radius of the SiO2
cylinder. To achieve focus, the phase of the deep ultraviolet all-dielectric metalens needs to
satisfy the following equations:

Φ =
2π

λ

(
f −

√
f 2 + x2 + y2

)
(1)

Among them, λ is the wavelength of the incident light, f is the focal length, and (x, y) is
the position coordinate on the transparent substrate. When the exit light interface is located
in a medium with a refractive index of n, the phase profile must satisfy the following:

Φ = n × 2π

λ

(
f −

√
f 2 + x2 + y2

)
(2)

The phase shift introduced by the unit structure can be expressed as

Φ =
2π

λ
nH (3)
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where H is the unit structure height.
To improve the focusing effect, we perform aspherical aberration [60] processing on

both metalenses, namely

Φ = n × 4π

λ

(
2 f −

√
x2 + y2 + 4 f 2

)
(4)
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simulations (E, H, and P) of meta-units with different radii (30, 40, 50, and 60 nm).

In Figure 3 below, Figure 3A is a schematic diagram of the focusing of a single metalens,
and Figure 3B,C is the phase profile curves required by metalens L1 and L2, respectively,
according to Equation (4). We can observe that the aspherical phase profile is basically
the same as the conventional one. The phase profile coincides with the lens’s center.
With an increase in r, the phase profile of the aspherical metalens changes faster than the
conventional one.

We create two metalenses with the same numerical aperture, and the focusing effect is
satisfactory compared to the proposed UV metalens [56–59]. In Figure 4, the focusing effect
of the two metalenses is shown, where Figure 4A–C show the focusing effect of metalens
L1, and Figure 4D–F show the focusing effect of metalens L2. As depicted in Figure 4A,
the focal length of metalens L1 is 6 µm, which is consistent with our design focal length.
The focusing effect of the focal plane is shown in Figure 4B, and the intensity at the radial
position on the focal plane is shown in Figure 4C. The FWHM is 0.17 µm, and the central
peak area accounts for 93.76%. As depicted in Figure 4D, the focal length of metalens L2 is
1.5 µm, which is consistent with our design focal length. The focusing effect of the focal
plane is shown in Figure 4E, and the intensity at the radial position on the focal plane is
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shown in Figure 4F. The focus half-width is 0.158 µm, and the central peak area accounts
for 94.22%.
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To realize the beam reduction function, two metalenses with the same NA are designed,
namely

R1

f1
=

R2

f2
(5)

R1 and f 1 are the radius and design focal length of metalens L1, and R2 and f 2 are the
radius and design focal length of metalens L2, respectively, which are expressed explicitly
as

R1 : R2 = 4 : 1 (6)

f : f2 = 4 : 1 (7)

Thus far, we have obtained two metalenses, L1 and L2, with the same numerical
aperture and a diameter ratio of 4:1. They have an excellent focusing effect at the design
wavelength of 193 nm. An integrated doublet metalens is further designed to achieve
the perfect beam reduction of parallel light with a simple structure. The sum of the focal
lengths of the two metalenses is f total = f 1 + f 2, which is the same thickness as the SiO2
substrate, as shown in Figure 1B.
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Analysis of Flatness of Outgoing Light

In recent years, the design of doublet metalenses [6,61,62] has also been proposed. To
reduce the simulation data, in this paper, we choose the diameters of the two metalenses as
R1 = 3 µm, R2 = 0.75 µm, and the focal lengths as f 1 = 6 µm and f 2 = 1.5 µm. Among them,
Figure 5A is the intensity map of the x–z plane. The shaded part of the box is the position
of the two metalenses. The dashed line indicates the focal plane position of metalens L1,
located at a distance of 6 µm from metalens L1. It is precisely focused on the focal position
of metalens L2 to obtain the outgoing parallel light. Figure 5B shows the phase distribution
on the x–z plane. A simulation material with total reflection properties is added to the
periphery of the two metalenses as a diaphragm to limit stray light. The reflected light is
messy and affects the substrate’s phase distribution. However, according to Figure 5B, we
can observe that after passing through metalens L2, the phase distribution of the outgoing
light is flat. Amplifying and analyzing the phase distribution in the purple box in Figure 5B,
the phase of the outgoing light is very flat and close to the phase of parallel light.
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Figure 5. The simulation results of the integrated doublet metalens. (A) The energy distribution
when the incident light is parallel (x–z plane). (B) The phase distribution when the incident light is
parallel (x–z plane). The right figure shows the outgoing light’s phase distribution after the integrated
doublet metalens (x–z plane).

Based on the above analysis, we quantitatively analyze the flatness of the emitted light.
We select the phase of the outgoing light propagation distance dz of 1, 1.5, 2, 2.5, 3, 3.5,
4 µm, and dz is the distance after metalens L2. We define the difference between the actual
and ideal phases at different propagation distances after the integrated doublet metalens
as the wave phase difference (WPD). As shown in Figure 6A, the phase fluctuates slightly
when the propagation distance is relatively short. Nevertheless, after the propagation
distance reaches 2 µm, the propagation phase tends to be flat, and the maximum fluctuation
is controlled within 0.03 times 2π (the phase of one wavelength). The average value (AV),
variance, and standard deviation of the phase difference curve at different propagation
distances are analyzed in Figure 6B. The standard deviation and variance can reflect the
degree of dispersion of each phase difference curve dataset. When the propagation distance
dz is greater than 2 µm, the flatness of the emitted light is better, and the average value is
controlled within 0.022 times 2π.

Table 1 lists the AV of the wave phase difference and the peak-valley (PV) value under
different propagation distances. The PV value is the difference between the maximum
and minimum values in the phase difference curve data. When the propagation distance
reaches 2 µm, we obtain the wave phase difference with the minimum average value, and
its variance and standard deviation are also considered the smallest.

Table 1. Average value and peak-valley value of wave difference after different propagation distances.

dx (µm) 1 1.5 2 2.5 3 3.5 4

AV (2π) 0.08588 0.0872 0.00995 0.01426 0.01818 0.01991 0.02225
PV (2π) 0.15311 0.16616 0.02268 0.02145 0.02411 0.02465 0.03073
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At the same time, we analyze the efficiency of the integrated doublet metalens. The
transmittance of the integrated deep ultraviolet doublet metalens is 46.21%. The output
area is 1/16 of the incident area, so the light intensity per unit area of the emitted light is
7.39 times the intensity of the incident light per unit area.
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3. Results

To further verify the possibility of applying the design to deep ultraviolet lithography,
we set up a “mask” in the simulation. We added light-shielding materials in front of
metalens L1 (in front of the overall structure) to observe the imaging conditions. For better
verification, we chose the “F” pattern, as shown in Figure 7. The “F” pattern has asymmetry,
which can be used to analyze the imaging capability of the doublet metalens system more
clearly. Due to the limitations in computer simulation capabilities, the overall size of the
doublet metalens that we designed was small, so the diffraction effect was unavoidable. To
reduce the influence of diffraction as much as possible, we set its position close to the front
side of metalens L1.
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metalens’s optical system.

As shown in Figure 7A, we set a = b = 1 µm of the “F” pattern for simulation. Figure 8
displays the various intensity patterns at different distances behind metalens L2: 1.5, 2, 2.5,
and 3 µm. According to the simulation results, we can observe a more explicit “F” pattern
in the inverted upside-down images.
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However, simultaneously, the imaging also tends to increase as the distance increases.
This phenomenon does not conform to the imaging law of the afocal system that we
designed. We believe that it is due to the small overall size of the doublet metalens,
which has the diffraction effect. Analyzing the propagation distance, we suggest that the
diffraction type is Fresnel diffraction. To verify our judgment, we perform an inverse
diffraction calculation. Using the intensity simulation results at 3 µm as the original
image, we calculate the intensity pattern before 3 µm at different locations only affected by
diffraction. The transfer function of Fresnel diffraction is

H = exp(ikz) exp
[
−iπλz

(
fx

2 + fy
2
)]

(8)

Among them, k = 2π/λ is the wavenumber, z represents the distance between the
observation screen and the diffraction screen, and fx and fy are the spatial frequencies of the
complex amplitude distribution in the x and y directions. Then, the transfer function of
Fresnel inverse diffraction is

H1 = exp(−ikz) exp
[
−iπλz

(
fx

2 + fy
2
)]

(9)

By applying the abovementioned formula, we can calculate the complex amplitude
using the intensity and phase data at a distance of 3 µm from L2. This can be used to
perform inverse diffraction, which allows us to obtain the intensity distribution at different
distances from the source plane. The resulting distribution is illustrated in Figure 9. We
compare the actual simulation results at different positions in Figure 8 with the results
obtained by the inverse diffraction calculation in Figure 9. It can be seen that the outer
frame size of the pattern is the same for the same propagation distance. This indicates
that the gradual increase in the pattern with increasing propagation distance is due to the
diffraction effect. The diffraction effect will be significantly reduced when the size of the
two metalenses is large enough compared with the working wavelength.

However, the consideration of how to further reduce the influence of diffraction by
optimizing the design is essential for our next step. Meanwhile, based on the pattern
calculated by the inverse diffraction method at 0 µm, we can find that the overall pattern
size has reached the expected ratio of 4:1. However, according to the analysis of Figures 5
and 6, it can be seen that the phase of the near field is uneven to an extent. As a result, the
pattern after the inverse diffraction calculation is also somewhat unclear. However, we
have obtained a relatively straightforward and complete imaging pattern at a propagation
distance of 2 µm, with the imaging pattern being one half of the size of the original
mask pattern. Therefore, we can adjust the size and focal length of the two metalenses
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according to the required imaging ratio to obtain a pattern corresponding to the ratio of the
propagation distance of the precise pattern.
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At the same time, the system proposed in this paper has relatively high tolerance to
the incident angle. When the angle of incidence is changed, the intensity distribution at the
propagation distance of 2 µm is as shown in Figure 10. From the phase analysis in Figure 6,
it can be seen that the phase is the flattest when the propagation distance is 2 µm, and the
imaging results are also comparatively analyzed. At oblique incidence, the incidence angle
varies from 0◦ to 5◦, and the step is 1◦. It can be observed that when the incident light angle
is deflected to 3◦, there is still a distinguishable projection imaging effect.
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We analyzed the resolving power of the doublet metalens, as shown in Figure 11. The
overall dimensions Dx and Dy of the “F” pattern are determined to be 3 µm and 4 µm,
respectively. The intensity distribution at a distance of 2 µm is shown in Figure 11A, with
the width a of the transmission stripe decreasing continuously. When the width of the
light-transmitting fringe is reduced to 0.5 µm, a distinguishable intensity image can still
be obtained.

To further analyze the resolving power of the doublet metalens, the transmitted edge
is fixed at 0.5 µm, and the distance δ between the two edges is varied. Figure 11B,C show
the intensity distribution at a propagation distance of 2 µm. When δ is 1 µm, two bright
stripes with clear boundaries can be observed. As δ gradually decreases, the two bright
stripes slowly approach each other. Refer to Rayleigh’s criterion: when the edge of one
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Airy spot coincides with the center of another, the corresponding two object points can be
distinguished. Therefore, when δ = 0.5 µm, two bright stripes can be distinguished.
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is 0.5, 0.6, 0.7, 0.8, 0.9, and 1 µm, respectively. (C) Change in the value of the interval δ between the
two bright stripes to obtain the intensity.

4. Conclusions

A series of problems are observed in the existing deep ultraviolet optical system,
such as complex and large systems, limited ray incidence angles, and complex system
aberration. The metalens provides a new design idea for optical systems because of its
powerful wavefront control ability. Based on the transmission metalens, an integrated deep
ultraviolet all-dielectric doublet metalens that can reduce beams and realize projection
imaging is proposed. Based on the design idea of the Huygens electromagnetic metasurface,
a series of high-transmittance and controllable dielectric artificial atoms covering the 2π
transmission phase are combined to realize the metalens. On this basis, an integrated
ultra-violet all-dielectric doublet metalens is designed to convert the large beams of a large
deep ultraviolet facility into beams with a smaller diameter. We find that the light intensity
per unit area of the emitted light is 7.39 times that of the incident light unit area. At the
same time, the projection imaging of the mask is simulated, which proves that the doublet
metalens can achieve clear and discernible projection imaging. Its resolution and angle
tolerance are analyzed, showing good results. We can adjust the size and focal length of the
two metalenses according to the required imaging ratio to obtain a pattern corresponding
to the ratio of the propagation distance of the clear pattern. The doublet metalens is suitable
for the objective lens systems of deep ultraviolet lithography machines, with the advantages
of being ultra-light, ultra-thin, and easy to integrate. The doublet metalens also has the
advantages of a simple structure, stability, and low installation precision. At the same time,
the doublet metalens can also be used as an expanding mirror, and it has some application
prospects in laser beam combination and deep ultraviolet space camera lighting systems,
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opening up new opportunities for micro-nano optical imaging and optoelectronic equipment.
The optical system can also be used as a beam expander. It can effectively reduce the number
of lenses in the ultraviolet system, with high transmittance and low energy loss. It opens up
a new path for ultraviolet optical imaging and optoelectronic equipment.
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