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Abstract: Despite their diminutive neural systems, insects exhibit sophisticated adaptive behaviors in
diverse environments. An insect receives various environmental stimuli through its sensory organs
and selectively and rapidly integrates them to produce an adaptive motor output. Living organisms
commonly have this sensory-motor integration, and attempts have been made for many years to
elucidate this mechanism biologically and reconstruct it through engineering. In this review, we
provide an overview of the biological analyses of the adaptive capacity of insects and introduce
a framework of engineering tools to intervene in insect sensory and behavioral processes. The
manifestation of adaptive insect behavior is intricately linked to dynamic environmental interactions,
underscoring the significance of experiments maintaining this relationship. An experimental setup
incorporating engineering techniques can manipulate the sensory stimuli and motor output of insects
while maintaining this relationship. It can contribute to obtaining data that could not be obtained in
experiments conducted under controlled environments. Moreover, it may be possible to analyze an
insect’s adaptive capacity limits by varying the degree of sensory and motor intervention. Currently,
experimental setups based on the framework of engineering tools only measure behavior; therefore,
it is not possible to investigate how sensory stimuli are processed in the central nervous system. The
anticipated future developments, including the integration of calcium imaging and electrophysiology,
hold promise for a more profound understanding of the adaptive prowess of insects.

Keywords: adaptive behavior; insect; sensory-motor integration; insect on-board system; virtual reality
system for an insect

1. Introduction

The recent shortage of workers due to the declining birthrate and aging population
has led to a demand for the automation of tasks and the introduction of systems that
can replace human workers. According to a survey by the International Federation of
Robotics, the industrial robotics market trend is expected to head back to growth and reach
record highs from 2021 onward, despite a period of stagnation due to the impact of the
spread of the new coronavirus [1]. Thus, industrial robots in factory production lines and
transport robots operating in distribution warehouses contribute to work efficiency and
automation [2,3]; however, challenges such as working with humans remain unresolved [4].
Although artificial systems play an active role in limited spaces and tasks, several challenges
must be overcome before they can be integrated into human society. While integrating
intelligent robots into human society is expected to bring many benefits, we must also
consider the social and ethical issues that will emerge. In fact, it has been pointed out that
social support robots that interact with people face many ethical issues [5]. Moreover, as a
general issue raised, the problems of people losing their jobs as a result of automation
and who is responsible when a robot makes a mistake have not been solved. In addition,
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there is a risk that the data used for learning by artificial intelligence may contain private
information, which could lead to more serious privacy violation problems in the future.
The most frightening situation is that artificial intelligence may learn wrong data and
make decisions that are unacceptable to humans based on wrong inferences, thus causing
harm to human society. The potential ethical, privacy, and security issues associated with
replacing everything with robots or artificial intelligence cannot be avoided. Therefore, it is
important that we firmly promote the development of laws such as the “Robot Law” [6]
at a time when robots have not yet penetrated society. It is desirable to build a society
in which robots coexist with humans by drawing a line between humans and robots (or
artificial intelligence).

However, robots are currently not melted into human society. What are the important
elements for robots to permeate society? Among the elements that make up the robot,
the implementation of “adaptability”, i.e., the ability to perform a wide range of tasks
in complex and unknown environments, is an important and highly anticipated capa-
bility. Some researchers have tried to obtain this adaptability by fusing AI and robotics,
which have been studied independently [7]. This research motivation has been supported
worldwide and competitions, such as the RoboCup Challenge [8] and the DARPA Chal-
lenge [9,10], have been held. Thanks to the advancement of the computer, artificial systems
have acquired a certain degree of adaptability [11], but they work only to a limited extent.
One reason for this is the difficulty for AI in capturing as a formal, symbolic problem
from unreliable sensor data as it moves to more natural environments [7]. As another
aspect, while artificial intelligence has made remarkable progress in areas such as natural
language processing and image recognition, where huge amounts of datasets are available
for use in learning, in the real world, where tasks are performed using physical or chemical
characteristics, acquiring large amounts of datasets that cover all situations is difficult.
Moreover, wear and deterioration of the sensors and actuators installed on the robot change
the amount of information it can obtain and its mobility, making it impractical to work
while perceiving and relearning them in real time. Therefore, for the further development
of artificial intelligence, it is important to let artificial intelligence experience the real world
and continue to collect data. In other words, further development of artificial intelligence
requires a deeper connection between the robotic body and AI. Moreover, although the
computational power of computers has increased dramatically with the development of
integrated circuits, it is difficult to expect further improvements in computational power
because the end of Moore’s law, which predicts the number of transistors implemented
in an integrated circuit [12], is in sight. Moreover, the scale of microcomputers that can
be installed in a robot moving around in an unknown environment is limited, and global
communication is not always possible.

As an alternative, methods have been considered to reproduce the body structure and
intelligence of living things through engineering [13] and incorporate biological materials
into artificial systems [14]. In addition, research has been proposed to investigate the brain
function of organisms using robots as a tool for analysis [15]. Of course, it is impossible to
perfectly reproduce all the flexibility and agility of sensors and actuators in engineering an
imitation of an organism. As a result, systems have been proposed that can incorporate gait
patterns similar to animals [16] and localize an odor source in the outside environment [17],
but because these are only partial imitations, they have not yet achieved performance
comparable to that of organisms. To address this problem, cyborg research [18], which
utilizes actual insects as robots, is gaining attention. Current cyborg research focuses on
the utilization of insects as moving vehicles, and is thus established by having the operator
control the insect’s direction of movement. Insects are equipped with many sensory organs
that cannot be imitated by artificial sensors, but current insect cyborgs do not benefit from
the use of superior sensory organs. In addition, insects also age or vary from one individual
to another, making it difficult to achieve uniform performance. However, among living
organisms, more than one million species of insects that have small nervous systems [19] but
can behave adaptively have been identified worldwide, and it is thought that there are up
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to several dozen times as many undiscovered insect species [20]. This suggests that insects
have a way of adapting to diverse environments. In addition, an insect does not carry out
all operations with its brain, but uses the body as part of its computing machines, thereby
reducing the load on the brain [21,22]. This is called embodied intelligence. In other words,
an organism, including an insect, has a very good balance between the body (hardware) and
brain (intelligence or software), and is a good example of the future relationship between
robots and AI. An insect can accomplish a variety of tasks despite its small brain by making
good use of embodied intelligence. For example, they have a variety of migratory strategies,
such as walking, flying, and swimming, which are essential for survival [23–25]; navigation
strategies that skillfully use multiple senses [26]; and swarming behavior that creates an
insect society [27]. The size of insect brains cannot be compared because insect species vary
in size. However, most insect brains are extremely small, only a few millimeters in size,
despite their multifunctionality. Considering that robots accomplish tasks in real time, their
processing power is very high, and it is conceivable that there is still much to be learned for
designing economic and efficient autonomous robots.

We focus on navigation among the tasks accomplished by an insect. While there
are many types of navigation, such as using polarized light [28] or sound [29], we focus
on navigation by using an odor. Navigation requires the insect to select appropriate
actions based on environmental stimuli and to perceive the direction and distance it
has traveled. The difficulty of navigation that dominates the use of odor is that the
structure of odor is complex due to the influence of air dynamics. Moreover, not only
is the odor structure constantly changing, but the complexity of the odor distribution is
greatly increased by obstacles and other factors that interfere with the odor. Because of
these problems, odor-based navigation is considered difficult to solve from an engineering
viewpoint [30–32]. On the other hand, many organisms universally possess the ability to
navigate by odor, and successfully find food or mates [33]. In particular, the sex pheromone
transmission system of moths is one of the best examples of sophisticated odor source
localization in animals and has been studied extensively for a long time [34–37]. Male
moths use intermittent sex pheromone information emitted by females to detect and orient
females of the same species. Because of the relatively simple relationship between sex
pheromone chemicals and exploratory behavior, pheromone source-searching behavior can
be induced relatively easily in the laboratory. Therefore, this behavior has been studied as
an essential model system to better understand the general mechanisms underlying odor
source localization in the insect. Accordingly, we focus mainly on the subject of odor-based
navigation. This article provides an overview of the research that has been reported to
investigate the adaptive capacity of insects, review methods for intervening with insects,
and explore their adaptive behavior using engineering tools.

2. Overview of the Biological Experimental Setup Using Engineering Tools

Insects receive various stimuli from the external world, process them appropriately,
and convert them into behavior, enabling them to adapt. This behavior is generated by
information acquisition by superior sensory organs and information processing by the
microbrain [38], which is only a few millimeters in size. Therefore, various experiments
have been conducted in the fields of neuroethics, animal behavior, physiology, genetics,
and molecular biology to investigate sensory organs and the cranial nervous system.

As shown in Figure 1A, when an insect detects a key stimulus among sensory stimuli,
a signal is transmitted to the central nervous system and converted into an appropriate
motor command. This results in control of the muscles, which is emerged as behavior. We
focus on Figure 1, which shows that insects constantly receive new sensory stimuli from the
surrounding environment and generate different behaviors each time. Adaptive behaviors
of an insect are unlikely to be elicited by the insect alone, and seem to emerge through
interactions with the environment [39]. In other words, it is difficult to generate adaptive
behaviors in open-loop experiments that are disconnected from the natural environment,
and it is necessary to advance the research from other aspects for a true understanding of
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behavior. However, it is impossible to know when and to what extent insects are receptive
to sensory stimuli in free-walking or flight experiments. To solve this problem, the insect–
machine hybrid system [18,40] and the virtual reality system for insects [41] have recently
appeared, incorporating state-of-the-art engineering technology into biological experiments.
These systems allow us to conduct experiments while maintaining the relationship between
the insect and its environment, and thus, we can measure adaptive behavior. In addition,
by intervening in the input of sensory stimuli to the insect and the output of the robot after
the insect has acted, as shown in Figure 1B, it is possible to highlight the conditions under
which adaptive behavior occurs.

Stimulus
receptor

Central nervous system Muscle Legs/Wings
Sensory 
stimulation

Behavior

Environment

A

: Insect components

Stimulus
receptor

Central nervous system Muscle Legs/Wings

Sensory 
stimulation Behavior

Environment

Stimulator Intervention

Insect behavior

Oparator
signal

Sensory stimulation
for insect

Intervention
Artificial

body

Oparator
signal

B

: Artificial components

Figure 1. A block diagram from sensory stimuli to behavioral output. (A) Block diagram of an insect.
The central nervous system generates motor commands. (B) Block diagram of intervention system for
an insect. Intervention methods vary depending on the type of experimental setup, such as cyborg or
VR for insects.

A necessary element of an experimental system that incorporates engineering tech-
nology into biological experiments is an interface between the organism and the artificial
system, such as electrophysiology, behavior measurement, and electrical stimulation. Once
the interface is established, it is possible to manipulate robots using signals from insect
physiological responses or behavior, or to control insects by electrical stimulation. This
review deals with the control of robots by insects. Previous studies have attempted to
control robots using the insect itself or parts of the insect. By taking a part or element of
the insect to be investigated and controlling a robot, the functional contribution of that
part in the real world can be clarified. To investigate the characteristics of sensory organs,
only the sensory organs can be connected to the robot, or to investigate brain functions,
the robot can be operated by electrical signals from the brain. For example, to investigate
the characteristics of insect sensory organs, a study has been reported in which behavioral
experiments were conducted using insect antennae as sensors for a robot [42,43]. There
is research that verified the validity of an antennal lobe model by using technic that use
antennae as sensors for robots, reading an electroantennogram of an insect, and controlling
a robot from a neuron model that represents the antennal lobe in the brain [44]. Another
study controlled the robot with the insect brain to investigate how visual information is
processed. Many insects elicit a variety of visually induced behaviors; motion-sensitive
visual interneurons are a type of neuron responsible for these behaviors [45,46]. N. Ejaz et al.
found that H1 neurons that respond to horizontal optic flow have adaptive gain control for
dynamic image motion [47]. The research team also showed that robots can be controlled
to perform collision avoidance tasks using techniques that measure the activity of H1
neurons [48]. In addition to studies of controlling robots based on physiological responses,
other studies have been reported to investigate adaptive functions by changing physical
characteristics. A famous example is research on physically changing the length of the legs
of freely moving ants [49]. Intervening in leg length can force ants to change their stride
length, which is expected to change the frequency of their gait. This change in gait was
found to cause ants to stray when searching for nests. In other words, it is clear that ants
rely on their internal pedometers to navigate their desert habitat.
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Most of the studies described above are invasive experiments. In the case of non-
model organisms, the number of organisms that can be experimented on is limited unless
a maintenance strain has been established in a laboratory. For that reason, it is ideal to
be able to conduct experiments under various conditions in an intact state. To solve this
problem, an insect on-board system and VR for insects can be used to measure behavioral
changes when various sensory and motor operations are applied under intact conditions.
The obstacle avoidance behavior of a cockroach [50], sound-source localization behavior
of a cricket [51], and odor-source localization behavior of a silk moth [52,53] have been
investigated using the insect on-board system. Insects that have boarded the robot, even
though they are from different species, have successfully controlled the robot as their own
body and performed the given task appropriately. Recently, a study has been conducted to
investigate the phototaxis of a free-walking pill bug by developing a robot equipped with a
light stimulator that tracks the pill bug [54]. The advantages of this system are that it can
measure the relationship between behavior and sensory stimuli in a more natural walking
state, and it can be used for organisms such as centipedes, for which tethered measurement
systems are difficult to use.

In an experiment on VR for insects, Kaushik et al. found that dipterans use airflow
and odor information for visual navigation [55]. Ando et al. also reported a VR system
for source localization that can be used to quantitatively analyze the source localization
behavior of crickets [56]. Although not an insect, Radvansky and Dombeck successfully
used a VR system to measure olfactory navigation behavior in mammals (mice) [57].
All motile organisms use spatially distributed chemical features in their surroundings
to induce behavior, but investigating the principles of this behavior induction has been
difficult due to the technical challenges of spatially and temporally controlling chemical
concentrations during behavioral experiments. Their research has demonstrated that the
introduction of VR into the olfactory navigation experiment of organisms can solve the
above problem. As described above, there is much that is not known about the olfactory
behavior of organisms due to the complexity and difficulty in quantifying the spatial and
temporal nature of the odor as a sensory stimulus, and the same is true for the olfactory
behavior of insects. Therefore, the authors have utilized an insect on-board system and VR
for insects to investigate the female localization behavior of an adult male silkmoth. In the
following chapters, we introduce our behavioral experiments.

3. Insect On-Board System

An insect on-board system is a tethered behavior measurement system with added
mobility, in which the insect acts as a pilot and controls the robot. Hence, we can elucidate
the sensory-motor integration mechanisms that support adaptive behavior by manipulating
the conditions under which sensory stimuli are presented to the pilot insect and when the
robot reflects the insect’s movement. The advantages of using the insect on-board system
include the ability to conduct behavioral experiments without significantly disrupting the
relationship between the organism and its environment, as is the case with the cyborg
system, and the possibility of direct comparison with currently proposed behavioral al-
gorithms because the robot is controlled by an insect equipped with the abilities that we
want to extract. In particular, it has been extensively used as a tool to elucidate how insects
efficiently track invisible odors.

Ando et al. constructed an insect on-board system using an adult male silk moth (Bom-
byx mori) as the pilot [53] (Figure 2A). Here, we briefly describe the tethered measurement
system commonly used to measure the behavior of walking insects [58]. In the tethered
measurement system, the insect is placed on a sphere that floats by air from below, as shown
Figure 3. The insect is always at the top of the sphere because one of its body parts is fixed,
but the sphere rotates when the insect moves its legs. The amount of sphere rotation is
read by optical sensors placed along the x- and y-axes. As a result, we can measure the
amount of movement of the insect. Adult male silk moths elicit female-searching behavior
when they detect a female sex pheromone (bombykol) [59]. The silk moth receives sex
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pheromones through two antennae on its head, and behavioral experiments have shown
that it determines and modulates its behavior based on bilateral odor information [60].
Hence, Ando et al. evaluated the robustness of female localization behavior of the silk moth
by manipulating odor-sensory stimuli and intervening in sensory-motor connections [61].
In particular, as shown in Figure 2B, they manipulated the spatial resolution of odor detec-
tion by changing the distance of the suction port that captures odor from the environment.
Moreover, they investigated sensory-motor integration during odor tracking by setting con-
ditions in which the odor information provided to the silk moth was inverted by crossing
the suction port, and the robot moved in the opposite direction of the movement of the
silk moth (Figure 2C). A sex pheromone (Bombykol) was placed as the odor source n the
behavioral experiment, and the insect on-board system was activated 600 mm downwind
of the odor source. The results of the localization experiment are shown in Figure 2D. The
horizontal and vertical axes in Figure 2D indicate the elapsed time and localization success
rate, respectively. The wider the spatial resolution of odor detection, the faster the localiza-
tion time and the higher the success rate. The decrease in the left–right odor concentration
difference caused by the narrowing distance between the odor suction ports was related
to the decrease in localization efficiency, suggesting that the local left–right odor gradient
contributes to appropriate action decisions. In addition, the localization performance was
significantly lower in the I-N and N-I conditions (Steel’s test, *: p < 0.05, **: p < 0.01, ***:
p < 0.001) than in the N-N condition (Steel’s test, *: p < 0.05, **: p < 0.01, ***: p < 0.001),
indicating that bilateral odor information affects the determination of movement direction
after odor detection. In contrast, the I-I condition, in which both the odor sensation and
direction of movement were reversed, was expected to produce results somewhat similar
to the N-N condition. However, the final localization success rate was only 73.3%.

A B

C

D Wide gap Narrow gap

N-N cond. N-I cond. I-N cond. I-I cond.

Figure 2. Experiments on odor source localization of an adult male silkmoth using an insect on-board
system [61]. (A) Appearance of the system used in the experiments. (B) Method for adjusting spatial
resolution in odor detection. (C) Coupling condition of sensory and motor output. (D) Localization
success rate under each condition. The horizontal and vertical axes indicate elapsed time and
localization success rate, respectively. The N-N condition shows the fastest and highest success rate
of localization to the odor source, regardless of the spatial odor detection resolution. We performed
the steel’s test on the success rate (*: p < 0.05, **: p < 0.01, ***: p < 0.001). All data are licensed
under CC-BY.
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Figure 3. Schematic diagram of the tethered behavior measurement system.

For details of the discussion, we recommend reading the original paper [61]; however,
the direction of movement was determined by estimating the local odor gradient using
a bilateral odor input. Therefore, reversing the direction of olfactory input increased the
likelihood of moving in the direction of low concentration, resulting in a larger proportion of
exploratory behavior manifested by rotational movement than by straight-line movement.
This may have reduced odor-tracking performance. On the other hand, the reversal of
motion output not only causes the silk moth to move in an unintended direction, but also
acts as positive visual feedback. This may further cause directional disorientation and
decrease the success rate of localization.

Recently, Shigaki and Ando extended the insect on-board system and investigated
the performance of odor plume tracking when a delay occurred in the timing of sensory
stimuli presented to silkworm moths [62]. The extended insect on-board system is almost
the same as that of Ando et al. However, the extended system is equipped with odor
sensors and provides pheromone stimuli to a silk moth at the time of detection of the odor
sensor. In other words, the silk moth can grasp the odor distribution in the environment
through an odor sensor. We found that the odor-tracking performance decreased as the
time between the reaction of the odor sensor and the presentation of the pheromone to the
silk moth increased. The fact that motor manipulations can be compensated for by enabling
a comparison of expected and actual motions, as represented by corollary discharge [63],
whereas sensory manipulations cannot, may explain this. Corollary discharge is a means of
distinguishing sensory input from own movement from sensory input from the outside
world. Previous research focusing on crickets has revealed corollary discharge at the neural
circuit level [64]. All animals need a means by which to distinguish sensory inputs caused
by their own movements from sensory inputs that are due to sources in the outside world.

After detecting an odor, the silk moth shortens its distance from the odor source by
moving in a straight line. Hence, this straight-line behavior is an important element of
efficiency; however, its behavioral threshold is not constant and has been reported to fluctuate
according to serotonin levels in the brain [65]. Furthermore, it has been suggested that a
projection neuron from the antennal lobe, the primary olfactory center where information
received at the antennae is first transmitted, may be able to interpret the odor distribution
in space by differential quantities and not by the absolute concentration of pheromones [66].
Based on these findings, the 60% localization success rate, even with the manipulation of
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sensory input and motor output, suggests that adaptive behavior is emergent through simple
reflex behavior and constant modulation of the threshold for behavioral decision making.

4. Virtual Reality System for an Insect

The virtual reality system for an insect can induce the illusion that the insect is moving
in a real environment by connecting a behavior measurement device that can provide
multisensory stimuli to a virtual space constructed on a computer, as shown in Figure 4A.
Yamada et al. [67] focused on the female localization behavior of an adult male silk moth
and investigated the integration of multisensory stimuli during localization behavior.
This VR is designed based on the tethered measurement system [68], and a multisensory
stimulator is installed around the behavioral measurement system. During the experiment,
three types of multisensory stimuli were provided: odor, wind, and vision. The odor
stimulator provided an odor by spraying air containing sex pheromones onto the right and
left antennae on the head of the silk moth at an arbitrary time. The timing of odor spraying
was controlled by opening and closing the solenoid valve. Visual stimuli were provided
using LED arrays surrounding the silkmoth. The presentation direction of the stripe pattern
generated by the LED array is controlled according to the rotation direction of the silk moth
because it modifies its behavior by the optical flow [69]. The wind direction stimuli were
presented using a push-pull airflow generator called a local exhaust system. The airflow
generator was attached to a hollow servomotor, which was controlled according to the
heading angle of the silk moth to send air from an arbitrary direction.

The odor distribution in the virtual space was generated by recording the diffusion of
odor (smoke) from the odor source in advance using airflow visualization technology and
playing it back randomly in the virtual space. Smoke emitted from the odor source was
diffused into the space at a frequency of 1 Hz (Duration: 0.2 s, Interval: 0.8 s) and a wind
speed of approximately 0.6 m/s from behind the odor source. This allowed us to represent
in the virtual space a phenomenon similar to the diffusion of odors in a real environment.

The presentation timing of each sensory stimulus was linked to the environmental
information detected by the agent (virtual insect) in the virtual space, as shown in Figure 4A.
The behavioral changes induced by multisensory stimuli are reflected in the amount of
movement of the agent in a virtual space. This closed-loop system enabled us to measure the
relationship between multisensory stimuli and behavioral changes comprehensively. The
multisensory stimuli were presented in the behavioral experiment as shown in Figure 4B.
Figure 4B (left and right) shows the differences in the number of sensory stimuli presented,
with the left condition presenting ≤2 sensory stimuli and the right condition presenting 3
sensory stimuli. In Figure 4B, “×” indicates the condition in which no sensory stimuli are
presented, “⃝” indicates that the direction of the sensory stimulus detected by the agent
in the virtual space are similar to the direction actually presented to the silkmoth, and “•”
indicates that the direction of detection and the direction of stimulus presentation to the
silkmoth is reversed. For example, the wind stimulus provided to the silk moth in Cond.
ii was from the rear, even though the agent received wind from the front. An odor (a sex
pheromone) is an essential sensory stimulus that excites localization behavior; therefore, it
was provided under all conditions. The odor stimulus was provided to the left and right
antennae of the silk moth according to the sensor responses on the left and right sides of the
agent. The agent in the virtual space began its search from a position 300 mm downwind of
the odor source. Localization was considered successful if the agent could reach the odor
source within the time limit. In this experiment, we set the time limit to 5 min, which was
long enough because it was unclear what kind of behavioral changes would occur when
sensory information was manipulated.

Figure 4C,D show the localization success rate and search time, respectively. There was
no significant change in the localization rate in the condition group in which ≤2 sensory
stimuli were provided when the presentation condition of the sensory stimuli was changed.
However, in the condition with three sensory stimuli, the localization rate changed signifi-
cantly depending on the presentation condition of the wind stimulus (Fisher’s exact test
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with Bonferroni correction, p < 0.05). Additionally, the search times shown in Figure 4D
showed that the search time tended to be the shortest in the condition in which all three sen-
sory stimuli were correctly provided to the silkmoth (Cond. i). This suggests that efficient
odor source localization can be achieved by integrating the odor and wind information.
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Figure 4. Behavioral experiments using a virtual reality system for an insect [67]. (A) Schematic
diagram of the virtual reality system for the insect; a behavior measurement device that can provide
multisensory stimuli is represented on the left, and a virtual space constructed on a computer is
represented on the right. (B) Wind and visual stimulus presentation conditions. The left and right
sides of the table represent differences in the number of sensory stimuli presented. “⃝”, “×”, and “•”
indicate presented, not presented, and presented from a direction opposite to the actual direction,
respectively. (C) The localization success rate for each stimulus condition. (D) Search time for each
successful localization trial. (E) Comparison of movement speed between (Cond. i), which has the
highest localization success rate in (C), (Cond. ii), which has the lowest localization success rate. The
horizontal axis is the odor detection frequency. Identical letters indicate no significant difference. All
the data are licensed under CC-BY.
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They analyzed the relationship between odor detection status and movement speed to
investigate the behavioral change behind the significant difference in localization success
rates. They used the odor detection frequency as the odor detection state because recent
studies on Drosophila have reported that the behavior of Drosophila is coordinated using
temporal odor information [70]. An intermittent signal is obtained when the odor is
observed at a certain location because the odor emitted from the odor source is carried by
air in a mass called a plume [71]. Insects may predict the distance from the odor source
by the strength of this intermittency [68]. The odor detection frequency was defined as
the number of times a pheromone was received by the silk moth per unit of time. A
graph of the odor detection frequency on the horizontal axis and translational movement
speed on the vertical axis is shown in Figure 4E. The left side of Figure 4E shows the
condition in which all sensory stimuli were provided from the correct direction (Cond. i),
and the right side illustrates the condition in which wind stimuli were presented in the
opposite direction (Cond. ii). The dotted line in the figure is the result of performing a
least-square approximation on the average value. Moreover, we computed approximate
straight lines in piecewise linear functional form. In Cond. i, the speed of translational
movement increased until the odor detection frequency reached 0.7 Hz, after which the
speed decreased. In contrast, the translational velocity was always low, regardless of the
odor detection frequency, in Cond. ii. This suggests that by integrating odor and wind
information, the moth actively moves in the direction of the odor source; however, when
it may be moving in a different direction, it conducts an inactive search until the correct
information is obtained. Peak translational velocity at 0.7 Hz. Figure 4E may indicate that
the moth moves aggressively to approach the female quickly and slow down after 0.7 Hz
to modulate its behavior to accurately locate the female because the frequency at which a
female silkmoth emits sex pheromones is approximately 0.8 Hz [66].

It was found that the male silk moth integrates odor and wind information during
female localization behavior and modulates its behavior to improve the success rate of
localization using a virtual reality system for insects. However, this was a behavior-
level investigation. Although flying insects use a behavioral strategy for estimating wind
direction after odor detection and moving upwind [72,73], these results support the idea
that the silkmoth, a walking insect, also modulates its behavior based on wind direction in
addition to olfaction. However, its strategy is different from that of flying insects.

In this section, we utilized VR to elicit the localization behavior of an insect and
investigate the behavioral changes induced by multiple sensory information. It has been
reported that the VR framework is effective for bee learning [74,75], just as VR can be used
to train humans to drive automobiles or pilot airplanes. In insect experiments using VR,
we can measure behavioral changes when multiple sensory stimuli are applied while the
insect is fixed, making it possible to combine this with physiological experiments, which
is difficult with free-walking experiments. Therefore, VR technology is a tool that can
contribute to the future development of insect ethology because it can obtain novel data.

5. Conclusions and Future Direction

In this review, we discussed research that has investigated the principles underly-
ing the elicitation of adaptive behavior in insects using biological analysis methods and
introduced methods for intervening in the insect’s sensory-motor system using a frame-
work of engineering tools. The sensorimotor intervention system is non-invasive and
can be set up under various conditions, enabling us to obtain phenomena and data that
conventional biological analysis methods cannot observe. The experiments introduced
here were conducted in the laboratory or a virtual environment, and we have not been
able to measure the adaptive behavior of the insect in more natural conditions, such as in
the outdoor environment, where odor distribution is more natural. To address this issue,
one could consider using our proposed “Animal-in-the-Loop” system [76,77]. We have
been unable to explore the level of behavioral modulation of the nervous system in insects
in response to sensory and motor interventions because both sensory-motor intervention
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systems introduced here have been analyzed only at the behavioral level. It is essential
to add calcium imaging or physiological response measurements to the sensory-motor
intervention system to measure the internal state of the insect and to identify the behavioral
compensators that support adaptive behavior in insects. Moreover, future directions for
the intervention system proposed in this review involve its integration with technology
controlling a robot with the insect brain [78] or utilizing electrical stimulation to govern the
insect [79–81]. This integration aims not only to monitor behavior but also to obtain the
activity of the central nervous system, unraveling the principles of adaptive behavior in
correlation with the environment, the central nervous system, and the body. In this sense,
the combination of the insect on-board system and VR for insects introduced here with
calcium imaging [82–84] and electrophysiology [85,86] must be another research to deepen
our understanding of adaptive behavior.
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