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Abstract: Vehicle gearboxes are subject to strong noise interference during operation, and the noise in
the signal affects the accuracy of fault identification. Signal denoising and fault diagnosis processes
are often conducted independently, overlooking their synergistic potential in practical applications.
This article proposes a gearbox fault identification method that integrates improved adaptive modi-
fied wavelet function noise reduction, logarithmic transformation on principal component analysis
(LT-PCA), and support vector machines (SVMs) to mitigate the influence of noise and feature outliers
on fault signal recognition. Initially, to address the issue of interfering signals within the original
signal, an innovative adaptive wavelet function optimized by the simulated annealing (SA) algorithm
is employed for noise reduction of the main intrinsic mode function (IMF) components decomposed
by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN). Sub-
sequently, due to the persistence of high-dimension feature vectors containing numerous outliers
that interfere with recognition, the LT-PCA compression and dimensionality reduction method is
proposed. Experimental analyses on vehicle gearboxes demonstrate an average fault recognition rate
of 96.65% using the newly proposed wavelet noise reduction function and the integrated method.
This allows for quick and efficient identification of fault types and provides crucial technical support
for related industrial applications.
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1. Introduction

The gearbox is a crucial component in mechanical equipment, and is susceptible to
various factors that can lead to failures, ultimately affecting its performance. Ensuring the
proper operation of the gearbox necessitates timely detection of the equipment’s working
status. Presently, vibration signals in gearboxes are employed to detect the condition
of bearings and gearbox gears, as outlined in [1]. In the event of internal components’
failure within a gearbox, abnormal vibration changes manifest during operation. These
changes serve as detectable signals for fault diagnosis. Nevertheless, random noise from
the surrounding environment interferes with signal collection and transmission. The
accurate and effective removal of noise components while retaining the original useful
signal remains a critical research focus.

The wavelet threshold denoising algorithm and empirical mode decomposition de-
noising algorithm have found extensive application in noise processing for fault diagnosis.
Xu et al. [2] proposed a denoising method for ECG signals, combining CEEMDAN and
wavelet thresholding to effectively suppress random noise. Chen et al. [3] employed the
wavelet thresholding method for initial vibration signal noise reduction. Subsequently,
the denoised signal underwent decomposition and reconstruction via CEEMDAN, en-
hancing the recognition accuracy of rolling bearings with nonstationary vibration signals.
Sun et al. [4] utilized CEEMDAN to decompose the cable signal and calculate the corre-
lation. Components with high correlation were reconstructed, and the resulting signal
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underwent final wavelet noise reduction for effective noise filtration. Li et al. [5] con-
ducted CEEMDAN decomposition of the original signal, breaking down the intrinsic mode
function (IMF) into noise components, noise-dominant components, true signal-dominant
components, and true signal components. Discarding the noise-dominant and real signal-
dominant components, they reconstructed a noise-canceled signal with the genuine signal
component, employing wavelet soft thresholding for noise reduction. Zhou et al. [6] ap-
plied CEEMDAN to decompose the blast vibration signal into IMF components, further
categorizing them into major and minor components based on correlation coefficients.
The denoising process involved fixed and soft thresholding techniques applied to the two
groups of IMF. Abdelkader et al. [7] employed CEEMDAN to decompose the rolling bear-
ing vibration signal, screening each IMF energy value, reducing wavelet noise in abnormal
IMFs, and subsequently reconstructing the signal.

The results indicate that employing CEEMDAN with wavelet threshold noise reduc-
tion significantly reduces signal noise. However, CEEMDAN decomposition yields various
intrinsic mode function (IMF) components, each containing distinct types of noise. During
the wavelet noise reduction process, the efficacy varies significantly based on influencing
factors such as the choice of threshold functions. Therefore, it is crucial to optimize the
noise reduction process.

The gearbox is affected by many factors during operation, which generate complex
nonlinear vibration signals; therefore, determining how to obtain accurate fault information
is particularly important. Deng et al. [8] applied principal component analysis (PCA) to
energy and kurtosis values from different intrinsic mode functions (IMFs) for automatic
bearing fault identification, demonstrating PCA’s effectiveness in early fault detection.
Zhu et al. [9] utilized PCA to reduce the dimensionality of vibration signals, extracting
fault features for training with the DBN algorithm for identification and classification.
Pule et al. [10] combined PCA and SVM with cross-validation to classify bearing faults,
proving its suitability for engineering applications. To address residual noise influence
and effectively identify subtle fault content within limited vibration signals, this article
diverges from traditional PCA direct dimensionality reduction. Instead, it adopts the
LT-PCA feature dimensionality reduction method, incorporating data compression and
dimensionality reduction in the fault feature classification process as the subsequent step
in fault identification.

Fault diagnosis methods encompass model-based approaches [11], signal-based meth-
ods [12], and data-driven methods [13]. Model-based methods detect faults via the con-
struction of accurate models; however, challenges arise due to parameter uncertainty
factors within the system, impacting the overall model’s accuracy and, consequently, fault
diagnosis. Traditional signal processing methods involve time-domain, frequency-domain,
and time–frequency-domain analyses. Time-domain and frequency-domain analyses may
face limitations in identifying non-stationary signals, requiring further analysis. Alter-
natively, time–frequency-domain analyses are tailored for complex systems, facilitating
the identification of vibration signal characteristics and achieving effective vibration data
classification and fault detection [14]. Signal classification methods, such as wavelet trans-
form, empirical modal decomposition (EMD), and Fourier transform (FT), can be employed
for signal analysis and classification [15,16]. Data-driven fault diagnosis methods, which
are not dependent on precise physical models, conduct fault monitoring by analyzing
input and output data, making them well-suited for complex, non-linear, and time-varying
systems. Common approaches in this category include support vector machines and neural
networks [17,18].

Ahmed et al. [19] introduced a fault detection and diagnosis method based on support
vector machines (SVMs). This approach involves fault classification through the generation
of sampling data from sampled signals and subsequent identification of these sampled
signals. While exhibiting superior performance compared to other algorithms, its effective-
ness relies heavily on the extracted feature information. Han et al. [20] devised a method
that combines EMD and PSO-SVM for fault feature identification. Experimental evidence
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supports the algorithm’s effectiveness in identifying gear failure types under varying
loads. Qin et al. [21] proposed a PSO-SVM hybrid model based on sensitive dimensionless
parameters, exhibiting good classification accuracy and efficiency by optimizing kernel pa-
rameter settings in SVM training. Dong et al. [22] introduced an intelligent fault diagnosis
method for bearings, employing the Grey Wolf Optimization support vector machine. This
method outperforms the SVM model in diagnostic effectiveness, although there is room for
improvement in the optimization accuracy of GWO.

Therefore, this article introduces a signal-denoising algorithm that optimizes and
enhances the wavelet threshold function through simulated annealing (SA), combined
with CEEMDAN. This innovative approach addresses data loss issues associated with the
over-flatness of traditional soft threshold functions after noise reduction and mitigates
pseudo-interference from local oscillations in hard threshold functions during the noise
reduction process. Following denoising, the LT-PCA method is implemented to compress
and downscale the reconstructed signal’s fault features. This strategy effectively mini-
mizes the impact of discrete points within signal features in comparison to conventional
downscaling methods. Finally, the Northern Goshawk Optimization (NGO) algorithm is
employed to optimize support vector machine (SVM) parameters for the fault detection
and classification of gearboxes.

2. Principle of the Method

To effectively reduce the gearbox signal noise and improve the accuracy of fault
recognition, this section proposes a gearbox fault recognition method integrating improved
wavelet noise reduction, LT-PCA, and NGO-SVM. The method comprises three main
components: signal noise reduction processing, signal fault feature extraction processing,
and fault recognition. The following presents the detailed procedure of the integrated fault
noise reduction and identification method.

2.1. Principle of Wavelet Threshold Denoising

Wavelet threshold denoising is a technique that involves applying noise reduction
steps to the collected signal, resulting in a corresponding low-noise signal. By carefully
selecting an appropriate threshold value and threshold function, various wavelet bases
are employed to adjust the wavelet coefficients. This adjustment ensures the retention
of high wavelet coefficients while eliminating the low coefficients. The resultant wavelet
coefficients are then reconstructed to obtain low-noise signals, facilitating subsequent
analysis. The operational equation for this process is as follows:

f (t) = x(t) + e(t) (1)

where x(t) is the original signal and e(t) is the noise signal. The steps of wavelet thresholding
denoising are as follows:

1. Wavelet decomposition. Conduct wavelet decomposition of the noise-containing
signal by choosing an appropriate wavelet base and determining the number of
decomposition layers (i layers). This process yields the wavelet coefficients (ca, cd) for
the corresponding layers, where ca and cd represent the approximation coefficients
and detail coefficients after wavelet transform decomposition.

2. Thresholding. Process the wavelet coefficients by applying appropriate thresholds
and threshold functions.

3. Signal reconstruction. Reconstruct the signal by utilizing the processed coefficients.

2.1.1. Optimization and Improvement of Threshold Function in Wavelet Denoising

Conventional threshold functions are of two types, namely soft threshold and hard
threshold functions. Hard and soft thresholds are described as follows:

wT =

{
|w|, |w| ≥ T

0, |w| < T
(2)
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wT =

{
sgn(w)(|w|−T ), |w| ≥ T

0, |w| < T
(3)

where w is the wavelet coefficient of the original signal and wT is the wavelet coefficient
after threshold processing.

The calculation formula of threshold T is as follows [23]:

Ti =
σ
√

2ln(n)
ln(i + 1)

(4)

Here, n is the signal length, σ is the standard deviation of the noise, Ti is the threshold
value of the i-th wavelet coefficient, and i is the number of decomposition layers. When the
number of decomposition layers i is larger, then threshold T is smaller, which ensures the
noise reduction process of the signal.

σ =
median(|w|)

0.6745
(5)

where w represents the high-frequency coefficient after the i-th wavelet transform, and
0.6745 is the adjustment coefficient of noise standard deviation.

Both threshold functions aim to eliminate wavelet coefficients with small energy values
while retaining or reducing those with large energy, offering a straightforward calculation
approach. The hard threshold function efficiently filters out considerable weak information,
preserving entirely the original information with large energy. However, the utilization
of a discontinuous function for setting the threshold leads to pronounced vibrations and
jump points in the signal after noise reduction, resulting in inadequate smooth connections
between signal points. In contrast, the signal processed by the soft threshold function
avoids interruptions and overcomes the shortcomings of the hard threshold. Nevertheless,
it introduces a certain deviation in the signal energy across the entire signal scale [24]. Some
useful signals are lost in this process, directly impacting the accuracy of the reconstructed
signal.

To harness the benefits of both hard and soft threshold functions, researchers have
proposed an improved threshold function. Experimental verification has shown that this
enhanced threshold function effectively removes noise while retaining useful components
in the signal, optimizing the denoising outcome.

Wu Y et al. [25] introduced an improvement to the threshold function by incorporating
an exponential function based on the soft threshold function. This modification aims to
enhance the calculation speed. However, challenges persist in terms of signal compression
and deviation caused by the soft threshold function, leading to the direct discarding of
wavelet coefficients smaller than the threshold value. Consequently, the retention of low-
frequency signals becomes limited. The expression of the threshold function is given as
follows:

FT =

{
sgn(w)

(
|w| − Tba(T−|w|)

)
, |w| > T

0, |w| ≤ T
(6)

Wu F et al. [26] proposed a relatively smooth threshold function, aiming to integrate
the features of both soft and hard threshold functions comprehensively. While this approach
leverages the advantages of both functions, it comes with a limitation in flexibility when
adjusting the signal. The expression of the threshold function is given as follows:

FT =

{
w − T2

3w − sgn(w)

3e(|w|−T) , |w| ≥ T
w
3 e(|w|−T), |w| < T

(7)
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Combining the strengths gleaned from various threshold functions, this study in-
troduces a novel and improved threshold function designed to enhance noise reduction
effectiveness. The expression of the improved threshold function is as follows:

FT =

{
sgn(w)

(
|w| − aT

e(|w|−T)(1−a)

)
, |w| ≥ T

sgn(w) 1
2 (1 − a)|w|e(|w|−T)3

, |w| < T
(8)

where a is the adjustment parameter, w is the wavelet coefficient of the original signal, T is
the set threshold, and FT is the wavelet coefficient of the noise reduction signal.

Equation (8) approximates the hard threshold function as a tends to 0 and the soft
threshold function as a tends to 1. Therefore, the adjustment parameter a can be specifically
taken in the range of the (0, 1) interval. The properties of the threshold function are
examined in terms of parity, continuity, and asymptote, as demonstrated below:

(1) Proving the parity of the function
When 0 < a < 1, F(−w) = −F(w), indicating that the function is odd.
(2) Proving the continuity of the function
When w approaches T+:

lim
w→T+

w = lim
w→T+

sgn(w)

(
|w| − aT

e(|w|−T)(1−a)

)
= lim

w→T+

(
|w| − aT

e(|w|−T)(1−a)

)
= (1 − a)T (9)

When w approaches T−:

lim
w→T−

w = lim
w→T−

sgn(w)(1 − a)|w|e(|w|−T) = lim
w→T−

(1 − a)|w|= (1 − a)T (10)

From Equations (9) and (10), lim
w→T+

w = lim
w→T−

w = (1 − a)T, proving that the func-

tion is continuous at T. Similarly, the function is also continuous at −T. This threshold
function addresses the issue where the hard threshold function causes oscillations in the
reconstructed signal due to sudden signal changes at a fixed threshold.

(3) Proving the asymptote of the function
When w approaches +∞:

lim
w→+∞

F
w

=
sgn(w)

(
|w| − aT

e(|w|−T)(1−a)

)
w

= 1 − aT
we(|w|−T)(1−a)

= 1 (11)

lim
w→+∞

(F − w ) = lim
w→∞

aT
e(|w|−T)(1−a)

=0 (12)

Similarly, when w approaches −∞:

lim
w→−∞

F
w

= 1 (13)

lim
w→−∞

(F − w ) = 0 (14)

The asymptote of F is w. As w tends to ∞, F tends to w, which effectively addresses
the deficiency of deviation observed in the soft threshold function.

In summary, the demonstrated proof establishes that the improved threshold function
maintains continuity across the entire real number line (−∞,+∞). This adherence to the
general rule of wavelet threshold function optimization signifies excellent flexibility and us-
ability. The improved threshold function enhances wavelet processing at critical thresholds
compared to Equation (6) and introduces the adjustment parameter a for increased flexibil-
ity in threshold processing compared to Equation (7). Figure 1 displays the traditional soft
and hard threshold functions and three improved threshold function images.
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Figure 1. Threshold function curve.

Before optimizing the wavelet coefficient threshold, it is essential to adjust parameter
a to achieve the optimal threshold function. Following the principles of wavelet noise
reduction, a larger threshold than the fixed threshold results in obtaining more useful
signals. In this case, parameter a needs to be adjusted to bring the function closer to the hard
threshold function, thereby minimizing energy loss. Conversely, when the threshold is close
to the fixed threshold, noise signals become more apparent, and the soft threshold function
exhibits superior denoising and smoothness effects. Therefore, adjusting parameter a
becomes necessary to align the function closer to the soft threshold function. To determine
the optimal a for the proposed improved threshold function, the simulated annealing (SA)
method can be employed.

2.1.2. Noise Reduction Method

To accurately extract fault features, a noise reduction method leveraging CEEMDAN
and wavelet techniques has been proposed. This method effectively suppresses residual
noise and false components, thereby accentuating fault characteristic frequencies. The
specific steps are as follows:

Step 1: Perform CEEMDAN decomposition on the acquired signal to obtain multi-
ple intrinsic mode function (IMF) components ordered from high to low. Calculate the
correlation coefficients for each component.

Step 2: Determine the optimal value of the improved threshold function using SA.
Step 3: Apply wavelet noise reduction to the IMF components with larger correlation

coefficients, and reconstruct the signal after noise reduction.
Step 4: Verify the signal after noise reduction using evaluation metrics. Alternatively,

conduct energy spectrum analysis to extract the fault characteristic frequency.
Figure 2 presents a visual representation of the noise reduction flowchart.
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2.1.3. Simulation Experiment and Result Analysis

After the noise reduction process, signals containing noise can be denoised, and
commonly selected evaluation indexes for denoising effect include the signal-to-noise ratio
(SNR) and root mean square error (RMSE). The denoising effect is considered superior
when SNR is larger and RMSE is smaller. SNR and RMSE are defined as follows:

SNR = 10log

(
N

∑
i=1

S2
i

(Z i − Si)
2

)
(15)

RMSE =
1
N

N

∑
i=1

(Z i − Si) (16)

Here, N is the signal length, Si is the original signal, and Zi is the denoised signal.
The simulated annealing experiment with an improved threshold function is con-

ducted to obtain the optimal value. The simulation noise reduction experiments involve
adding Gaussian white noise to the bump signals using MATLAB R2023b, employing a
sym6 wavelet base, and setting five decomposition layers for wavelet decomposition. Test-
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ing involves the use of the soft threshold function, hard threshold function, two improved
thresholds from the literature [25,26], as well as the improved threshold function.

The variable a in the threshold function is initially explored with three values (a = 0.1,
a = 0.5, a = 0.9) in Equation (8) for noise reduction. Given the randomness in noise addition,
the subsequent results represent the average of five noise reduction attempts to mitigate
errors. Table 1 summarizes the obtained signal-to-noise ratio (SNR) and root mean square
error (RMSE) values. It is observed that different values lead to varied results, lacking clear
regularity. To refine the selection of a, the simulated annealing algorithm is introduced,
determining the optimal value as 0.7124 for improved threshold noise reduction. Figure 3
displays the simulated annealing iteration curve.

Table 1. SNR and RMSE values for various a parameters.

a SNR/dB RMSE

a = 0.1 22.61 0.133
a = 0.5 24.52 0.106

a = 0.7124 25.15 0.099
a = 0.9 23.78 0.116
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In Table 1, the a value obtained by simulated annealing exhibits the largest SNR and
the most effective noise reduction compared to other a values. Noise reduction analysis is
performed using soft thresholding, hard thresholding, and improved thresholding from
the literature [25]. Figure 4 displays improved thresholding from the literature [26], the
improved thresholding function, and the signal after noise reduction. Table 2 presents the
evaluation index calculation results of various threshold functions for processing bump
signals.

The signal graph in Figure 4 highlights that, when compared with the conventional
soft threshold, hard threshold, and improved thresholds from the literature [25,26], the
proposed improved threshold function preserves better continuity in the signal after noise
reduction and retains local features. The computational results in Table 2 show that results
achieved by the improved method surpass those of other threshold functions, while the
RMSE is smaller. Consequently, the improved method exhibits superior noise reduction
effectiveness.
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after improved threshold denoising in the literature [26].

Table 2. SNR and RMSE values after noise reduction.

Classifications SNR/dB RMSE

Soft threshold denoising 23.07 0.126
Hard threshold denoising 23.25 0.123

Thresholding denoising in literature [25] 23.84 0.115
Thresholding denoising in literature [26] 24.32 0.109

Threshold denoising in this article 25.15 0.099

Having established the effectiveness of simulated annealing in the aforementioned
analyses, practical tests were conducted using real extracted signals. When obtaining
the actual signal in engineering training, the measurement sensor detects not only its
own vibration signal but also considerable interference noise. Therefore, in simulated
signal noise reduction tests, it becomes crucial to introduce irregular noise signals into the
constructed multi-harmonic vibration simulation signal f (t).

f (t) = cos(2π f1t) +
1
2

cos(2π f2t) + e(t) (17)

where f 1 and f 2 represent the primary frequencies of the simulated signals, f 1 = 2 Hz, f 2 =
5 Hz, and e(t) is the irregular noise signal.

To simulate testing conditions, a random noise of 18 dB is added to the signal f (t),
resulting in the simulated signal for testing. Subsequently, the signal undergoes CEEMDAN
decomposition, and the decomposed IMF components are illustrated in Figure 5.
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Figure 5. Decomposition result of the simulated signal using the CEEMDAN method.

Figure 5 illustrates the outcome of decomposing the simulated signal using the CEEM-
DAN method. In this representation, the intrinsic mode function (IMF) components are
arranged in order from high frequency to low frequency, representing the frequency com-
ponents inherent in the original signal. The IMF components derived from the analog
signal are subjected to correlation coefficient analysis and organized based on Equation (18).
Table 3 presents the correlation coefficient values, aiding in the selection of IMF components
that retain more original information for subsequent noise reduction and reconstruction.

Table 3. IMF correlation coefficient value of the simulated signal.

IMF Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Correlation coefficient 0.105 0.083 0.018 0.019 0.019 0.305
IMF component IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

Correlation coefficient 0.434 0.564 0.875 0.573 0.081 0.002

The correlation coefficient formula is as follows:

ρX,Y = cov(X,Y)
σXσY

= E((X−µX)(Y−µY))
σXσY

=
E(XY)−E(X)E(Y)√

E(X2)−E2(X)
√

E(Y2)−E2(Y)

(18)

where X and Y represent two signals, E(·) is the mathematical expectation of the signal, cov
is the covariance, and σ is the variance.

Based on the given equation, the IMF components with correlation coefficients greater
than 0.1 are selected for the sym8 wavelet basis and five-layer wavelet decomposition.
Other correlation coefficients of IMF are disregarded, and the remaining components are
reconstructed to yield the final noise-reduced signal. Figure 6 displays the noise reduction
signal.
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The noise reduction signal images in Figure 6 appear relatively close overall, which is
attributed to the simplicity of the initial signal. However, when dealing with noise reduction
in complex signal images, comparing the noise reduction effect requires computing signal-
to-noise ratio (SNR) and root mean square error (RMSE) for several signals after noise
reduction. Table 4 provides the SNR and RMSE values of several signals after noise
reduction.

Table 4. SNR and RMSE values after noise reduction using CEEMDAN and various improved
threshold functions.

Classifications SNR/dB RMSE

Soft threshold denoising 17.0117 0.1119
Hard threshold denoising 18.7860 0.1252

Threshold denoising in this article 19.6544 0.0912

According to the comprehensive analysis of Figure 6 and Table 4, SNR after adopting
a hard threshold lies between that of a soft threshold and that of an improved threshold,
indicating a general noise reduction effect. The soft threshold demonstrates superior
smoothness. However, the analysis of SNR for various noise reduction signals reveals that
soft threshold noise reduction exhibits a certain deviation, leading to more loss of effective
information in the signal after noise reduction. Compared with the soft threshold function,
the SNR of the improved wavelet is increased by 2.65 and the RMSE is reduced by 0.02.
Compared with the hard threshold function, the SNR is increased by 0.87 and the RMSE
is reduced by 0.03. These results indicate that the improved wavelet method is closer to
the pure signal, and the noise reduction effect is superior. The noise reduction effect of this
approach surpasses that of the conventional threshold function algorithm.

2.2. Dimensionality Reduction of Fault Feature Construction

Evaluating the gear fault state directly from noise-reduced vibration signals is chal-
lenging. In this context, time-domain features and frequency-domain feature parameters
are initially selected. However, the abundance of feature parameters can potentially pro-
long subsequent identification and classification processes. To address this issue, a newly
proposed dimensionality reduction method will be implemented to streamline and reduce
the dimensionality of the fault information.
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2.2.1. Fault Feature Vector Extraction

(1) Mixed domain feature
Time-domain statistical metrics are classified into dimensional and dimensionless

types. Dimensional characteristic metrics usually include specific physical quantities, such
as the amplitude and units of the signal. Dimensionless characteristic metrics provide a
more abstract and generic way to describe the nature of the signal. Frequency domain
analysis reveals the frequency characteristics of a signal by decomposing it into components
of different frequencies. These metrics are used not only to describe the frequency distri-
bution of the signal but also to assist in identifying significant frequency components and
trends in the frequency domain. Therefore, in the time domain, dimensional characteristic
indices such as mean value, absolute mean value, peak-to-peak value, and kurtosis are
applied, along with dimensionless characteristic indices such as pulse factor and waveform
factor. In the frequency domain, statistical indices such as the mean value of the spectrum
amplitude sample, spectrum amplitude sample variance, and spectrum amplitude sample
kurtosis are utilized.

(2) Wavelet domain features
To extract wavelet domain features, a multi-layer wavelet packet decomposition is

performed on the signal. The resulting decomposition produces L = 2l frequency bands,
where l represents the number of decomposition layers. The calculations of energy for each
frequency band and the subsequent calculation of total energy (E) are conducted as follows:

E =
L

∑
i=1

Ei (19)

The energy entropy of the wavelet packet is as follows.

Energy = −
L

∑
i=1

(
Ei
E

∗ log
∣∣∣∣Ei

E

∣∣∣∣) (20)

Wavelet packet singular spectrum entropy (Qiyi) is employed as an index to gauge
the singularity or irregularity of the signal. It is calculated as follows:

Qiyi = −
L

∑
i=1

(
λi

∑L
i=1 λi

∗ log

∣∣∣∣∣ λi

∑L
i=1 λi

∣∣∣∣∣
)

(21)

where, λi represents the singular values obtained through singular value decomposition
after processing the original signal into a matrix.

The singularity of a signal is assessed through wavelet packet singular entropy, which
analyzes the distribution of coefficients in the wavelet packet transform. A lower value
of singular entropy signifies a more uniform distribution of coefficients, indicating that
the signal is regular and smooth. Conversely, a higher singular entropy value suggests an
uneven distribution of coefficients, implying the presence of more irregular or singular
components in the signal. Consequently, wavelet packet singular entropy is commonly
employed to identify bursts, noise, or abnormal behavior in a signal.

2.2.2. Log-Transformed Principal Component Analysis Dimensionality Reduction

Principal component analysis (PCA) is a widely used technique for dimensionality
reduction [27]. Its core idea involves mapping high-dimensional data to a low-dimensional
space through a linear transformation while retaining as much variance in the data as possi-
ble. Dimensionality reduction is achieved by finding the main components of the data and
projecting them into a new coordinate system. PCA effectively mitigates information loss by
downscaling the data using the feature matrix [28]. However, outliers with large variance
values can impact the data’s variance during downscaling, influencing the direction of each
principal component of PCA. Simply removing outliers may result in the loss of valuable



Appl. Sci. 2024, 14, 1212 13 of 26

sample information. To address this, we propose a new dimensionality reduction method
in this section—logarithmic transformation principal component analysis (LT-PCA).

To stabilize fluctuations in the dataset and maintain as constant a variance as possible,
logarithmic transformation is chosen for data processing. This transformation compresses
the data, reduces fluctuations, and eliminates large differences in orders of magnitude.

We define the sample as Zt, the sample mean E(Zt) = µt, and set the distribution
standard deviation to be linearly correlated with the mean; then,

√
Var(Zt) = µt × σ,

where σ is the correlation coefficient.
When x is sufficiently small, log(1 + x) ≈ x, leading to the following formula:

log(Zt) ≈ log(µt) +
Zt − µt

µt
(22)

Furthermore, E
(

Zt−µt
µt

)
= 0, E(log(Zt)) ≈ log(µt), as demonstrated in the following

derivation process:

Var[log(Zt)] = E[log(Zt)− E(log(Zt))]
2 = E[log(Zt)− log(µt)]

2

≈ E
(

Zt−µt
µt

)2
= 1

(µt)
2 E(Zt − E(Zt))

2

= 1
(µt)

2 Var(Zt) ≈ σ2

(23)

To summarize, E(log(Zt)) ≈ log(µt), Var[log(Zt)] ≈ σ2. Logarithmic transformations
can effectively convert a model prone to significant fluctuations with increasing indepen-
dent variables into a more stable model. Assuming D is a dataset with m samples and n
variables, the transformation matrix is defined by the formula:

P = loga D (24)

In the formula, P represents the logarithmic transformation form of D. Compared with
D, P offers greater stability and is used to replace D in PCA modeling.

Taking the logarithm of sample data has the effect of decreasing the difference between
large and small values on a logarithmic scale, thereby reducing data dispersion. When the
variance of the data is associated with the mean, the logarithmic transformation stabilizes
the data, creating a more homogeneous relationship between variance and mean. This
proves beneficial for specific data analysis and modeling tasks, aiding in the reduction of
heteroskedasticity and facilitating easier data processing and analysis. It is essential to note
that the logarithmic transformation may not be suitable for all datasets, especially those
containing negative numbers or zeros.

The differences between the LT-PCA method and the PCA method are exemplified by
the coordinate images below.

From the left panel of Figure 7, it is evident that outliers with large difference values
significantly affect the principal component direction. Although these outliers can be
addressed during dimensionality reduction, their noticeable deviation from the main
data direction contradicts the requirement for effective data dimensionality reduction.
However, with LT-PCA, the first principal component direction can encapsulate most of
the data information, markedly mitigating the impact of outlier points. Therefore, the
LT-PCA method proposed in this section proves to be more realistic than traditional PCA
dimensionality reduction processing, particularly in handling discrete points.
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2.3. Fault Classification and Recognition Research

Support vector machine (SVM) serves as a linear classifier rooted in a supervised
learning approach. It transforms the problem into solving convex quadratic programming.
The core concept involves mapping sample data into a high-dimensional feature space
through a kernel function. The objective is to identify an optimal hyperplane in this space,
maximizing the classification interval between different categories and achieving effective
linear classification [29]. The key is to find a hyperplane that can better distinguish between
different categories and ensure its superior performance in the high-dimensional space, to
improve the accuracy of classification. The principle of SVM is shown in Figure 8, where
the red circles and green asterisks indicate two categories of samples. L is the optimal
classification surface, and L1 L2 represents the hyperplane of the nearest two categories of
samples from the optimal surface, parallel to it. These hyperplanes serve as the positive and
negative boundaries of SVM. The distance between L1 and L2 constitutes the classification
interval, and the points located on the positive and negative boundaries are referred to as
support vectors.
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Utilizing SVM allows training to identify and classify feature vectors after dimen-
sionality reduction, and the machine can be optimized using intelligent algorithms to
enhance identification accuracy. One such optimization approach is Northern Goshawk
Optimization (NGO), a heuristic optimization algorithm inspired by the hunting behavior
of hawks in nature [30]. NGO serves as a meta-heuristic optimization algorithm applicable
to solving various optimization problems. Consequently, the parameters of SVM can be
effectively optimized using this algorithm.

3. Construction and Analysis of the Gearbox Vibration Test Bench

In this study, the gearbox of a new energy vehicle is used for engineering practical
experiments. Figure 9 displays the gearbox vibration test bench, where the vibration
acceleration signal during gearbox operation is captured by a piezoelectric acceleration
sensor installed on the gearbox housing. The installation position of the acceleration
sensor [31] on the gearbox housing is displayed in Figure 10.
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Initially, the normal gearbox platform serves as the driving end to provide forward
speed, with a single motor as the load delivering forward torque. This setup simulates the
working condition of the gearbox driving in the forward direction. The gearbox is then
set to first gear with a torque of 300 Nm at the load end. Vibration data are collected at
three speed points: 1200 rpm, 1800 rpm, and 2400 rpm, with a minimum of 20 datasets
collected at each speed point to mitigate the influence of accidental factors. The collected
samples have a length of 10 s, a maximum frequency of effective analysis set at 5000 Hz,
and a resolution of 0.1 Hz, and 80 groups of data are extracted for further use. Following
the collection of vibration data in the normal state, samples representing the tooth surface
of light, moderate, and severe failure states are gathered, as shown in Figure 11. This set of
input samples is then used to conduct data feature extraction and dimensionality reduction
experiments.
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Figure 11. Faulty gear condition. (a) Minor tooth failure state. (b) Moderate tooth failure state.
(c) Severe tooth failure state.
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In planetary gear systems, characteristic frequency analysis becomes more intricate
compared to fixed-axis gears due to the simultaneous rotation and revolution of planetary
gears. Taking a single-row planetary gear as an example, the tooth ring is fixed, the sun
wheel serves as the power input, the planetary frame acts as the output, and the gearbox
functions as the reducer. The number of teeth for the sun wheel, planetary frame, and
gear ring is denoted as Zs, Zp, and Zr, respectively. The input speed is represented by ns,
and only one sun wheel, one planetary frame, and one gear ring are included. The fault
characteristic frequency of the main components of the planetary gear train is shown as
follows:

The fault characteristic frequency of the sun gear is as follows:

fs = N ∗ ns

60
∗
(

Zr

Zr + Zs

)
(25)

The fault characteristic frequency of the planet gear is as follows:

fp =
ns

60
∗
(

Zr

Zr + Zs

)
∗
(

Zs

Zp

)
(26)

The fault characteristic frequency of the ring gear is as follows:

fr = N ∗ ns

60
∗
(

Zr

Zr + Zs

)
∗
(

Zs

Zr

)
(27)

The fault characteristic frequency of the planetary carrier is as follows:

fp =
ns

60
∗
(

Zs

Zr + Zs

)
(28)

The characteristic frequency of meshing faults in the planetary gear train is as follows:

fs =
ns

60
∗
(

Zr ∗ Zs

Zr + Zs

)
(29)

The parameters of the new energy vehicle gearbox used in the bench experiment are
shown in Table 5.

Table 5. Planetary gear train parameter settings.

Parameter Sun Gear Planet Gear Ring Gear

Number of teeth 32 31 92
Module (mm) 2.5 2.5 2.5

Pressure angle (◦) 20 20 20
Helix angle (◦) 0 0 0

Addendum coefficient 1 1 1
Dedendum coefficient 0.25 0.25 0.25
Profile Shift coefficient 0 0 1.112

For speeds of 1200, 1800, and 2400 rpm, the fault characteristic frequency is calculated
using Formulas (25) to (29), as shown in Table 6.

Table 6. Fault characteristic frequency of each component under different input speeds.

Input Speed
(RPM)

Input
Frequency

(Hz)

Meshing
Frequency

(Hz)

Sun Gear
(Hz)

Planet Gear
(Hz)

Ring Gear
(Hz)

Planet
Carrier

(Hz)

1200 20 474.84 59.35 15.32 5.16 20.65
1800 30 712.26 89.03 22.98 7.74 30.97
2400 40 949.68 118.71 30.63 10.32 41.29
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4. Experimental Analysis

The algorithm proposed in this article involves the LT-PCA dimensionality reduction
optimization of input variables. Additionally, NGO is introduced to optimize the penalty
factor ‘c’ and kernel parameter ‘g’ in the SVM model [32], aiming to obtain the optimal
parameters for improved classification prediction. The method flow is shown in Figure 12.
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4.1. Signal Denoising

Because of the influence of the experimental environment and other factors, the
vibration data contain significant noise, making the calculation of the SNR challenging.
The fault form can be analyzed according to the time domain and energy spectrum of the
signal. The theoretical fault characteristic frequency of the planetary gear single tooth is
30.6 Hz, and its frequency is obtained through the calculation of gearbox parameters. As
the motor speed is not stable, accurately determining the theoretical frequency and its
similar frequencies is crucial for subsequent data processing and analysis.

The signal with CEEMDAN decomposition is denoised by wavelet threshold. The
IMF component with a correlation coefficient greater than 0.1 was decomposed by sym8
wavelet and five-layer wavelet, and the IMF component after noise reduction was recon-
structed. Figure 13 displays the time-domain diagram of the IMF component obtained by
the CEEMDAN decomposition of the gear fault signal, and Table 7 presents the calculated
correlation coefficients. Figure 14 displays the original gear fault signal and the signal with
or without CEEMDAN decomposition.
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Table 7. IMF correlation coefficient value of the noisy signal.

IMF Component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

Correlation
coefficient 0.766 0.566 0.541 0.459 0.318 0.231 0.172 0.130 0.090

IMF component IMF10 IMF11 IMF12 IMF13 IMF14 IMF15 IMF16 IMF17
Correlation
coefficient 0.074 0.056 0.035 0.018 0.012 0.014 0.009 0.002
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Figure 14. Gear failure signal comparison. (a) Noisy signal. (b) Denoising signal using CEEM-
DAN and improved thresholds. (c) Denoising signal with an improved threshold is used without
CEEMDAN.

Figure 14 reveals numerous burr impact signals generated by gear meshing in the
signal, and the fault form cannot be identified by time-domain analysis at this stage.
Because the measured signal lacks an original pure signal, indicators such as SNR cannot
be used to determine noise reduction results. The energy spectrum of the signal is selected
as the analysis method, and the energy spectrum transformation analysis of the signal is
performed [33], as displayed in Figure 15.
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Figure 15. Gear failure signal energy spectrum. (a) The energy spectrum of noisy signals. (b) The
energy spectrum after noise reduction is decomposed without using CEEMDAN. (c) The energy
spectrum after noise reduction is decomposed using CEEMDAN.

The Teager–Kaiser energy operator, a nonlinear operator, efficiently extracts signal en-
ergy by enhancing transient characteristics to highlight shock components. The continuous-
time signal x(t) us defined as follows [34]:

ψ[x(t)] = [
.
x(t)]2 − x(t)

..
x(t) (30)

where
.
x(t) and

..
x(t) are the first and second order derivatives, respectively, of x(t). For

discrete signals, it is defined as:

ψ[x(n)] = x2(n)− x(n + 1)x(n − 1) (31)
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According to Equation (31), the signal energy is calculated using three consecutive
sampling points, which has a small computational effort. It exhibits better adaptability to
the non-stationary and transient characteristics of the signal.

The energy spectrum of the signal with noise in Figure 15a,b reveals that the fault
frequency is hidden in the noise, and the fault information cannot be accurately identified.
However, direct wavelet denoising fails to clearly identify the characteristic frequency,
leaving the actual fault frequency obscured and resulting in a less-than-ideal denoising
effect. In Figure 15c, the proposed method’s decomposition and noise reduction unveil the
characteristic fault rotation frequency and the frequency doubling of the planetary wheel,
which can be extracted as follows: 32.0, 63.5, and 95.5 Hz. The characteristic frequency is
obvious, and the energy value corresponding to it is prominent, nearing the theoretical
calculation frequency. Thus, the noise reduction method is effective.

4.2. Signal Feature Vector Dimensionality Reduction

To demonstrate the accurate reflection of gearbox fault characteristics by the LT-PCA
extracted in this article, PCA and LT-PCA dimensionality reduction analyses are carried
out on the hybrid domain features and wavelet domain features of the obtained signal,
respectively. In this process, the contribution rate and cumulative contribution rate of each
principal component are shown in Table 8. Notably, the first four cumulative contribution
rates contain over 99% of the information, surpassing the theoretical value of 85% [35].
Consequently, the decision is made to downsize the data to a four-dimensional feature
vector, facilitating improved visualization and result comparison.

Table 8. Contribution rate and cumulative contribution rate for each principal component.

Feature Contribution Rate (%) Cumulative Contribution
Rate (%)

M1 85.55 85.55
M2 9.59 95.14
M3 2.65 97.79
M4 1.53 99.32

M5~M27 0.68 100

The features of the two principal components meeting the conditions after dimension-
ality reduction are projected into two-dimensional space, as shown in Figure 16.
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Figure 16. Two-dimensional principal component analysis. (a) Two-dimensional principal component
analysis of time–frequency mixed domain PCA. (b) Two-dimensional principal component analysis
of wavelet domain PCA. (c) LT-PCA two-dimensional principal component analysis in the time–
frequency mixed domain. (d) LT-PCA two-dimensional principal component analysis in the wavelet
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Figure 16 is used to illustrate the distribution of data points for four different categories.
Each point represents a data sample, with colors distinguishing the four categories (states
1, 2, 3, and 4 indicating normal state, mild, moderate, and severe faults, respectively), and
the axes indicating different feature dimensions.

Figure 16, it is evident that different domains perform differently in PCA dimensional-
ity reduction concerning classification effects under various faults. In Figure 16a, for the
time-frequency hybrid domain, the clustering effect is obviously the worst after normal
PCA dimensionality reduction. Except for the moderate fault and normal state, which
exhibit some aggregation effects, the classification effects of other faults show overlapping
categories, indicating a serious misdiagnosis phenomenon in PCA downsizing classification
relying on the time–frequency hybrid domain. Conversely, under LT-PCA dimensionality
reduction, as shown in Figure 16c, the aggregation effect is evident, and different faults are
clearly demarcated, achieving the best classification effect.

For wavelet domain features, as shown in Figure 16b, under normal PCA dimen-
sionality reduction, the aggregation effect of data points is obvious for normal state and
moderate fault cases, and the accuracy of analysis and diagnosis is high. However, for mild
and severe fault categories, the proximity of data points makes it challenging to separate
them, and the wide gap between data points of a single category increases the likelihood
of misjudgment when determining the fault type. In the wavelet domain features under
LT-PCA dimensionality reduction, as shown in Figure 16d, the aggregation of different fault
datasets is more effective than ordinary PCA aggregation. However, light and moderate
faults appear mixed, and fault categories cannot be effectively distinguished.

Overall, the effect of dimensionality reduction in the time–frequency hybrid domain
is more pronounced than in a single time–frequency domain. After LT-PCA dimensionality
reduction, both time–frequency hybrid and wavelet domains exhibit excellent aggregation
effects compared with ordinary PCA dimensionality reduction of the principal components.
The results demonstrate that the proposed dimensionality reduction method in this part is
superior to the traditional method of dimensionality reduction.

4.3. Fault Category Identification

Following LT-PCA dimensionality reduction, aggregated fault feature vectors are
obtained. These feature vectors serve as inputs for a support vector machine (SVM) in the
fault pattern recognition of gearboxes. For each fault type, 80 sets of samples are divided
into two parts: 60 sets for training the SVM and 20 sets for testing its accuracy. In these
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samples, labels 1, 2, 3, and 4 denote normal state, mild fault, moderate fault, and severe
fault, respectively.

The following is the optimization process of the NGO-SVM. The optimization parame-
ters ‘c’ and ‘g’ optimization process and fitness curve of the NGO algorithm are shown in
Figure 17.
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According to Figure 17, optimizing the SVM using the NGO algorithm finds the param-
eter configurations that give the optimal cross-validation accuracy after only four iterations,
specifically, c = 147 and g = 0.02. This indicates that the NGO algorithm converges rapidly,
finding high-performance parameter configurations with minimal computations. Such fast
convergence is highly beneficial for large-scale datasets and complex models, significantly
reducing the optimization search time. The results show that the NGO algorithm has a
significant advantage in optimizing SVM models.

Figure 18 reveals multiple misclassified sample points in SVM classification without
using the optimization algorithm directly. However, after optimization, the SVM classifies
the points perfectly, demonstrating the excellent performance of the optimization algorithm.
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(a) Original classification prediction effect. (b) Classification prediction effect of NGO optimization
algorithm.

The confusion matrix (CM) is a valuable tool in machine learning and statistics for
evaluating the performance of a classification model, offering a detailed perspective on
how the model performs across different categories. Its primary purpose is to compare the
model’s classification results with the actual categories, enabling the calculation of various
performance metrics. When testing experimental data, fault diagnosis results are visually
represented using the confusion matrix, as depicted in Figure 19. The horizontal and vertical
coordinates of the figure, labeled 1, 2, 3, and 4, represent the four data categories, allowing
for joint diagnosis of no fault, as well as mild, moderate, and severe faults. The rows of
the graph represent true category cases, and the columns represent the predicted cases.
For example, in column 2 of Figure 19a, where the horizontal coordinate is 2 (representing
mild faults), 14 samples are correctly classified, and 6 samples are considered to be in the
no-fault state, with an accuracy of 70%. Similarly, for the NGO-SVM, see column 2 of
Figure 19b, where the classification accuracy is 100%. The classification prediction of the
NGO optimization algorithm surpasses that of the original SVM algorithm.
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Similarly, the processed feature dataset is analyzed using MFO-SVM and PSO-SVM
algorithms to compare the classification accuracy of each state under the same operating
conditions. The classification accuracies of the various algorithms are presented in Table 9,
and the results are averaged over 10 tests.
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Table 9. Classification accuracy of different optimization algorithms.

Algorithm Classification Accuracy (%)

SVM 85
NGO-SVM 96.65
MFO-SVM 89.2
PSO-SVM 91.8

In Table 9, it is evident that the unoptimized SVM has a classification accuracy of 85%
on this feature dataset, indicating that it is not well-adapted to the needs of the particular
problem due to the lack of parameter optimization. This indicates that there is room
for improvement of the unoptimized SVM on this task. Optimization of the SVM using
different algorithms led to higher classification accuracy compared to the unoptimized
SVM. The average classification accuracy of NGO-SVM is 96.65%, which is much higher
than the classification accuracy of ordinary SVM, and the optimized SVM accuracy is
improved by 11.65%. The NGO algorithm finds a more suitable parameter configuration
through adaptive search, which improves the performance of SVM. It demonstrates the
effectiveness of the method.

5. Discussion and Conclusions
5.1. Discussion

This article analyzes the actual vibration signal situation by constructing a gearbox
vibration test stand, simulating normal, mild, moderate, and severe damage states of gears,
and determining the degree of influence of the fault state on the gearbox. Experimental
verification confirms the superior performance of the new wavelet noise reduction function
and LT-PCA dimensionality reduction proposed in this article compared to other methods.
The noise reduction effect of the analog signal using the threshold function proposed in
this article is evaluated and compared with the direct use of soft and hard thresholds
and the threshold functions proposed in references [25,26]. The results show an effective
improvement in the SNR, a reduction in the RMSE, and a superior noise reduction effect.
Collecting the actual signal in the presence of surrounding environmental noise poses
challenges in obtaining a pure signal, making analysis through quantitative indicators such
as SNR difficult. Thus, the energy spectrum is employed to assess the noise reduction effect.
In the energy spectrum, the characteristic frequency of the fault can be obtained, indicating
the success of the noise reduction method. In the experiments, LT-PCA exhibited superior
data aggregation compared to PCA in the dimensionality reduction process. It effectively
mitigated the influence of discrete points by compressing the data beforehand, resulting in
more accurate fault feature extraction. Analyzing the actual spectrum after noise reduction
reveals a slight difference with the theoretical frequency, potentially influenced by factors
such as input speed fluctuation, shaft misalignment, gear gap, and other operational aspects
of the gearbox, causing interference with gear meshing.

5.2. Conclusions

To address the issue of low accuracy in classifying noisy fault signals, this article
proposes a new adaptive wavelet denoising function and logarithmic principal component
analysis method to effectively optimize and enhance the accuracy of the SVM algorithm
in detecting noisy fault signals. The proposed algorithm, compared with methods solely
focused on fault classification, is innovative and yields the following conclusions:

(1) A new wavelet threshold function is adopted, reducing signal noise by optimizing
parameters through a simulated annealing algorithm. The fault characteristics of
the signal after noise reduction are clearer than those before noise reduction and
other noise reduction methods, providing a better foundation for subsequent signal
processing.
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(2) In comparison with existing fault feature vector extraction methods, this article com-
bines PCA and data compression to mitigate the abnormal influence caused by outliers
in the feature vector. The combined algorithm, as opposed to traditional dimensional-
ity reduction algorithms, delivers accurate feature data for data classification.

Through a series of experiments, the selected algorithm proves superior to traditional
methods in denoising, dimensionality reduction, and recognition classification, achieving
an average classification accuracy of 96.65%. The system may be influenced by factors
such as input speed fluctuations, shaft alignment, and gear clearance, potentially causing
interference with gear meshing and resulting in errors between the failure frequency and
the theoretical value. This aspect is not explored in depth in this paper, and future studies
will conduct a thorough analysis of the multifactorial signals affecting vibration to deepen
our understanding further.
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Abbreviations

LT-PCA Logarithmic Transformation and Principal Component Analysis RMSE Root Mean Square Error
SVM Support Vector Machine PCA Principal Component Analysis

CEEMDAN
Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise

NGO Northern Goshawk Optimization

IMF intrinsic mode function MFO Moth–Flame Optimization
SA Simulated Annealing PSO Particle swarm optimization
SNR Signal-to-Noise Ratio
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