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Abstract: This paper proposes a novel path planning method that considers the natural frequencies
of pipes. The approach begins by presenting an adaptive decomposition method to accurately
define the routing space for aero engines. Compared with the traditional decomposition method,
obstacle identification efficiency is improved by more than 50%. This paper improves the initial
population of the genetic algorithm based on the rapidly exploring random tree. Subsequently, a
numerical surrogate model is developed to predict the natural frequencies of pipes. An evaluation
function is created incorporating the weighted values of the natural frequency and the tube length.
Additionally, this paper introduces several new operators to mitigate the issue of illegal paths during
algorithm iterations. Finally, the proposed algorithm is demonstrated through experiments on two
well-designed examples and an application in an aero engine.

Keywords: path planning; natural frequency; aero engine; genetic algorithm; rapidly exploring
random tree

1. Introduction

Pipe design is among the most difficult, time-consuming tasks in the aerospace and
ship industries [1–3]. Designers primarily focus on the geometric design of pipelines and
often struggle to allocate sufficient time and expertise to considering the natural frequency.
Applying the natural frequency calculation algorithm to the pipe’s routing algorithm poses
challenges. The main difficulty is that the routing algorithm does not know the final
model during the process. Pipes requiring natural frequency evaluation are numerous with
iterations. This problem complicates the integration of natural frequency considerations
into established pipe routing methods.

This paper proposes a novel path planning method that combines the genetic algo-
rithm (GA) and the rapidly exploring random tree [4] (RRT) while considering the natural
frequency for pipe routing. The approach begins by presenting an adaptive decomposition
method to accurately define the routing space for aero engines. Then, this paper improves
the initial population of the genetic algorithm based on the rapidly exploring random tree.
Next, this paper establishes a numerical surrogate model for the natural frequency of the
pipe. It introduces an evaluation function that incorporates the weighted values of the
natural frequency and the length of the pipe. Additionally, this paper introduces several
new operators to mitigate the issue of illegal initial paths during algorithm iterations.
Finally, the correctness of the proposed algorithm is demonstrated by the experiments on
two well-designed examples and an actual aero engine.

The article is arranged as follows: Section 2 is related to works and the challenges
when applying existing pipe routing algorithms to aero engines. Section 3 aims to model
the routing space. Considering the numerous obstacles in actual engine models, this paper
proposes an adaptive space decomposition method in Section 3. Section 4 provides a
detailed introduction to the proposed method in this article. Several new genetic algorithm

Appl. Sci. 2024, 14, 1143. https://doi.org/10.3390/app14031143 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14031143
https://doi.org/10.3390/app14031143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3091-8221
https://doi.org/10.3390/app14031143
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14031143?type=check_update&version=1


Appl. Sci. 2024, 14, 1143 2 of 22

operators and a fitness function containing natural frequency are proposed. In Section 4,
this paper establishes a numerical surrogate model for the natural frequency of the pipe. In
the fitness function, this article normalizes the length and natural frequency to obtain the
optimal path for the selected pipe. Section 5 mainly introduces a co-evolutionary algorithm
for the collaborative routing of multiple pipes. In this algorithm, a new method for selecting
and calculating the fitness function is constructed. Sections 6 and 7 are numerical simulation
examples and conclusions to verify the algorithm proposed in this paper.

2. Related Works

Pipe routing design mainly includes two parts: 1⃝ Obstacle identification and defining
the routing space and 2⃝ Pipe routing algorithms. This section will introduce the relevant
research in these two parts separately.

2.1. Obstacle Identification for Pipe Routing in Aero Engine

Most scholars studying pipe routing algorithms assume that the routing space is
already known. This is true for some simple ship and aero-engine models. Because simple
geometric models can be concatenated with a small number of containment blocks, obstacle
recognition can be easily and quickly achieved. However, for geometric models with
complex components, it is very difficult and time-consuming to obtain the routing space.
Therefore, scholars adopt various schemes to describe the obstacle. There are primarily
two types of obstacle description methods: cell decomposition (Figure 1a) and hierarchical
decomposition (Figure 1b). Cell decomposition is the process of decomposing a 2D or 3D
model into cells of the same size and shape. By determining the presence of obstacles in
each cell, it identifies whether the pipeline can pass through. This method is widely used
in traditional routing algorithms [5]. Cell decomposition demands an adequately fine grid
during grid scanning to accurately depict the routing space. However, using fine-grained
grids can raise concerns related to storage and computational time. For instance, the aero-
engine model with the size of 400 ∗ 600 ∗ 800 mm3 presented in Figure 2. Figure 2 is
partitioned into grids based on various sizes, as depicted in Table 1.
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Table 1. Grid size and time consumption.

Grids Size (mm) Grids Numbers Time (min)

16 296,298 5
12 695,196 14
8 2,360,340 50
4 19,134,375 608

Article [6] further developed the cell decomposition method, which assigns lower
weights to the edges of obstacles and walls to achieve the goal of the pipeline sticking to
obstacles and walls. In order to reduce the processing time during each installation of cell
decomposition, article [3] proposed a hierarchical decomposition for obstacle identification.
Hierarchical decomposition mainly divides the routing space into several layers along
a specific direction and only identifies obstacles in the layers required for the following
routing pipe (Figure 3). The hierarchical decomposition method reduces the obstacle
identification time of a single pipe. However, it does not completely eliminate the need
to model the entire routing space when pipes are dispersed across it. As a result, the
hierarchical decomposition method has not fundamentally resolved the issue of time
consumption for obstacle identification. Therefore, research into a new obstacle definition
method is a prerequisite for applying pipe routing algorithms to practical aero engines.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 21 
 

Figure 2. The cell decomposition for aero engines. 

Table 1. Grid size and time consumption. 

Grids Size (mm) Grids Numbers Time (min) 
16 296,298 5 
12 695,196 14 
8 2,360,340 50 
4 19,134,375 608 

Article [6] further developed the cell decomposition method, which assigns lower 
weights to the edges of obstacles and walls to achieve the goal of the pipeline sticking to 
obstacles and walls. In order to reduce the processing time during each installation of cell 
decomposition, article [3] proposed a hierarchical decomposition for obstacle identifica-
tion. Hierarchical decomposition mainly divides the routing space into several layers 
along a specific direction and only identifies obstacles in the layers required for the fol-
lowing routing pipe (Figure 3). The hierarchical decomposition method reduces the ob-
stacle identification time of a single pipe. However, it does not completely eliminate the 
need to model the entire routing space when pipes are dispersed across it. As a result, the 
hierarchical decomposition method has not fundamentally resolved the issue of time con-
sumption for obstacle identification. Therefore, research into a new obstacle definition 
method is a prerequisite for applying pipe routing algorithms to practical aero engines. 

 
Figure 3. Hierarchical decomposition. The surface represents the interface in hierarchical decompo-
sition. 

2.2. Pipe Routing Algorithms in Aero Engines 
Pipe routing design has been studied for several decades, resulting in two main types 

of pipe routing algorithms: deterministic and heuristic algorithms [6]. Deterministic algo-
rithms, such as the maze algorithm [7,8], the A* algorithm [9–11], and other algorithms [12–
15], are extensively employed in various fields due to their fast computation time and low 
memory space requirements. The maze algorithm mainly simulates the behavior of waves 
to find paths. The maze algorithm can ensure finding the shortest path, but it requires a lot 
of storage space. In order to solve the problem of the maze algorithm, the A* algorithm is 
proposed. The A* algorithm is mainly based on greedy search algorithms, which only search 
for nodes closer to the endpoint, avoiding needing much storage space. Other algorithms, 
such as projection and graph theory, have been proposed to accelerate the search for the 
shortest path. The main goal of deterministic algorithms is to obtain the shortest path faster. 
However, it is difficult to consider constraints because the final centerline is not known dur-
ing the iterations. In order to address the difficulty of considering numerous constraints in 
deterministic algorithms, scholars have begun to apply heuristic algorithms to pipeline 

Figure 3. Hierarchical decomposition. The surface represents the interface in hierarchical decomposition.

2.2. Pipe Routing Algorithms in Aero Engines

Pipe routing design has been studied for several decades, resulting in two main
types of pipe routing algorithms: deterministic and heuristic algorithms [6]. Deterministic
algorithms, such as the maze algorithm [7,8], the A* algorithm [9–11], and other algo-
rithms [12–15], are extensively employed in various fields due to their fast computation
time and low memory space requirements. The maze algorithm mainly simulates the
behavior of waves to find paths. The maze algorithm can ensure finding the shortest
path, but it requires a lot of storage space. In order to solve the problem of the maze
algorithm, the A* algorithm is proposed. The A* algorithm is mainly based on greedy
search algorithms, which only search for nodes closer to the endpoint, avoiding needing
much storage space. Other algorithms, such as projection and graph theory, have been
proposed to accelerate the search for the shortest path. The main goal of deterministic
algorithms is to obtain the shortest path faster. However, it is difficult to consider con-
straints because the final centerline is not known during the iterations. In order to address
the difficulty of considering numerous constraints in deterministic algorithms, scholars
have begun to apply heuristic algorithms to pipeline routing. Typical heuristic algorithms
include genetic algorithms [16–19], ant colony optimization algorithms [20–22], particle
swarm algorithms [23], etc. [24,25]. These methods often rely on random behavior to obtain
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paths. Genetic algorithms were the earliest to be applied in the process of pipeline routing.
Scholars have applied heuristic algorithms to consider various engineering constraints,
such as branch and parallel pipelines in pipeline layout. Heuristic algorithms have been
proven to effectively solve engineering constraints. However, these heuristic algorithms
only consider geometric constraints, without considering vibration performance, such as
natural frequency. Due to the excessive number of alternative paths provided by the heuris-
tic algorithm during each iteration, evaluating the natural frequency for each individual
is time-consuming. Therefore, considering the natural frequency during pipe design is
challenging due to the theoretical limitations of existing methods.

3. Adaptive Decomposition of Routing Space

The routing space encompasses various elements such as obstacles, pipes, and acces-
sories, each with complex shapes that are challenging to accurately describe. To simplify
the representation of obstacles, some researchers have approximated them as rectangular
cuboids and decomposed the routing space into uniformly sized grids. Traditional cell
decomposition methods encounter difficulties when dealing with the different diameters of
pipes, as commonly found in aero engines. Whenever the diameter changes, the traditional
methods require routing space re-decomposition, leading to time-consuming algorithms.
To overcome these challenges, this paper proposes an adaptive decomposition method
for the routing space. In this section, we provide a detailed introduction to the adaptive
decomposition method.

The Adaptive Decomposition of Routing Space

As depicted in Figures 4 and 5, the routing space is represented as a rectangle, while
equipment and prohibited pipe areas are represented by individual rectangles or their
combinations. During the decomposition process, we assume that the space has already
been randomly divided based on the diameter ( di−1) of the (i-1)-th pipe. When selecting
the i-th pipe with a diameter of di, the routing space is re-decomposed using an integer
value n, which can be expressed by the following equation:

n = int
(

di
di−1

)
(1)
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As shown in Figure 4, the adaptive grid decomposition method is illustrated. When
the value of n is greater than 1, the adjacent n ∗ n grids in the original grid system are
examined. If there are obstacles present within these original grids, the corresponding
new grid is considered obstructed and marked with a red rectangle. Conversely, if the
original grid is free from obstacles, the corresponding new grid is considered unobstructed
and represented by a green rectangle. When n < 1 (Figure 5), the original grid will be
disassembled into n−1 ∗ n−1 grids for judgment. If there are obstacles in the original grid,
the new n−1 ∗ n−1 grids need to be identified. If the original grid is unobstructed, the new
grid is considered unobstructed. This process helps identify and differentiate obstructed
and unobstructed regions within the routing space.

By employing this method, the need to repeatedly decompose the routing space for
different pipe diameters is eliminated, resulting in improved algorithm efficiency. Figure 6
demonstrates the outcomes of obstacle identification in an aero engine using the proposed
adaptive decomposition algorithm. The final grid size achieved by this algorithm is 4 mm,
and the entire process takes a total of 1461 s using a 2.9 GHz CPU computer. Compared with
traditional cell decomposition, the efficiency of obstacle identification has been improved
more than 50%.
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4. A Novel Path Planning Method for Pipe Arrangement with Considering Natural
Frequency

This study aims to enhance the quality of pipe routing and ensure the pipes can with-
stand operational loads by considering natural frequency. Throughout the derivation of
natural frequency [26], it becomes evident that calculating the natural frequency for a pipe
model with a fixed geometric shape and centerline is not time-consuming. However, di-
rectly applying the natural frequency calculation algorithm to the pipe’s routing algorithm
poses challenges. This is because natural frequency calculation necessitates knowledge of
the pipe’s geometric model. In deterministic algorithms, the final centerline of the pipe is
not known during the routing. Heuristic algorithms can provide the centerline and the
geometric model of the pipe. During iterations, the centerline of the pipe changes. As a
result, the pipe that requires natural frequency evaluation is not a single determined pipe
but thousands of undetermined pipes with varying centerlines. This complexity makes it
challenging to incorporate natural frequency considerations into heuristic algorithms for
the existing pipe routing methods.

To overcome these challenges, this paper introduces a novel path planning method
that consider the natural frequencies of pipes. To address the limitation of considering
natural frequency during the iterative process, a numerical surrogate model is developed
to predict pipe natural frequencies. An evaluation function is formulated, integrating
weighted values of natural frequency and pipe length. Finally, the effectiveness of the
proposed algorithm is demonstrated through experiments on two well-designed examples
and its application in an engine.
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4.1. Initial Population

The genetic algorithm is a powerful and widely applicable stochastic search optimiza-
tion technique that is highly effective in solving problems that are difficult for traditional
methods. Therefore, the genetic algorithm has become an effective approach for solving
pipe routing problems. Previous researchers have applied genetic algorithms to single-pipe
arrangements [19,27]. Some of these algorithms randomly select several spatial points
to form the initial paths. However, due to the arbitrary nature of these paths, most of
them intersect with obstacles or contain numerous illegal gene segments, which limits the
convergence of the genetic algorithm [28]. To avoid generating a large number of illegal
solutions due to random initial paths, some researchers have used deterministic algorithms
such as the A* algorithm to generate initial paths and then applied random mutation or
random crossover on these paths to construct the initial population.

Although these approaches reduce the number of illegal gene segments to some ex-
tent, they introduce the same gene segments in each generation due to the use of the
A* algorithm, thereby reducing the global search capability of the genetic algorithm. There-
fore, generating a reasonable initial population with a large number of valid gene segments
becomes an effective means to address the issues of the genetic algorithm in path planning.
This section utilizes the RRT algorithm to generate the initial population.

Rapidly Exploring Random Tree (RRT) Algorithm

The RRT is an incremental random sampling-based path search algorithm that can
quickly find a collision-free path within the search space. In recent years, it has been widely
applied in various fields and has demonstrated practicality. The RRT algorithm consists
of four steps (See Figure 7). 1⃝ At the beginning, the RRT algorithm only contains the
start points, some path points, and goal points. 2⃝ Secondly, computing the position of
the node nearest to the random sample point. 3⃝ Thirdly, extending a new node from the
nearest node to the random sample point. 4⃝ Fourthly, the length of the branches grown
is determined by a predefined step size. RRT uses a global random sampling method to
explore its directions. It ensures that the probability of expanding each node is related to
the area of its Voronoi region, resulting in RRT always expanding the node in the largest
surrounding empty space. This helps evenly cover the entire search space.
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In this study, the RRT algorithm is utilized to generate the initial population for the
genetic algorithm in the pipe routing problem. The effectiveness of the RRT algorithm is
demonstrated in Figure 8, which illustrates the results of RRT with obstacles. The green
and red stars represent the start and goal points, respectively, while the blue line represents
the final path obtained by the RRT algorithm. Additionally, the yellow points represent the
locations of supports.
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Although the RRT algorithm does not guarantee finding an optimal solution when
obstacles are present, it exhibits randomness in pathfinding and generates paths with
reasonable characteristics, such as obstacle avoidance and proximity to the shortest path.
By using the RRT algorithm as the initial paths for the genetic algorithm, certain issues such
as blind initialization and illegal gene segments can be addressed, leading to improved
convergence speed.

To generate the initial population for the genetic algorithm, the RRT algorithm is
executed multiple times (four times, listed in Figure 8) to obtain paths with the same start
and goal positions. These resulting paths are discretized into spatial nodes, which form the
initial population for the genetic algorithm. This approach leverages the strengths of both
the RRT algorithm and the genetic algorithm to enhance the efficiency of the overall pipe
routing optimization process.

4.2. Operator Design

Operator design is an important aspect of the genetic algorithm used in this study. The
operators are responsible for generating new individuals in each iteration and driving the
evolution of the population towards better solutions. This article proposes new crossover
and mutation operators based on the RRT algorithm mentioned earlier, thereby avoiding
the problem of illegal solutions during the iterative process of the algorithm.

4.2.1. Crossover Operator

The crossover operator plays a critical role in combining genetic information from
two parent individuals to produce offspring with a mix of their traits. In the context of
the path planning problem, crossover involves exchanging segments between two parent
paths, facilitating the exploration of new paths that inherit favorable characteristics from
both parents.

In this article, a single-point crossover operator is utilized. Previous studies often
employed simple gene crossover strategies, resulting in many infeasible segments in the
offspring individuals and the generation of numerous illegal solutions during the iterative
process. To address these challenges, this article incorporates an evaluation step after
a single-point crossover, as depicted in Figure 9. If the offspring contains gene points
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that cannot be directly connected, the RRT algorithm is employed to generate a new path
between the two gene points.
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Figure 9. An example of single point cross operator. The red part represents the gene segments for
cross operation.

4.2.2. Mutation Operator

The mutation operator introduces random changes to the genetic information of an
individual. It helps introduce exploration in the search space and prevents premature conver-
gence. In the case of path planning, mutation can involve modifying a portion of the path by
randomly changing or shifting segments. This allows for small adjustments or the exploration
of alternative paths. The four common mutation operators are used in this article. 1⃝ Add
operation: on the basis of existing pipeline path individuals, randomly select two adjacent
nodes and insert any point in the adjacent nodes. 2⃝ Delete operation: on the basis of existing
pipeline path individuals, randomly select a point (excluding the starting and ending points)
and delete a point at random. 3⃝ Modification operation: on the basis of existing pipeline path
individuals, randomly select a point (excluding the starting and ending points) and change
its coordinates. 4⃝ Interchange operation: on the basis of existing pipeline path individuals,
randomly select two nodes and exchange their coordinates.

In addition to the four mutation operators mentioned above, this article proposes a new
mutation operator (Figure 10). Figure 10 is a random mutation case. Figure 10 is used to
demonstrate the operation process of RRT-based random mutation. We are introducing the
RRT algorithm at the gene point of mutation operation, starting from the gene at the mutation
site and ending at the endpoint, to find a new RRT path to insert the original gene segment.
The design of these operators is crucial for the effectiveness of the genetic algorithm.
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4.3. Evaluation Function Design Considering Natural Frequency

Consider the path as composed of multiple polylines, and the intersection of the
polylines is the control node of the path. Arrange the control nodes of the path in the order
of connection as follows:

{(xs, ys, zs), . . . , (xi, yi, zi), . . . , (xt, yt, zt)} (2)

The coordinates of the starting and ending points are (x s, ys, zs) and (xt, yt, zt). Con-
structing a suitable fitness function is essential in industries such as aircraft and ships. The
primary purpose of this article is to propose a routing algorithm that considers natural
frequency to solve the design problems that require the maximum natural frequency. It
is necessary to minimize the pipeline’s total length, maximize the natural frequency, and
ensure that the spacing between adjacent supports meets the minimum distance for the
installation of the pipeline and other requirements. For these pipe design problems, pipes
are typically short (less than 1000 mm) but require high natural frequencies (often exceeding
10,000 Hz). Simply assigning weights to different objectives may not satisfy constraints.
Therefore, this article normalizes the length and natural frequency to obtain the optimal
path for the selected pipe for an evaluation function, which includes the total path length
and the natural frequency of the maximum length segment, as follows:

min f ({(xs, ys, zs), . . . , (xt, yt, zt)}) =
β1

m
∑

i=1

√
(xi − xi−1)

2 + (yi − yi−1)
2 + (zi − zi−1)

2/Lre

+β2 ∗ Fre/F(Lmax) + β3 ∗
(

Dsubject − Distancemin

)
/Dsubject+

β4 ∗ Count(Nobstacles)

(3)

In the proposed method, the weight values β1, β2, β3, and β4 represent the relative
importance of length, natural frequency, and the minimum distance between two adjacent
supports. Lmax represents the maximum length of the straight-line segment. Lre represents
the path length when the starting and ending points are directly connected. The nature
frequency of the maximum length segment is denoted as F(Lmax), while Fre represents the
natural frequency of the pipe when the starting and ending points are directly connected.
The variable m represents the number of segments in the pipe path. Count(Nobstacles) is
the number of nodes intersecting obstacles or other pipes. To ensure that the path can
be processed, it is necessary to incorporate additional constraints based on engineering
rules. One important constraint is Dsubject, which limits the minimum allowable length for
the pipe. Dmin is the shortest distance between any two supports in the path. When the
shortest distance is greater than Dsubject, β3 is set to 0.

A Natural Frequency Surrogate Model for Design Phase

There are several methods available to solve for the natural frequency of a pipe, such as
the transfer-matrix method [29], the nonlinear vibration method [30], and the finite element
method. However, these methods involve intricate numerical calculations, including mesh
division and inverse matrix operations, which can be time-consuming. They become
unacceptable during the iterative design process when the pipe path, shape, and support
positions are not yet determined. To address the challenge of time-consuming natural
frequency calculations during the iterative design process, this paper proposes a simplified
approach. It treats the pipe support as a fixed constraint and introduces a surrogate model
to establish a numerical replacement model for natural frequency. This surrogate model
aims to expedite the calculation of the natural frequency, enabling consideration of the
natural frequency and other dynamic characteristics in the pipe routing process.

The pipe for establishing a numerical surrogate model for the natural frequency is
shown in Figure 11. In Figure 11, the boundary conditions are the fixed support at both
ends. The reason for using fixed supports at both ends is that cantilever pipelines are not
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allowed for aero engines. U is the flow velocity inside the pipe and
.

U is the change in flow
velocity. And, respectively, T0 represent the axial force and P0 represents the pressure of
fluid inside the pipe. x is the position coordinate along the length direction of the pipe;
p(x, t) represents the force. d0 represents the outer diameter of the pipe, and h represents
the thickness of the pipe. The nonlinear vibration equation of the pipeline is derived in
reference [31], which is listed in Equations (4) and (5).(

mp + m f

) ..
u + m f

.
U + 2m f U

.
u′+ m f U2u′′ + m f

.
Uu′−

EA
(

1
2

T0
EA u′′ + u′′ + 3

2 u′u′′ + 1
2 v′v′′

)
− 3

2 EIv′′v(3) = 0
(4)

(
mp + m f

) ..
v + m f

.
Uv′+ 2m f U

.
v′+ m f U2v′′

− 1
2 EA

(
T0
EA v′′ + u′′v′+ u′v′′

)
+

EI
((

1 + T0
EA

)
v(4) + 3

2 u′v(4) + 3u′′v(3) + 3
2 u(3)v′′

)
= P(x, t)

(5)
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In order to solve the above partial differential equation, the galerkin method is used 
to discretize the equation. Therefore, the displacement function in the pipeline can be ex-
pressed as (9) and (10) 
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Figure 11. Calculation model of natural frequency.

In Equations (4) and (5), E is the Young’s modulus of the material, A is the cross-
sectional area of the pipe, and I is the interface moment of inertia, and m f and mp represents
the density of the liquid and the pipe material. The following dimensionless parameters
are introduced.

ξ = x
L , η = u

L , ω = v
L , µ = UL

√
m f
EA

β =
m f

m f +mp
, τ = t

L

√
EI

(m f +mp)

Π0 = T0L2

EI , Π1 = AL2

I ,
p = PL2

EI

(6)

Thus, the nonlinear vibration equation of the fixed support is obtained as follows:

..
η +

√
β

.
µ(1 + η′) + 2µ

√
β

.
η′+ µ2η′′−

Π1

(
1
2 Π0 + 1

)
η′′ − Π1

(
3
2 η′η′′ + 1

2 w′w′′
)
− 3

2 w′′w(3) = 0
(7)

..
w +

√
β

.
µw′+ 2µ

√
β

.
w′+ µ2w′′ − 1

2 Π1Π0w′′ − Π1(η
′′w′+ η′w′′)+

(Π0 + 1)w(4) + 3
2 η′w(4) + 3η′′w(3) + 3

2 η(3)w′′ = p
(8)

In order to solve the above partial differential equation, the galerkin method is used
to discretize the equation. Therefore, the displacement function in the pipeline can be
expressed as (9) and (10)

η(ξ, τ) = η(ξ) ∗ Tu(τ) = ∑ ϕu
r (ξ) ∗ qu

r (τ) (9)

w(ξ, τ) = W(ξ) ∗ Tv(τ) = ∑ ϕw
r (ξ) ∗ qw

r (τ) (10)

Among them, η(ξ, t) and w(ξ, t) satisfies Equations (11) and (12).

η(0, τ) = η(1, τ) =
∂η(0, τ)

∂ξ
=

∂η(1, τ)

∂ξ
= 0 (11)
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w(0, τ) = w(1, τ) =
∂w(0, τ)

∂ξ
=

∂w(1, τ)

∂ξ
= 0 (12)

ϕr(ξ) satisfies the following Equation (13)

ϕr(ξ) = cosh(λrξ)− cos(λrξ)−
cosh(λr)−cos(λr)
sinh(λr)−sin(λr)

(sinh(λrξ)− sin(λrξ))
(13)

λr satisfies the following Equation (14)

cosh(λr)cos(λr) = 1 (14)

Multiply both sides of the equation to the left and integrate in the interval [0, 1] to obtain
a discrete equation. In order to obtain the natural frequency of the pipe, the nonlinear term
related to time in the equation can be ignored, so that the natural frequency can be obtained.

M
..
T(τ) + 2µG

.
T(τ) +

(
K + µ2H +

.
µG + S

)
T(τ)

+N(T(τ)) = F(τ)
(15)

To verify the accuracy of the natural frequency calculation in this article, a curve depict-
ing the variation in natural frequency with fluid flow velocity in the pipe is provided and
compared with the results presented in article [31] (Figure 12). The material parameters are
the same as in article [31], which are listed in Table 2. The curve depicting the variation in
natural frequency with fluid flow velocity calculated in this article. It should be noted that
natural frequencies are dimensionless in Figure 12. According to Equation (16), it can convert
the dimensionless natural frequency into the actual value. λn is the dimensionless natural
frequency. λn is the actual value of natural frequency. The relationship between natural
frequency, length, and outer diameter for a steel pipe is obtained in Figure 13. In Figure 13,
different colors represent the different natural frequency curves for different diameters.

λn = λnL2

√
mp + m f

EI
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Figure 12. The natural frequency verification in this article. The curve depicting the variation in
natural frequency with fluid flow velocity calculated in this article.

Table 2. The material parameters for natural frequency verification.

Name E (Pa) Beta L (mm) p Π0 D (mm) H (mm) µ

Value 1e10 0.1 2000 0 0 20 0.2 0
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Figure 13. The natural frequency with different diameters.

Through the above derivation, it can be found that the solution of natural frequency is
accompanied by a large number of inversion operations, which is very time-consuming for
the path planning algorithm. Therefore, this paper uses the surrogate model [32] technology
to establish the numerical model of natural frequency along with the pipe length, outer
diameter, and wall thickness, so as to speed up the calculation of natural frequency. The
surrogate model for natural frequency is obtained by the Equation in (17). Frequency
represents the natural frequency of the pipe, A0, y0, t is the fitting constant, and L is the
length of the pipe. For example, for a steel pipe with a radius of 20 mm and a wall thickness
of 0.2 mm, A0, y0, and t are 7.08 × 104, 1.08 × 102 and 4.03 × 102 (Table 3). Finally, a fast
surrogate model for natural frequency has been obtained.

Frequency = A0exp(−L/t) + y0 (17)

Table 3. The fitting constant parameters for different diameters.

Diameter A0 t y0

5 mm 1.44 × 107 8.01 5.4 × 103

10 mm 7.02 × 106 18.1 8.28 × 103

20 mm 7.08 × 104 1.08 × 102 4.03 × 102

5. Path Planning for Multi-Pipe System by Using Novel Collaborative Evolution

Previous studies on path planning have primarily focused on optimizing individual
pipes, which may not guarantee a global optimal solution for the entire pipe system. To
address this limitation and achieve an optimal solution for the entire system, this paper
proposes a co-evolutionary approach for pipe routing. In this approach, each pipe in the
system generates its own population, resulting in a multi-population system. By promoting
cooperation and competition among the pipes, a global optimal solution is established. In
the collaborative evolutionary computation of pipes, each pipe population is composed of
individuals representing various paths. Heuristic algorithms like genetic algorithms are
utilized to drive the evolutionary process for each pipe. During the evaluation of individ-
uals, the evaluation process considers both coordination between different pipes and the
natural frequency. This approach assigns lower fitness to individuals that positively impact
coordination. Conversely, individuals that hinder coordination are assigned higher fitness.
By incorporating coordination, the evolutionary process encourages the development of
pipe paths that promote mutual coordination and overall system performance.

Previous works have used multi-ant colony collaborative evolutionary algorithms to
solve multi-pipe routing and branch pipe routing problems [5]. However, these approaches
heavily rely on the control parameters of the ant colony optimization algorithm. Another
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pioneering work [27] was the first to utilize genetic algorithm co-evolution to address
multi-pipe routing problems. Nevertheless, these methods lacked consideration for engi-
neering constraints and the natural frequency of pipes. Moreover, they solely assessed the
coordination relationship between optimal individuals from different populations, without
achieving true co-evolution.

To overcome these limitations, this paper proposes a novel collaborative evolution
method (See Figure 14). In Figure 14, the distinctive aspect of this method is highlighted in
red, which sets it apart from other collaborative evolutionary algorithms. The approach
involves N populations, each containing m initial paths obtained through the RRT algo-
rithm. After acquiring the initial fitness values of each individual, the evolution proceeds
sequentially based on the order of the initial populations. During population evolution, a
path is randomly selected from each population, forming the temporary solution for the
current system. The fitness value of this temporary solution is evaluated using Equation (3).
This process is repeated k times to obtain the average fitness value and update the fitness
values of each individual. The above evolutionary process continues until the maximum
number of generations is reached.
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Figure 14. Path planning for multi-pipe system by using novel collaborative evolution.

Figure 15 is the detailed diagram of two pipes in the red part of Figure 14. Figure 15 is a
pipe system with two pipes. The population number of each pipeline is 4. First, record its
current fitness function and the number of times selected. Then, randomly select a path from
each population and repeat it for k times (k = 3 in Figure 15) to form a temporary solution of
the pipe, evaluate the temporary solution of the system according to Equation (3) (such as k1
in Figure 15), obtain the average fitness value of the pipe, and start the next update.
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Figure 15. The detailed diagram of two pipes in the red part of Figure 14.
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6. Simulations and Results

Three experiments were carried out to demonstrate the feasibility and effectiveness of
the proposed algorithms. The first and second cases were based on a well-designed pipe
routing problem in a 2D plane, and it was used to verify the optimization performance of
the algorithms, for instance, the path searching ability, the convergence rate and speed, as
well as the robustness. The third experiment involved applying the proposed algorithms
to an aero-engine model with a complex and narrow routing space. This case aimed to
demonstrate the practicality and effectiveness of the algorithms in handling real-world
engineering scenarios with numerous obstacles and constraints. The optimization perfor-
mance was evaluated in terms of the ability to find optimal or near-optimal pipe paths that
consider the natural frequency, while also meeting various engineering constraints.

6.1. Single Pipe Path Planning in Two-Dimensional Environment

A routing space is depicted in Figure 16 with several obstacles. The routing space
is a rectangular area measuring 400 * 300 mm2. The obstacles are represented by black
rectangles. The red and green stars indicate the starting and ending points of the pipe. The
evaluation function factors are as follows: β1 = 0.5, β2 = 0.5, β3 = 0.5, and β4 = 1 × 106

the minimum length requirement is set to Lmin = 30. The pipe material is 0cr18ni9 with a
radius of 20 mm and a wall thickness of 0.2 mm. The natural frequency surrogate model
factors are A0 = 7.08 × 104, y0 = 1.08 × 102, and t = 4.03 × 102. The number of the initial
population is 5. The blue line represents the path of pipe. Additionally, the yellow dots
indicate the specific positions along its route where the pipe should be supported.
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Figure 16. Simulation result in case study 1. The red and green stars indicate the starting and ending
points of the pipe.

The statistical results are shown in Table 4. Figure 16 is the result of case study
1. Figure 17 displays the fitness curves of the simulations. In Figure 16, the minimum
segment occurs between the second and third support points with a distance of 30 mm.
Case study 1 shows the pipeline’s centerline obtained by the routing algorithm, not the
2D model of the pipeline. In case study 1, the turning radius issue was not considered;
only the pipeline’s centerline was displayed. From Figure 16, it can be found that the
proposed method can meet the requirements and ensure collision avoidance between the
layout environment. This article takes into consideration the natural frequency of the
longest segment and optimizes the support positions while planning the path. During the
optimization process of the support positions, the distance between two support positions
must meet the specified requirement, which in this case is a minimum distance of 30 mm.
According to the data in Table 4, the natural frequency of the longest segment is 8079.57 Hz,
the total length is 239.6 mm, the convergence value of the evaluation function is 0.71161,
and the convergence is reached after 825 generations.
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Table 4. Information of the piping paths in case study 1.

Case Length (mm) Frequency (Hz) Minimum
Segment (mm) Fitness Value Generations

1 239.6 8079.57 30 0.71161 825
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6.2. Multi-Pipe Path Planning in Two-Dimensional Environment

After validating the correctness of routing a single pipe, further validation of the
algorithm for multiple pipes was conducted. The environment and simulation results are
presented in Figure 18. In this particular case of the multi-pipe routing algorithm, there
are three pipes and each pipe has an initial population of 5. The parameters used in this
case are the same as in case 1. The fitness value of the current optimal path is outputted
every 10 generations. The fitness curves of the simulations are shown in Figure 19. At the
beginning of the iteration, the evaluation function has a relatively high value due to the
issue of initial paths of several pipelines crossing each other. As the iteration progresses,
the phenomenon of intersecting disappears, resulting in a rapid decrease in the fitness
value until convergence. The results are summarized in Table 5. In Figure 18, the red,
green, and blue lines represent the centerlines of pipes P1, P2, and P3. It can be observed
from Figure 18 that the multi-pipe algorithm proposed in this paper effectively achieves
obstacle avoidance among multiple pipes in complex environments. By considering the
natural frequency of the longest straight segment and the shortest segment in the evaluation
function, the path planning result is no longer solely focused on achieving the shortest
path. From Figure 18 and Table 5, it can be observed that the total path length of the red
pipe is 650.2 mm, with the shortest segment length of 79.7 mm, which exceeds the set
constraint of 30 mm. The natural frequency of the longest segment is 2686.6 Hz, and there
are two clamp support positions. Convergence is achieved after 2520 generations. The
total path length of the green pipe is 544.6 mm, with the shortest segment length being
46.7 mm. The natural frequency of the longest segment is 20,862.5 Hz, and there are five
support positions. Convergence is achieved after 3510 generations. The total path length of
the blue pipeline is 77.8 mm, with the shortest segment length being 43.4 mm, the natural
frequency of the longest segment being 46,053.8 Hz, and having one support position. The
convergence algebra is 2200 generations.
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Figure 18. Simulation result in case study 2. The different stars indicate the different start and end
points of the pipe.
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Table 5. Information of the paths in case study 2.

Case Pipe Length (mm) Frequency (Hz) Minimum
Segment (mm) Fitness Value Generations

2
1 650.2 2686.6 79.7 370.4 2520
2 544.6 20,862.5 46.7 2.50362 3510
3 77.8 46,053.8 43.4 402.752 2200

6.3. Application

After validating the proposed method in 2D plane cases, it is demonstrated that the
algorithm can effectively consider the natural frequency of the longest segment, ensuring that
the routing results can withstand the actual engineering loads. In case study 3, the algorithm
is applied to a real engine model. The model used in this article is the Garrett GTCp85-98D gas
turbine engine, which was obtained through an open-source model acquisition method. The
model is a scaled model. The routing space in this model is filled with numerous obstacles
and accessories, posing challenges for pipe arrangement (Figure 20).



Appl. Sci. 2024, 14, 1143 18 of 22

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 21 
 

 
Figure 19. Fitness value in case study 2. 

Table 5. Information of the paths in case study 2. 

Case Pipe Length (mm) Frequency (Hz) Minimum Segment (mm) Fitness Value Generations 

2 
1 650.2 2686.6 79.7 370.4 2520 
2 544.6 20,862.5 46.7 2.50362 3510 
3 77.8 46,053.8 43.4 402.752 2200 

6.3. Application 
After validating the proposed method in 2D plane cases, it is demonstrated that the 

algorithm can effectively consider the natural frequency of the longest segment, ensuring 
that the routing results can withstand the actual engineering loads. In case study 3, the 
algorithm is applied to a real engine model. The model used in this article is the Garrett 
GTCp85-98D gas turbine engine, which was obtained through an open-source model acqui-
sition method. The model is a scaled model. The routing space in this model is filled with 
numerous obstacles and accessories, posing challenges for pipe arrangement (Figure 20). 

 
Figure 20. Aero engine in case study 3. 

Using the adaptive decomposition method in this article to model the routing space. 
The final grid size achieved by the adaptive decomposition and the entire process takes a 
total of 1461 s in a 2.9GHz CPU computer. In case study 3, the number of pipes is 12, and 
the diameters are 5 mm, 10 mm, and 20 mm. The material is 0cr18ni9 which is commonly 
used in aero engines. In the surrogate model of natural frequency for the longest segment, 
the parameters are shown in the Table 2. 

1x103 2x103 3x103 4x103 5x103 6x103 7x103

0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

 

 

Fi
tn

es
s 

Va
lu

e

Generations

 P1
 P2
 P3

Figure 20. Aero engine in case study 3.

Using the adaptive decomposition method in this article to model the routing space.
The final grid size achieved by the adaptive decomposition and the entire process takes a
total of 1461 s in a 2.9GHz CPU computer. In case study 3, the number of pipes is 12, and
the diameters are 5 mm, 10 mm, and 20 mm. The material is 0cr18ni9 which is commonly
used in aero engines. In the surrogate model of natural frequency for the longest segment,
the parameters are shown in the Table 2.

Pretreatment on the Direction Constraint of the Pipe Nozzles

The initial pipe nozzles may be covered by the obstacle extension; to eliminate the
impact and meet the direction constraints on pipe nozzles, the locations of the connection
points will be extended outward appropriately in advance. The grid paths between the
initial nozzles and the new nozzles are straight, which should be kept and marked as
obstacles. When finishing the routes between the new pipe nozzles, both kinds of paths will
be connected together to obtain a complete layout. Note that the extension distance must
be greater than the maximum distance of obstacle extension. In general, the same extension
distance will be specified for all pipe nozzles at first; to obtain better results, the extension
distances of some nozzles could be adjusted according to the feedback of the initial layouts,
in this case, when the extension distance of each nozzle is set to 8 mm (Table 6).

Table 6. Pretreatment of the direction constraint of the pipe nozzles in case study 3.

Case Pipe Diameter (mm)
Extension Distance
of Each Pipe Nozzle

(mm)

3
P1~P6 5

8P7~P11 10
P12 20

After these pretreatments, the pipes can be arranged by following steps: (a) extend the
pipe nozzles outward by 8 mm; (b) search the path of the current pipe with the proposed
algorithms; (c) smooth the route to allow for actual processing. In Example 3 of this article,
the fillet radius of all the pipelines is 3 mm. Figure 21a shows the full view of the engine
routing space. Figure 21b shows the pipe view after hiding the engine parts.

The obtained layout is shown as Figure 21. As can be seen, to avoid collisions between
pipes, many bending parts are involved. In Figure 21, all turning points are the fixed
positions of the clamps, thereby dividing the pipeline into multiple segments and increasing
the natural frequency of the pipeline. From the values of the evaluation function in Table 7,
it can be found that the fitness function designed in this article effectively normalizes the
magnitude mismatch between pipe length and natural frequency, achieving the goal of
considering natural frequency during the routing process. When the fitness value is 1, this



Appl. Sci. 2024, 14, 1143 19 of 22

indicates that the pipeline joint is directly connected. When the fitness value is greater than
1, this indicates that the shortest segment of the pipeline falls below the required 30 mm
length, and β3 takes on a value of 0.5. Conversely, when the fitness function is less than
1, this implies that the optimization process of the pipeline has successfully increased the
natural frequency by optimizing the bending positions and strategically setting clamps.
It is worth noting that for pipe 12, conventional algorithms like maze, A*, and other
greedy algorithms generally provide direct connection results as their main aim is to find
the shortest path. However, due to the large outer diameter and considerable length of
pipe 12, its natural frequency value is very small. In contrast, the proposed algorithm goes
beyond simple shortest-path solutions and significantly improves the natural frequency of
pipelines by iteratively optimizing pipeline path points during the layout process.
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Table 7. Result of the pipe paths in case study 3.

Case. Pipe Length (mm) Frequency
(Hz)

Minimum
Segment

(mm)
Fitness Value

3

P1~P6 19.1 1.3 × 106 19.1 1.18
P7 48.3 5.30 × 103 48.3 1
P8 70.7 2.08 × 106 10 1.19
P9 39.8 7.97 × 103 39.8 1

P10 33.1 1.17 × 104 33.1 1
P11 31.1 1.33 × 104 31.1 1
P12 67.8 1.47 × 104 33.3 0.87
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Overall, the results of the experiments illustrate the robustness and efficiency of the
proposed algorithms in path planning for pipelines, considering not only the shortest path
but also the critical factor of natural frequency to ensure the pipelines can withstand actual
engineering loads and vibrations.

7. Conclusions

In this article, a novel and effective pipe path planning method considering natural
frequency has been developed. This article presents an adaptive decomposition method
for modeling the narrow routing space in actual aero-engine applications. The adaptive
decomposition method contributes to the accurate modeling of the narrow routing space,
enabling more effective and efficient pipe design in aero-engine applications. Then, the
proposed method addresses the issues of illegal initial paths by improving the initial
population using RRT. Additionally, several novel operators are introduced to enhance the
performance of the GA. The evaluation function considers the trade-off between natural
frequency and length by applying appropriate weights. Moreover, a new co-evaluation
algorithm is proposed for multi-pipe path planning, which initializes the chromosomes
of each pipe using the connection points generated around the routed pipe and evolves
them through the iterative process. Simulations demonstrate that the proposed algorithm
effectively generates optimal layouts for different piping cases. Several conclusions are
listed as follows:

(1) This article proposes a new algorithm for the spatial modeling of aero engines and
ships. This algorithm accelerates the recognition efficiency of obstacles in pipeline
layout space by adaptively adjusting the grid size, merging and decomposing existing
grids. Thus, existing algorithms can be applied to the spatial extraction of real engines
and ships. Compared with traditional cell decomposition, the efficiency of obstacle
identification has been improved by more than 50%.

(2) This article integrates an RRT algorithm, a genetic algorithm, and other optimization
algorithms to introduce novel selection, mutation, crossover, and other operators, leading
to the development of a new multi-pipe routing algorithm. By formulating appropriate
fitness functions, the natural frequency of the longest segment in the pipeline route
is considered, ensuring that the laid pipeline meets practical requirements, such as
avoiding resonance, and can be directly applied to real engineering environments. This
comprehensive approach addresses the challenges of pipeline layout and optimization,
enhancing the efficiency and effectiveness of the entire process.

(3) The proposed algorithms in this article demonstrate their ability to generate con-
nected paths between the pipe nozzles while satisfying various constraints. These
constraints include maintaining the direction constraints on the nozzles, ensuring
collision avoidance between pipes and the layout environment. The algorithms con-
sider the complex routing space, obstacles, and diversity of constraints to optimize
the pipe paths effectively. By incorporating techniques such as genetic algorithms,
RRT, and co-evolutionary methods, the algorithm in this article can consider the
maximum interval in the pipeline route, thereby reducing the maximum interval
length and reducing its vibration response. This comprehensive approach contributes
to the generation of optimal and feasible pipe arrangements in complex engineering
scenarios, such as aero engines and other applications where precise and efficient pipe
routing is crucial.
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