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Abstract: In the majority of experiments targeting nonlinear optical phenomena, the application
of high-intensity pulses drives electrons in graphene into a strongly non-equilibrium state. Under
these conditions, conventional perturbation theory falls short in explaining graphene’s intricate
optical response because of significant deviations in electron distribution over energy states from
the equilibrium Fermi-Dirac one. In this work, we present a two-step relaxation model capable of
predicting the transient dynamics of graphene’s carriers out of equilibrium, from the generation
of spectrally narrow populations of non-thermalized electrons and holes to the establishment of a
hot-electron gas and its subsequent cooling toward equilibrium with the crystal lattice. By comparing
our model calculations to experimental results, we demonstrate its reliability and relevance to pump–
probe experiments, providing insights into the pivotal role of hot electrons in comprehending ultrafast
dynamics in graphene.
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1. Introduction

When two beams of light impinge on an optically nonlinear material simultaneously,
under certain conditions, they interact in such a way that the energy is transferred from
one beam to the other; this phenomenon is known as two-beam coupling [1]. Optical
pump–probe spectroscopy is a technique for studying non-equilibrium electronic dynamics
based on such a coupling of pump and probe beams, which finds applications across a
range of fields, from physics and chemistry to materials science and biology [2]. This
technique involves focusing a short pulse of a strong pump beam and, after a certain delay
time, a weak probe beam on a sample to record the transmittance or reflectance of the probe
light. By adjusting the delay between the pulses, one can study the transient evolution
of the out-of-equilibrium electrons. In particular, different versions of the pump–probe
technique have been widely used for studying the electronic response of graphene to fast
optical excitations [3–8,10? ,11].

The nonlinear optical behavior of graphene has been a subject of intense debate ever
since the initial theoretical prediction in 2007, suggesting that graphene could exhibit an
exceptionally high nonlinear optical response in a broad spectral range [12]. By that time,
graphene had already garnered recognition for its remarkable linear optical properties,
attributed to its distinctive conical band structure. Demonstrating its nonlinear optical prop-
erties would further solidify its standing as an ideal material for optical applications with
potential implications for advanced photonics and optoelectronics [13]. Since then, sub-
stantial and continuous efforts have been dedicated to the experimental characterization of
graphene’s nonlinear properties. This includes the observation of higher harmonics [14–16],
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the Kerr effect [17,18], saturable absorption [19,20], and four wave-mixing [21,22], along
with other nonlinear effects. While there may not be complete agreement on the measured
quantities across different articles, the majority of them report high values for graphene’s
nonlinear properties [23]. Theoretical investigations, particularly concerning the third-order
nonlinearity, have taken diverse routes. Early approaches applied the Boltzmann equation
to investigate the nonlinear optical response of graphene owing to intraband electronic
transitions [12,24]. To incorporate interband contributions, researchers employed the Bloch
equations solved using perturbation theory approximations, which allowed for the calcu-
lation of the third-order tensor of conductivity, σ(3)(ω1, ω2, ω3) [25–27]. Although more
intricate, this approach also allows for the calculation of even higher orders in the electric
field. Additionally, since perturbation theory enables one to obtain explicit expressions for
the conductivity tensor, it facilitates the exploration of all possible effects arising from the
third-harmonic generation, difference frequency, and saturable absorption.

However, a fundamental problem arises with this approach: perturbation theory’s
validity hinges on small field intensities. In practical nonlinear optics experiments, the in-
tensities of the involved beams are very high, meaning that the theoretical description of the
system goes far beyond the limits of perturbation theory. The electromagnetic fields applied
to graphene are able to create populations of carriers that cannot be described assuming
equilibrium chemical potentials (µ0) and temperature (T0) for the carriers throughout the
calculations, as is the case of the perturbative approaches mentioned above. This seems to
be unjustified for typical conditions of nonlinear optical experiments on graphene.

In recent experiments, Hafez et al. employed high-power THz pulses and showcased
graphene’s remarkable proficiency in generating higher-order THz harmonics by shining
THz radiation onto graphene under normal incidence [28]. They successfully detected
signals up to the seventh order in single-layer graphene that were driven by electric
fields reaching tens of kilovolts per centimeter, with very high conversion efficiencies.
The field intensities were well beyond the range of validity of the perturbation theory
used to describe the third-order nonlinearity owing to intraband electronic transitions [24].
The generation of such terahertz high-harmonics was probably made possible by the
creation of hot Dirac fermions that oscillate at these new frequencies. Therefore, the
explanation, in this case, does not rely solely on the conventional nonlinear theory but
rather is a combination of coherent nonlinear effects with the generation and dynamics of
hot electrons, resulting in a strongly nonlinear intraband THz conductivity. Furthermore, it
is possible that the broad dispersion of experimental data for the third-order susceptibility
(χ(3)) in graphene, measured through the Kerr effect [23], is partially due to hot electrons
generated in those experiments.

It is well known that monolayer graphene possesses inversion symmetry, which means
that, under normal incidence, even-order nonlinear effects vanish. However, this symmetry
can be broken by using oblique incidence. In a work published by Constant et al. [7,29],
two femtosecond pulses in a pump–probe scheme with different incident angles were
used to excite graphene surface plasmons (GSPs). The differential reflectance of the probe
beam was then measured, yielding two types of signals: one non-resonant, present for any
combination of incident angles, and the other that resonantly depended on the angles (for a
given frequency difference between the pump and probe). In the latter case, the two oblique
pulses, through phase-matching, were able to excite GSPs. One interesting observation from
the results of Refs. [7,29] is that the predicted order of magnitude using the conventional
theory for χ(2) is three orders of magnitude smaller than what is needed to explain the
experimental results [30,31]. This suggests, once again, that the usual perturbative nonlinear
approach is not suitable for their description or, at least, that some further effects, such
as strong deviations of the electronic system from thermal equilibrium, are to be taken
into account.

“Hot carriers” is the term used to describe such out-of-equilibrium situations that
typically arise in semiconductors subjected to high-intensity steady or optical fields, and
the charge carriers rapidly acquire more energy than they would have in equilibrium with
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the crystal lattice. If the energy gain rate is higher than the rate at which they lose energy
to the lattice, the carriers enter a quasi-equilibrium state with each other, with a much
higher temperature than that of the lattice. Because of this high temperature, these carriers
are commonly referred to as “hot” [32,33]. Their importance has been demonstrated for
semiconductors [32,33] and metals [34,35]. In graphene, owing to its particular linear
band structure and, consequently, low density of states around the Dirac points, this phe-
nomenon is extremely relevant and fundamental to understanding the ultrafast dynamics
of photoexcited carriers. Because of its short carrier–carrier scattering characteristic time,
graphene rapidly creates a population of hot electrons in the conduction band and holes
in the valence band that can be described by two Fermi–Dirac distributions with different
Fermi levels but a common temperature [36,37]. Unlike assumed in the perturbative ap-
proach, where the Fermi level and temperature remain fixed at their equilibrium values,
for hot electrons, these parameters are replaced by quasi-Fermi levels and an effective
temperature, which are dynamic and depending on the intensity, the duration of the optical
pulses, and other influencing factors. This situation is typical of pump–probe spectroscopy
experiments. Several experimental works on graphene have been published, and all of
them seem to indicate the presence of a population of hot carriers under strong optical exci-
tation [3–8,10,11,38? –42]. In this work, we formulate a two-step relaxation model designed
to help in understanding the dynamic characteristics of out-of-equilibrium carriers. While
previous models targeting this goal have been published [3,10,36,37,43], ours differs from
them in several features, (such as the distinction between non-thermalized and hot carriers
and spatial diffusion of the latter) that enable us to explore the temporal evolution of hot
carriers and their responses to various experimental parameters in this non-equilibrium
state. We emphasize that the relaxation of the excited electrons occurs in two steps: (i) fast
thermalization and (ii) slower cooling. Both steps are taken into consideration explicitly
in our model via corresponding balance equations (while, e.g., Ref. [37] considers only
one balance equation for the whole concentration of all non-equilibrium electrons and the
model of Ref. [10] includes only energy balance equations for the cooling stage). In order to
test the reliability of our model, we compare it to experimental results obtained in pump–
probe experiments by Constant et al. [7]. Our goal extends beyond the development of a
hot electron dynamics model itself; we also present expressions for observables relevant in
the framework of pump-probe spectroscopy. This not only elucidates the fundamental role
that these electrons play but also facilitates a comprehensive understanding of pump–probe
experiments and the operation of devices such as graphene-based photodetectors.

The article is organized as follows. In Section 2.1, we provide an overview of the
dynamics that occur in graphene upon ultrafast optical excitation. This includes the gener-
ation of a hot carrier gas and the subsequent relaxation through various decay channels. In
Section 2.2, we present a detailed description of our model, which enables us to calculate
the transient evolution of both non-thermalized and thermalized carriers, and we delve into
its impact on graphene’s optical conductivity and the distribution function of its electrons.
In Section 3, we employ our hot electron model in order to reproduce and understand
experimental differential reflectivity signals obtained by Constant et al. [7]. The final section
is dedicated to a summary and concluding remarks.

2. Materials and Methods
2.1. Carrier Dynamics in Graphene upon Ultrafast Optical Excitation

We start by discussing the ultrafast dynamics of non-equilibrium electrons in
graphene [44], specifically when hot carriers are excited optically with an ultrafast
laser pulse, typically in the femtosecond domain. We focus on interband excitation,
when the incident pump photon energy h̄ωb is high enough to promote electrons to
the conduction band, that is, when h̄ωb > 2EF , with EF being the Fermi energy. When
such an ultrafast laser pulse impinges on graphene, electrons from the valence band
are excited to the conduction band. Therefore, two populations of non-thermalized
particles are created: the excited electrons in the conduction band and the corresponding
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holes in the valence band. These non-thermalized carriers can hinder the transfer of
additional electrons to the conduction band, and they evolve over time into separate
thermal distributions, each characterized by its own temperature. The true equilibrium
of such hot carriers is ultimately attained at a later stage when the excess energy is
released to the lattice and the additional carriers created by light recombine.

The dynamics of these hot carriers in graphene is nowadays understood to occur
via several stages and decay channels [44] (see Figure 1). Initially, the promptly excited
carriers characterized by a spectrally narrow distribution primarily undergo carrier–carrier
scattering on a 10 fs timescale [4? ], and two populations of hot carriers, one of electrons and
another of holes, are formed. These populations can be described as Fermi-like distributions,
featuring different chemical potentials while sharing a common temperature, distinct from
that of the lattice [37]. Over longer timescales, the relaxation of hot carriers toward their
equilibrium state is accomplished via several stages and decay channels, such as optical
phonon emission [41], Auger recombination, and hot plasmon emission [45–47], on a
timescale of hundreds of femtoseconds, as well as direct and disorder-assisted acoustic
phonon emission on picoseconds scale. Thermalization with the lattice is achieved before
the electron populations in both conduction and valence bands reach their equilibrium
values (i.e., the electrons’ and holes’ quasi-Fermi levels become equal (Fe = Fh = EF)). The
recovery of the equilibrium concentrations of electrons and holes is the slowest process
in graphene.

(a) (b) (c)

(d) (e) (f)

Figure 1. Carrier relaxation processes in graphene under ultrafast optical excitation. (a) Initially,
graphene is in equilibrium. When the pump arrives (blue arrow), spectrally narrow populations
of electrons and holes are created. These electrons and holes have non-Fermi-like distributions.
(b) The electrons and holes undergo carrier-carrier scattering on the 10 fs scale so that two Fermi-like
distributions are formed, one for electrons and another for holes, with different chemical potentials
but equal temperatures. Panels (c–e) show different channels within the 100 fs timescale, through
which electrons and holes recombine and thermalize: (c) Auger recombination. (d) Electron–hole
recombination and carrier relaxation via optical phonon emission (dashed arrows). (e) Electron–hole
recombination via plasmon emission (yellow solid arrow). (f) Further cooling is assisted by acoustic
phonon emission (dashed arrow).

2.2. Electron Relaxation Model

In this section, we present our model for hot carriers in order to explain the dynamics
of the electronic response of optically excited graphene. The goal is to determine the
dynamics of the transient electron temperature and quasi-Fermi levels of the hot carriers
and, finally, graphene’s optical conductivity in terms of appropriate parameters, such as
characteristic relaxation times.

Let us consider a pump beam consisting of photons with energy h̄ωb, inducing a non-
thermalized population of electrons (holes) in the conduction (valence) band. The beam is
focused on a circular spot on the graphene surface, where photocarriers are generated. We
break down the hot carrier dynamics into two stages. The first stage spans the first few tens
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of fs with carrier–carrier collisions, which is faster than the pump duration (τb ≈ 100 fs) and
drives the system toward a quasi-equilibrium distribution, where the charge carriers have a
very high temperature compared to that of the lattice. The second stage, on the scale of a few
hundred fs, occurs when the relaxation of carrier energy and electron–hole recombination
take place. To model these processes, we introduce three adjustable parameters:

1. Electron–electron (as well as hole–hole and electron–hole) scattering time, τee;
2. Energy intraband relaxation time, τε, due to the electron scattering by lattice phonons,

which is of the order of picoseconds, slightly exceeding the momentum relaxation time;
3. Interband recombination time, τr, determined by Auger recombination or via optical

phonon or plasmon emission.

These parameters satisfy the following relation [37]:

τee ≪ τε ≪ τr . (1)

2.2.1. Non-Thermalized Carriers

We start by writing down equations that describe the populations of non-thermalized
electrons, nnt, and holes, pnt, in optically excited graphene. Given the symmetry of
their spectra (within the Dirac cone approximation) and the unique scattering time, τee,
both electrons and holes evolve in the same way, so the non-thermalized populations
are equal:

pnt (⃗r, t) = nnt (⃗r, t) . (2)

Owing to the carrier–carrier scattering, two populations of thermalized (i.e., having
reached equilibrium among them but not with the environment) carriers are created.
We denote the 2D concentration of the thermalized (hot) electrons by nt (⃗r, t) and the
thermalized holes by pt (⃗r, t). Therefore, the total concentrations of electrons and holes are
expressed as

n(⃗r, t) = nnt (⃗r, t) + nt (⃗r, t) ; (3)

p(⃗r, t) = pnt (⃗r, t) + pt (⃗r, t) . (4)

The balance equations governing the depletion of carriers from the non-thermalized
to the thermalized population are

ṗnt (⃗r, t) = ṅnt (⃗r, t) =
A(⃗r, t)

h̄ωb
Ib (⃗r, t)− nnt (⃗r, t)

τee
, (5)

where

Ib (⃗r, t) = Imax
b exp

(
−2t2

τ2
b

)
exp

(
− ln2

w2
0

r2

)
(6)

is the pump intensity, Imax
b is the peak intensity value, w0 is the effective radius of the pump

beam, and

A(⃗r, t) = A0(α, θ)

{
1 − gh

(
− h̄ωb

2
, r⃗, t

)
− ge

(
h̄ωb

2
, r⃗, t

)}
(7)

is the time-dependent absorbance of graphene (see Section S1 of the Supplementary Mate-
rial for details). Here, ge and gh are the non-thermalized distribution functions for electrons
and holes, respectively, and

A0(α, θ) =
4παF

(n cos α + cos θ)2 cos α cos2 θ (8)

is the absorbance amplitude, with α and θ denoting the incident and refraction angles of
the pump beam (with respect to the normal to the surface) and n denoting the refractive
index of the substrate. Equation (8) holds for transverse magnetic (TM) polarization. Note
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that the first term in Equation (5) corresponds to the generation of non-thermalized carriers
and the second one to their thermalization.

According to Equation (2), the non-thermalized distributions ge and gh in Equation (7)
should be equal:

gh(−ε, r⃗, t) = ge(ε, r⃗, t) = g(ε, r⃗, t) . (9)

Since the pump pulse is described by a Gaussian wavepacket in the frequency domain,
g(ε, r⃗, t) is modeled as

g(ε, r⃗, t) = g̃(⃗r, t)
∆ε(−∞)

∆ε(t)
exp

(
− (ε − h̄ωb/2)2

2∆2
ε (t)

)
, (10)

where g̃(⃗r, t) can be expressed in terms of the non-thermalized population of charge carriers:

g̃(⃗r, t) =
nnt (⃗r, t)
2nmax

nt
. (11)

Here, nmax
nt =

√
π
2 ∆ερ

(
h̄ωb

2

)
is the maximum possible concentration of non-therma-

lized electrons (holes) (the factor of 1/2 in Equation (11) appears because the absorption
vanishes for g(ε, r⃗, t) = 1

2 ; see Equations (7) and (9)). These expressions are derived in
Section S2 of the Supplementary Material.

In order to proceed, we make the following simplifying assumptions:

1. Since the pulse is much longer in time than τee, during pumping, a stationary situation
is rapidly achieved for the distribution width ∆ε(t), so we take its asymptotic limit:
∆ε(t) ≈ ∆ε(−∞);

2. For 100 fs pulses, their spectral width (∼8 meV) should be much smaller than the
thermalized distribution energy spread, so we take ∆ε(−∞) to be the Gaussian pulse’s
spectral width:

∆ε(−∞) =
h̄
τb

=
√

2ln2
h̄

∆t
, (12)

where ∆t is the full width at half-maximum (FWHM) of the pulse in the time domain.
3. As the thermalized carriers relax toward lower energies, we assume that their distri-

butions, fe and fh, for ε ≈ h̄ωb/2, are such that

fe(ε, r⃗, t) ≪ ge(ε, r⃗, t) , (13)

fh(ε, r⃗, t) ≪ gh(ε, r⃗, t) , (14)

so they do not affect the pump photon’s absorption.

With these assumptions, Equation (5) is simplified to

ṅnt (⃗r, t) =
A0(α, θ)

h̄ωb
Ib (⃗r, t)

{
1 − nnt (⃗r, t)

nmax
nt

}
− nnt (⃗r, t)

τee
. (15)

The temporal evolution of nnt in the center of the pump spot is illustrated in Figure 2
for different intensities of the pump beam. As expected, this concentration rises with
the increase in pump beam intensity. Nonetheless, as indicated in the inset, this value
starts to saturate at higher intensities, ultimately attaining its maximum value (nmax

nt ),
indicating saturable absorption. Furthermore, it can be seen that, at lower intensities,
the peak shifts toward later times in comparison to higher intensities. This phenomenon
arises because of the balance between non-thermalized electrons, excited by the pump
beam, and electrons undergoing thermalization over a timescale of τee. At lower intensities,
electrons are promoted to the conduction band, but they remain non-thermalized within
the timescale of τee until they become thermalized. This accounts for the observed shift
in the peak compared to t = 0. In contrast, at higher pump intensities, the substantial
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influx of promoted electrons leads to the peak occurring at t = 0, yet the concentration of
non-thermalized electrons remains stable for a few femtoseconds.

2.4 GW/cm2

5 GW/cm2

10 GW/cm2

30 GW/cm2

50 GW/cm2

100 GW/cm2

-200 -100 0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t (fs)

n
nt
(x
10

12
cm

-
2
)

0 50 100
0

Ib(GW/cm2)

Figure 2. Temporal variation of the maximum concentration of non-thermalized electrons derived
from the solution of Equation (15). The inset illustrates how the peak concentration of non-thermalized
carriers varies across different intensities. The parameters used in this calculation are as follows:
αb = 40◦, λb = 615 nm, τb ≈ 85 fs, w0 = 300 µm, r = 0, and τee = 10 fs.

2.2.2. Thermalized Carriers

After the creation of the non-thermalized population, nnt + pnt, photocarriers undergo
electron–electron, electron–hole, and hole–hole scattering processes leading to a quasi-
equilibrium of the (hot) electron and hole gases. The electron and hole distributions are
approximated by quasi-Fermi–Dirac functions with transient chemical potentials (quasi-
Fermi levels) Fe and Fh, respectively, and a unique electronic temperature T:

fe(ε, Fe, T) = fc(ε) =
1

1 + exp
(

ε − Fe

kBT

) , ε > 0 ; (16)

fh(ε, Fh, T) = 1 − fv(ε) =
1

1 + exp
(

Fh − ε

kBT

) , ε < 0 . (17)

This assumption is justified if the electron–electron, electron–hole, and hole–hole scat-
tering processes (characterized by the typical scattering time τee) are more probable than the
electron–phonon and electron–impurity ones. Experimental results [4,5] indicate that this
situation is usually the case in typical graphene samples. The distribution functions (16)
and (17) are considered slowly varying functions of time on the scale t ≫ τee. In prin-
ciple, they are also functions of r⃗, but we apply an averaging procedure explained be-
low in order to avoid complications with local (spatially-dependent) chemical potentials
and temperature.

To model the evolution of thermalized carriers, we write down balance equations for
nt and pt as

ṅt (⃗r, t) =
nnt (⃗r, t)

τee
+ D∇2nt (⃗r, t)− nt (⃗r, t)− n0

τr
; (18)

ṗt (⃗r, t) =
pnt (⃗r, t)

τee
+ D∇2 pt (⃗r, t)− pt (⃗r, t)− p0

τr
. (19)

Equations (18) and (19) include a diffusion term (D∇2) to take into account the de-
parture of thermalized carriers from the pump spot. The importance of diffusion of hot
carriers for a very sharp spatial profile of excitation has been shown experimentally [40].
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At a timescale of ∼τε, the thermalized electrons, scattered mostly by phonons, give
their energy, εt, to the lattice, and the electron energy relaxation is described by the following
balance equation:

ε̇t (⃗r, t) =
εnt (⃗r, t)

τee
+ Dε∇2εt (⃗r, t)−

εt (⃗r, t)− ε′0(t)
τε

, (20)

where ε′0 is the energy density at the equilibrium temperature but with a chemical potential
out of equilibrium, reflecting the rapid decay of temperature compared to the quasi-Fermi
levels. In (20), Dε denotes the thermal diffusivity, which can be related to the diffusion
coefficient; actually, with a good approximation, Dε ≈ D, as demonstrated in Section S3 of
the Supplementary Material.

The energy of the non-thermalized electrons, εnt, can be defined as

εnt (⃗r, t) =
ˆ +∞

0
dεερ(ε)g(ε, r⃗, t)

= exp

(
−

h̄2ω2
b

8∆2
E

)
ρ

(
h̄ωb

2

)
∆2

ε g̃(⃗r, t) +
√

2π∆ερ

(
h̄ωb

2

)[
h̄ωb

2
+

2∆2
ε

h̄ωb

]
g̃(⃗r, t) .

(21)

Since 2∆ε ≪ h̄ωb, by employing Equation (11), εnt approximates to

εnt (⃗r, t) ≈ h̄ωb
2

nnt (⃗r, t) , (22)

and Equation (20) can be simplified:

ε̇t (⃗r, t) ≈ h̄ωb
2

nnt (⃗r, t)
τee

+ Dε∇2εt (⃗r, t)−
εt (⃗r, t)− ε′0(t)

τε
. (23)

In typical optical experiments, it is usual to take a spatial average over the measured
signal in the detector. With this in mind, in order to avoid the spatial dependence of Fe,
Fh, and T, we substitute the functions nnt (⃗r, t), nt (⃗r, t), pt (⃗r, t), and εt (⃗r, t) by their spatial
average values. This averaging procedure is carried out using a weight function defined as

f (⃗r) =
ln2

πw2
0

exp

[
− ln2

w2
0
(⃗r − r⃗0)

2

]
. (24)

The reason for choosing this form for the weight function becomes clear in Section 3.
Notice that it is normalized to unity if r⃗0 = 0 (pumping into the center of the detection area).

Using Green’s function for the diffusion equation, we obtain a semi-analytical solution
for Equations (18) and (23) without applying any approximation (see Section S4 of the
Supplementary Material), and the resulting expressions are

nt(t) ≡ ⟨nt(t, r⃗)⟩ = n0 + ñ(t) ; (25)

εt(t) ≡ ⟨εt(t, r⃗)⟩ = ε′0(t) + ε̃(t) , (26)

where

ñ(t) =
2ln2
τee

ˆ t

−∞
dt′
ˆ ∞

0
r′dr′

e−(t−t′)/τr nnt(r′, t′)
w2

0 + 4ln2D(t − t′)
exp

[
− ln2(r′ − r0)

2

w2
0 + 4ln2D(t − t′)

]
; (27)

ε̃(t) =
ln2h̄ωb

τee

ˆ t

−∞
dt′
ˆ ∞

0
r′dr′

e−(t−t′)/τε nnt(r′, t′)
w2

0 + 4ln2Dε(t − t′)
exp

[
− ln2(r′ − r0)

2

w2
0 + 4ln2Dε(t − t′)

]
. (28)

Note that the spatial average has already been performed.
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On the other hand, the instantaneous thermalized electron concentration and energy
density can be related to the quasi-Fermi level Fe(t) and the electronic temperature T(t) as

nt(t) =
gsgv

S ∑
k

fe(εk, Fe(t), T(t)) =
2
π

(
kBT(t)

h̄vF

)2

Γ(2)F1

(
Fe(t)

kBT(t)

)
; (29)

εt(t) =
gsgv

S ∑
k

εk fe(εk, Fe(t), T(t)) =
2
π

(kBT(t))3

(h̄vF)
2 Γ(3)F2

(
Fe(t)

kBT(t)

)
, (30)

where gs and gv are the spin and valley degeneracies for graphene, respectively, and Fn(z)
is the Fermi integral:

Fn(z) =
1

Γ(n + 1)

ˆ +∞

0
dx

xn

1 + exp(x − z)
(31)

with Γ(n) being the Euler gamma function. With these expressions, it is also clear how to
evaluate n0 and ε′0(t).

Thus, using Equations (25), (26), (29), and (30), we can define the following system
of equations:

n0 + ñ(t) =
2
π

(
kBT(t)

h̄vF

)2

Γ(2)F1

(
Fe(t)

kBT(t)

)
; (32)

ε′0(t) + ε̃(t) =
2
π

(kBT(t))3

(h̄vF)
2 Γ(3)F2

(
Fe(t)

kBT(t)

)
, (33)

enabling us to determine the transient evolution of Fe(t) and T(t). Yet, it remains to
determine the holes’ chemical potential. By virtue of the local charge neutrality, we can
simply define a third equation as

p0 + n(t) = p(t) + n0 , (34)

which means that we can also compute the transient evolution of the holes’ chemical potential.
After getting excited, the non-thermalized carriers undergo electron–electron scat-

tering events. Theoretical work [48] and experimental evidence [4] indicate that these
scattering processes are much more probable in the first few femtoseconds than the electron–
phonon ones. As a result, the distribution of the non-thermalized carriers is broadened and,
owing to the bottleneck shape of the Dirac cone, evolves toward a Fermi-like distribution [5]
much faster than the carriers can lose energy to the lattice. This idea is expressed through
Equations (20) and (22): the energy of the non-thermalized electrons, εnt, is transferred to
the thermalized carriers essentially at the same rate as their population, nnt, namely, 1/τee.
In fact, as a consequence of Equation (22), εnt obeys a balance equation in the same form
as Equation (15) for nnt. Thus, in our model, only the thermalized (hot) carriers transfer
energy to the lattice.

2.2.3. Low Pump Intensity Approximation

The system of Equations (32)–(34) has to be solved numerically, and the computation
of the transient evolution of Fe, Fh, and T is rather time-consuming, mostly because of
the spatial integration in Equations (27) and (28). To address this issue, we can employ
an approximation. Since Equation (15) is nonlinear, separating the spatial and temporal
components in the equation is not possible. However, if the pump intensities used are not
too high so that the term nnt/nmax

nt is small, we can assume that the spatial distribution
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is minimally affected in the initial tens of femtoseconds. Under this assumption, the
concentration of non-thermalized carriers can approximately be expressed as

nnt (⃗r, t) ≈ exp

(
− ln2

w2
0

r2

)
n̄nt(t) , (35)

where n̄nt is the solution of Equation (15) neglecting the spatial part. Therefore, the spatial
integrals in Equations (27) and (28) can be solved analytically and one obtains

nt(t) = n0 +
w2

0
τee

ˆ t

−∞

e−(t−t′)/τr n̄nt(t′)(
2w2

0 + 4ln(2)D(t − t′)
) exp

[
−

ln(2)r2
0

2w2
0 + 4ln(2)D(t − t′)

]
dt′ ; (36)

εt(t) = ε′0(t) +
h̄ωb

2
w2

0
τee

ˆ t

−∞

e−(t−t′)/τε n̄nt(t′)
2w2

0 + 4ln(2)Dε(t − t′)
exp

[
−

ln(2)r2
0

2w2
0 + 4ln(2)Dε(t − t′)

]
dt′ . (37)

By employing these expressions, we can assess the transient evolution of the param-
eters of interest more efficiently. Figure 3 shows the variation of Fe, Fh, and T with time
for different values of the pump spot radius (which determines the importance of the
diffusion term in the balance equations). In the left panel, the solid (dashed) lines depict the
variation of the quasi-Fermi level for electrons (holes), while the right panel illustrates the
transient evolution of temperature. It is clear from the presented results that, for stronger
focused beams, the diffusion effect is more pronounced and the transient evolution of the
considered parameters is faster, as a larger number of electrons escape from the excitation
spot and do not contribute to the spatial averages that determine the observable quantities,
such as probe beam’s reflectivity.
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Figure 3. Time evolution of the quasi-Fermi levels for electrons (solid lines) and holes (dashed lines)
(left panel) and the electronic temperature (right panel) for different radii of the pump beam (w0).
For both plots, the parameters are as follows: equilibrium conditions, T0 = 300 K and EF = 300 meV;
characteristic times, τee = 10 fs, τε = 0.5 ps, and τr = 10 ps; pump pulse fluence ϕb = 0.26 mJ/cm2 and
τb =85 fs; peak intensity 2.44 GW/cm2; diffusion coefficient D = 1.1 × 104 cm2/s; thermal diffusivity
Dε = D. The shift parameter in the weight function (24) r0 = 0.

2.2.4. Non-Equilibrium Conductivity due to Hot Carriers

Given the quasi-Fermi levels and the electronic temperature as functions of t, we can
introduce the transient optical conductivity. We assume that, to the first order, the interband
conductivity of graphene can be described by the usual formula [49]:

σinter(ω, t) =
4σ0

π
h̄(γinter − iω)

ˆ +∞

0
dε

1 − f (e)(ε, t)− f (h)(ε, t)
[h̄γinter + i(2ε − h̄ω)][h̄γinter − i(2ε + h̄ω)]

(38)
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with γinter meaning the interband scattering rate. Here, f (e) and f (h) are the full distri-
bution functions for the electrons and holes with contributions from thermalized and
non-thermalized carriers:

f (e,h)(ε, t) = ge,h(ε, t) + fe,h(ε, Fe,h(t)) (39)

with ge,h given in Equation (9).
The extension of the usual formula for the interband conductivity to the time-dependent

version (38), similar to the slowly varying amplitude approximation for optical pulses,
is valid as long as the electric field oscillates (with the frequency ω) several times be-
fore the physical conditions change. In other words, this approach works if the two
timescales, 1/ω and the time it takes for chemical potentials and temperature to change,
are sufficiently different, and

ωτee ≫ 1 . (40)

Here, we take τee as the shortest characteristic time in the system. Since it is expected
that τee lies in the range of 10–30 fs [4], this condition is satisfied for optical frequencies.

As we see below, to the first order, the differential reflectivity depends only on the real
part of the transient conductivity. Also, it is expected that h̄γinter ≪ kBT [37], so the real
part of the expression (38) can be written as

Reσinter(ω, t) = Reσnt(ω, t) + Reσt(ω, t) (41)

with σt(ω, t) coming from the thermalized (hot) carriers,

Reσt(ω, t) = σ0

sinh
[

h̄ω − (Fe(t)− Fh(t))
2kBT

]
cosh

[
Fh(t) + Fe(t)

2kBT

]
+ cosh

[
h̄ω − (Fe(t)− Fh(t))

2kBT

] , (42)

and σnt(ω, t) from the non-thermalized ones [50],

Reσnt(ω, t) = −σ0g
(

h̄ω

2
, t
)

. (43)

Figure 4 presents the time evolution of both the hot-electron distribution function
and the real part of the optical conductivity calculated using Equations (39) and (41),
respectively. The distribution function begins in a state of equilibrium; however, after the
carriers undergo thermalization, two Fermi-Dirac-like distributions emerge for electrons
and holes, characterized by distinct quasi-Fermi levels and unique electronic temperatures.
Both distribution functions exhibit a small peak corresponding to the non-thermalized
carrier population, which can be seen for some time after the excitation. We notice that a
discontinuity of the occupation probability (red line in Figure 4, left) arises at zero energy,
an artifact due to our use of two distinct distributions to describe the carriers. However, it
does not affect the optical conductivity. Despite this artifact, owing to the imposed form
of the non-equilibrium distribution function, qualitatively, it resembles quite closely the
one calculated in Ref. [48] via solving the Boltzmann equation (which is a much more
time-consuming approach).
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Figure 4. Temporal evolution of the hot electron distribution function (left) and out-of-equilibrium
electron conductivity (right). The inset in the left panel shows the equilibrium Fermi–Dirac distribu-
tion. The black dashed line indicates the initial Fermi level of graphene. For both plots, the parameters
are the same as the ones used for Figure 3. Notice the small dip at ∼2 eV in the conductivity plot for
t = 0.1 ps, which is due to non-thermalized carriers whose contribution is small for the relatively
lower pump power (peak intensity Ip = 2.44 GW/cm2) corresponding to the experiments of Ref. [7].

3. Case Study Results and Discussion

As mentioned in the introduction, our hot electron model can be used to understand
and simulate the results acquired through pump–probe experiments, where the pump’s
role is to excite a substantial concentration of photocarriers, which eventually form a
population of hot electrons and holes. The latter then gradually dissipate their energy into
the lattice via multiple decay pathways, as depicted in Figure 1. Due to their exceedingly
high temperature, resulting in a very broad distribution over energies, the hot electrons can
impede further transitions between the valence and conduction bands, with the absorption
of probe beam photons, because of the Pauli blocking, both below and above the pump
photon energy. Notably, because of the inverted electron population above ε = 0, the real
part of the conductivity takes on negative values within a certain spectral range, implying
an optical gain in this region [42]. The spectral width of this region is determined by the
condition of population inversion, f (h̄ω/2) > f (−h̄ω/2). It extends up to 0.6 eV for
t = 1 ps (see Figure 4, right panel). Thermal equilibrium is reestablished within a few tens
of ps after the peak of the pump pulse (black dashed curve in the plot).

Given our goal of modeling pump–probe experiments, we introduced the weight
function, Equation (24), describing the spatial overlap between the pump and probe beams.
Assuming that both of them are Gaussian and, when focused onto the graphene surface,
produce spots of radius w0, whose centers may be shifted with respect to each other by
some vector r⃗0. The inset in Figure 5 provides a schematic illustration of this situation.

As a test of the proposed model, we applied it to the calculation of differential re-
flectivity signals measured by Constant et al. [7]. The experimental data presented in this
article, where a normalized differential reflectivity was measured, are shown by black dots
in Figure 5. To eliminate artifacts arising from power fluctuations, this quantity has also
been normalized with respect to the pump fluence. The normalized differential reflectivity
is defined as follows:

∆Ra(δt)
Ra

=
R′

a(δt)− Ra

Ra
, (44)

where R′
a(δt) is the reflectivity of the pumped system for the central frequency of the probe

beam (ωa) at a time delay δt between the two pulses, while Ra corresponds to the reflectivity
in the absence of pump. Both Ra and R′

a depend on the frequency ωa, but it is skipped as an
argument in (44) and below, to be short. The derivation of R′

a(δt) is provided in Section S5
of the Supplemental Material, and the differential reflectivity is given by

∆Ra(δt)
Ra

≈ −4π

c
cos2 θ

cos α

t(0)
2

r(0)

{
Re{Σa(δt)}

Wa
− Re

{
σeq
}}

, (45)
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where σeq is the equilibrium conductivity, given by Equation (38) but with equilibrium
Fermi energy and temperature, and t(0) and r(0) are the transmission and reflection coeffi-
cients, respectively, in the absence of graphene:

t(0) =
2 cos α

n cos α + cos θ
; r(0) = −n cos α − cos θ

n cos α + cos θ
. (46)

The term Re{Σa(δt)}/Wa, describing the graphene absorbance due to the convolution
of two beams separated by a time interval δt, is given by

Re{Σa(δt)}
Wa

=
1
τa

√
2
π

ˆ ∞

−∞
dt exp

[
−2t2

τ2
a

]
Re{σne(ωa, t + δt)} , (47)

where σne is the out-of-equilibrium conductivity provided by our hot electron model and
τa is the duration of the probe beam, which is assumed to have a temporal Gaussian shape.

Our model contains three time parameters, τee, τε, and τr (Section 2.1), and their exact
values are not known (and depend on the graphene sample), but the inequality (1) tells us
that τee is the most important one and can be treated as a fitting parameter whose order of
magnitude is known (few tens of fs). Parameters of the experiment by Constant et al. are
listed in Table 1.

0.0 0.5 1.0

-0.04

-0.03

-0.02

-0.01

0.00

δt (ps

δR
/R
0
ϕ
(m
J-
1
cm

2
)

(

Figure 5. Differential reflectivity (normalized to the pump fluence) for a pump–probe experiment
with two Gaussian pulses. The black line with dots represents the experimental results taken from
Ref. [7]. The blue dashed curve is obtained by applying our hot electron model with τee = 10 fs,
τε = 0.50 ps, and τr = 10 ps, while the remaining parameters are taken from Table 1. The red solid
curve is obtained for the same set of parameters of the blue curve but with the intrinsic time shift
∆t = 0.102 ps. The inset provides a schematic illustration of both pulses (blue and green circles),
explicitly depicting the shift vector r⃗0 (the shift between the spots is exaggerated, we used r0 = 0.62w0

in the calculation).

Table 1. Values from the quantities that are listed in the article.

λa, λb 615 nm τa, τb 85 fs

αb 40◦ αa 20◦

ϕb 0.26 mJ/cm2 ϕa 0.0028 mJ/cm2

w0 300 µm T0 300 K

n 1.46 EF 0.3 meV

In Figure 5, we present the normalized differential reflectance calculated using our
model (Equation (45)) juxtaposed with the experimental data obtained from Ref. [7].
Two theoretical curves are plotted in this figure: (i) the blue one represents the outcome
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of our model with the parameters listed in Table 1 and characteristic times given in the
figure caption, and (ii) the red curve that nicely fits the experimental data is obtained by
using an “intrinsic” time shift ∆t = 0.102 ps. Both curves account for a shift of r0 ≈ 0.62w0
between the pump and probe spots. Among the time parameters, τee is the critical one, and
τε influences the signal decay for large δt, while τr has a very little effect on the differential
reflectance curve. The least-squares fitting method was applied in order to obtain the
curve (ii).

The adjustment of ∆t can be explained by taking into account the following argument.
Both pulses used in the experiment [7] had exactly the same wavelength, and the differential
reflectance peak (caused by the Pauli blocking of the probe photons’ absorption) should
occur at zero delay, when the concentration of non-thermalized photocarriers would reach
its highest value, unless the pump and probe spots were shifted with respect to each other
(as shown in the inset of Figure 2), in which case it would take some time for photocarriers
to reach the center of the probe spot via diffusion. However, the spots in the experiments of
Ref. [7] were not too small, and the spatial diffusion should be of little importance there (in
contrast with, e.g., Ref. [40]). Nevertheless, the experimental results of [7] exhibited a peak
that was shifted by ≈100 fs, which possibly could be attributed to an error in controlling
the delay time between the pulses during the experiment because the pump and probe
had exactly the same central wavelength and the generation of photocarriers by the pump
should have an immediate effect on the probe pulse absorption. The fitting also yields a
spatial shift of 0.62w0 between the centers of the pump and probe spots on the surface. It
may look too big, but it is partially because we assumed both spots have the same size,
which probably was not the case in the experiment (we found no information regarding this
in the article). Moreover, the pump beam could be attenuated with respect to the nominal
fluence value provided in the article because of several natural reasons. Therefore, we can
conclude that our theoretical model explains the experimental data very well.

4. Concluding Remarks

In this paper, we attempted to gain further insight into the intriguing behavior of
hot-electron dynamics in graphene, a subject of fundamental importance in understanding
its behavior under high-intensity optical fields. We presented a comprehensive model that
captures the interplay between photogenerated non-thermalized and hot carriers, clarifying
their temporal evolution as a function of various experimental parameters.

The conventional perturbative theory used to examine nonlinearities in graphene is
suitable only for low pumping intensities. However, when dealing with stronger optical
pulses, this approach fails as the electrons attain temperatures and Fermi levels significantly
deviating from equilibrium values. To be specific, we can use a simple criterion, which
provides a quantitative measure of pump intensity at which the hot electron effect becomes
significant, based on the comparison between the effective temperature of the hot-electron
gas and that of the lattice (T0), (T(t)− T0)/T0 > 1. Section S6 of the Supplemental Material
shows that, even for low Ip ∼ 0.1 GW/cm2, the perturbative approach is not suitable for the
description of the nonlinearities in graphene as the electronic temperature is about twice as
high as T0, so that the hot-electron effects become very important. Moreover, the developed
electron relaxation model with little modifications can be employed for understanding other
types of experiments, including, for instance, dynamics of electrically injected electrons out
of equilibrium which is important for graphene-based photodetectors [10,51].

We applied the model to the results obtained in pump–probe experiments aimed at
an all-optical generation of graphene surface plasmons [7] and achieved a fairly good
agreement for the differential reflectance in the off-resonance situation (where no plasmons
are generated). It has been crucial to verify the reliability of the model for a better under-
standing and theoretical description of the more complex situation where surface plasmons
are indeed generated by two beams of slightly unequal frequencies. As suggested in a
recent work [52], the resonant frequency-difference process [30,31,53] is supported by the
hot-electrons-mediated generation of hot plasmons [46] to yield the otherwise unexplain-
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able strong effect observed by Constant et al. [7]. We notice that the distinction and separate
consideration of non-thermalized and thermalized (hot) photocarriers is important for
considering the situation where the pump and probe pulses have equal or near-central
wavelengths, as was the case of the considered experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
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